
Shallow Effect Handlers

Daniel Hillerström and Sam Lindley(�)

The University of Edinburgh, United Kingdom
{Daniel.Hillerstrom,Sam.Lindley}@ed.ac.uk

Abstract. Plotkin and Pretnar’s effect handlers offer a versatile ab-
straction for modular programming with user-defined effects. Traditional
deep handlers are defined by folds over computation trees. In this paper
we study shallow handlers, defined instead by case splits over compu-
tation trees. We show that deep and shallow handlers can simulate one
another up to specific notions of administrative reduction. We present
the first formal accounts of an abstract machine for shallow handlers and
a Continuation Passing Style (CPS) translation for shallow handlers tak-
ing special care to avoid memory leaks. We provide implementations in
the Links web programming language and empirically verify that neither
implementation introduces unwarranted memory leaks.

Keywords: effect handlers · abstract machines · continuation passing

1 Introduction

Expressive control abstractions are pervasive in mainstream programming lan-
guages, be that async/await as pioneered by C#, generators and iterators as com-
monly found in JavaScript and Python, or coroutines in C++20. Such abstrac-
tions may be simulated directly with higher-order functions, but at the expense
of writing the entire source program in Continuation Passing Style (CPS). To
retain direct-style, some languages build in several different control abstractions,
e.g., JavaScript has both async/await and generators/iterators, but hard-wiring
multiple abstractions increases the complexity of the compiler and run-time.

An alternative is to provide a single control abstraction, and derive others
as libraries. Plotkin and Pretnar’s effect handlers provide a modular abstrac-
tion that subsumes all of the above control abstractions. Moreover, they have
a strong mathematical foundation [19,20] and have found applications across a
diverse spectrum of disciplines such as concurrent programming [4], probabilistic
programming [8], meta programming [23], and more [11].

With effect handlers computations are viewed as trees. Effect handlers come
in two flavours deep and shallow. Deep handlers are defined by folds (specifically
catamorphisms [17]) over computation trees, whereas shallow handlers are de-
fined as case-splits. Catamorphisms are attractive because they are semantically
well-behaved and provide appropriate structure for efficient implementations us-
ing optimisations such as fusion [22]. However, they are not always convenient
for implementing other structural recursion schemes such as mutual recursion.

2 Daniel Hillerström, Sam Lindley

Most existing accounts of effect handlers use deep handlers. In this paper we
develop the theory of shallow effect handlers.

As shallow handlers impose no particular structural recursion scheme, they
can be more convenient. For instance, using shallow handlers it is easy to model
Unix pipes as two mutually recursive functions (specifically mutumorphisms [7])
that alternate production and consumption of data. With shallow handlers we
define a classic demand-driven Unix pipeline operator as follows

pipe : 〈〈〉 → α!{Yield : β → 〈〉},〈〉 → α!{Await : β}〉 → α!∅
copipe : 〈β → α!{Await : β}, 〈〉 → α!{Yield : β → 〈〉}〉 → α!∅

pipe 〈p, c〉 = handle† c 〈〉 with
return x 7→ x
Await r 7→ copipe 〈r , p〉

copipe 〈c, p〉 = handle† p 〈〉 with
return x 7→ x
Yield p r 7→ pipe 〈r , λ〈〉.c p〉

A pipe takes two thunked computations, a producer p and a consumer c. A
computation type A!E is a value type A and an effect E , which enumerates the
operations that the computation may perform.

The pipe function specifies how to handle the operations of its arguments and
in doing so performs no operations of its own, thus its effect is pure ∅. Each of the
thunks returns a value of type α. The producer can perform the Yield operation,
which yields a value of type β and the consumer can perform the Await operation,
which correspondingly awaits a value of type β. The shallow handler runs the
consumer. If the consumer returns a value, then the return clause is executed and
simply returns that value as is. If the consumer performs the Await operation,
then the handler is supplied with a special resumption argument r , which is the
continuation of the consumer computation reified as a first-class function. The
copipe is now invoked with r and the producer as arguments.

The copipe function is similar. The arguments are swapped and the consumer
now expects a value. The shallow handler runs the producer. If it performs the
Yield operation, then pipe is invoked with the resumption of the producer along
with a thunk that applies the resumption of the consumer to the yielded value.

As a simple example consider the composition of a producer that yields a
stream of ones, and a consumer that awaits a single value.

pipe 〈rec ones 〈〉.do Yield 1; ones 〈〉, λ〈〉.do Await〉
 + copipe 〈λx .x , rec ones 〈〉.do Yield 1; ones 〈〉〉
 + pipe 〈λ〈〉.rec ones 〈〉.do Yield 1; ones 〈〉, λ〈〉.1〉 + 1

(The computation do ` p performs operation ` with parameter p.)
The difference between shallow handlers and deep handlers is that in the

latter the original handler is implicitly wrapped around the body of the re-
sumption, meaning that the next effectful operation invocation is necessarily
handled by the same handler. Shallow handlers allow the freedom to choose how
to handle the next effectful operation; deep handlers do not. Pipes provide the
quintessential example for contrasting shallow and deep handlers. To implement
pipes with deep handlers, we cannot simply use term level recursion, instead we
effectively have to defunctionalise [21] the shallow version of pipes using recur-
sive types. Following Kammar et al. [11] we define two mutually recursive types

Shallow Effect Handlers 3

for producers and consumers, respectively.

Producerαβ = 〈〉→ (Consumerαβ → α!∅)!∅
Consumerαβ = β→ (Producerαβ → α!∅)!∅

The underlying idea is state-passing : the Producer type is an alias for a sus-
pended computation which returns a computation parameterised by a Consumer
computation. Correspondingly, Consumer is an alias for a function that consumes
an element of type β and returns a computation parameterised by a Producer
computation. The ultimate return value has type α. Using these recursive types,
we can now give types for deep pipe operators and their implementations.

pipe′ : (〈〉 → α!{Await : β}) → Producerαβ → α!∅
copipe′ : (〈〉 → α!{Yield : β → 〈〉}) → Consumerαβ → α!∅

pipe′ c = handle c 〈〉 with
return x 7→ λy .x
Await r 7→ λp.p 〈〉 r

copipe′ p = handle p 〈〉 with
return x 7→ λy .x
Yield p r 7→ λc.c p r

runPipe〈p; c〉 = pipe′ c (λ〈〉.copipe′ p)

Application of the pipe operator is no longer direct as extra plumbing is required
to connect the now decoupled handlers. The observable behaviour of runPipe is
the same as the shallow pipe. Indeed, the above example yields the same result.

runPipe 〈rec ones 〈〉.do Yield 1; ones 〈〉, λ〈〉.do Await〉 + 1

In this paper we make five main contributions, each shedding their own light on
the computational differences between deep and shallow handlers:

– A proof that shallow handlers with general recursion can simulate deep han-
dlers up to congruence and that, at the cost of performance, deep handlers
can simulate shallow handlers up to administrative reductions (§3).

– The first formal account of an abstract machine for shallow handlers (§4).
– The first formal account of a CPS translation for shallow handlers (§5).
– An implementation of both the abstract machine and the CPS translation

as backends for the Links web programming language [2].
– An empirical evaluation of our implementations (§6).

§2 introduces our core calculus of deep and shallow effect handlers. §7 discusses
related work and §8 concludes.

2 Handler Calculus

In this section, we present λ†, a Church-style row-polymorphic call-by-value cal-
culus for effect handlers. To support comparison within a single language we
include both deep and shallow handlers. The calculus is an extension of Hiller-
ström and Lindley’s calculus of extensible deep handlers λρeff [9] with shallow
handlers and recursive functions. Following Hillerström and Lindley, λ† provides
a row polymorphic effect type system and is based on fine-grain call-by-value [15],
which names each intermediate computation as in A-normal form [6], but unlike
A-normal form is closed under β-reduction.

4 Daniel Hillerström, Sam Lindley

Value types A,B ::= A→ C | ∀αK .C
| 〈R〉 | [R] | α

Computation types C ,D ::= A!E
Effect types E ::= {R}
Depth δ ::= | †
Handler types F ::= C ⇒δ D
Row types R ::= ` : P ;R | ρ | ·
Presence types P ::= Pre(A) | Abs | θ

Types T ::= A | C | E
| F | R | P

Kinds K ::= Type | Comp
| Effect | Handler
| RowL | Presence

Label sets L ::= ∅ | {`}] L
Type envs. Γ ::= · | Γ, x : A
Kind envs. ∆ ::= · | ∆,α : K

Fig. 1: Types, Kinds, and Environments

2.1 Types

The syntax of types, kinds, and environments is given in Fig. 1.

Value Types. Function type A → C maps values of type A to computations of
type C . Polymorphic type ∀αK .C is parameterised by a type variable α of kind
K . Record type 〈R〉 represents records with fields constrained by row R. Dually,
variant type [R] represents tagged sums constrained by row R.

Computation Types and Effect Types. The computation type A!E is given by a
value type A and an effect type E , which specifies the operations a computation
inhabiting this type may perform.

Handler Types. The handler type C ⇒δ D represent handlers that transform
computations of type C into computations of type D (where δ empty denotes a
deep handler and δ = † a shallow handler).

Row Types. Effect, record, and variant types are given by row types. A row
type (or just row) describes a collection of distinct labels, each annotated by a
presence type. A presence type indicates whether a label is present with type A
(Pre(A)), absent (Abs) or polymorphic in its presence (θ). Row types are either
closed or open. A closed row type ends in ·, whilst an open row type ends with
a row variable ρ. The row variable in an open row type can be instantiated with
additional labels. We identify rows up to reordering of labels. For instance, we
consider rows `1 : P1; · · · ; `n : Pn ; · and `n : Pn ; · · · ; `1 : P1; · equivalent. Absent
labels in closed rows are redundant. The unit type is the empty closed record,
that is, 〈·〉. Dually, the empty type is the empty, closed variant [·]. Often we omit
the · for closed rows.

Kinds. We have six kinds: Type, Comp, Effect, Handler, RowL, Presence, which
respectively classify value types, computation types, effect types, row types,
presence types, and handler types. Row kinds are annotated with a set of labels
L. The kind of a complete row is Row∅. More generally, RowL denotes a partial
row that may not mention labels in L. We write ` : A as sugar for ` : Pre(A).

Shallow Effect Handlers 5

Values V ,W ::= x | λxA.M | ΛαK .M | 〈〉 | 〈` = V ;W 〉 | (`V)R

| rec gA→C x .M

Computations M ,N ::= V W | V T | let 〈` = x ; y〉 = V in N
| case V {` x 7→ M ; y 7→ N } | absurdCV
| return V | let x ← M in N

| (do ` V)E | handleδM with H

Handlers H ::= {return x 7→ M } | {` p r 7→ M }]H

Fig. 2: Term Syntax

Type Variables. We let α, ρ and θ range over type variables. By convention we
write α for value type variables or for type variables of unspecified kind, ρ for
type variables of row kind, and θ for type variables of presence kind.

Type and Kind environments. Type environments (Γ) map term variables to
their types and kind environments (∆) map type variables to their kinds.

2.2 Terms

The terms are given in Fig. 2. We let x , y , z , r , p range over term variables.
By convention, we use r to denote resumption names. The syntax partitions
terms into values, computations and handlers. Value terms comprise variables
(x), lambda abstraction (λxA.M), type abstraction (ΛαK .M), the introduction
forms for records and variants, and recursive functions (rec gA→C x .M). Records
are introduced using the empty record 〈〉 and record extension 〈` = V ; W 〉,
whilst variants are introduced using injection (`V)R, which injects a field with
label ` and value V into a row whose type is R.

All elimination forms are computation terms. Abstraction and type abstrac-
tion are eliminated using application (V W) and type application (V T) re-
spectively. The record eliminator (let 〈` = x ; y〉 = V in N) splits a record V
into x , the value associated with `, and y , the rest of the record. Non-empty
variants are eliminated using the case construct (case V {` x 7→ M ; y 7→ N }),
which evaluates the computation M if the tag of V matches `. Otherwise it
falls through to y and evaluates N . The elimination form for empty variants is
(absurdC V). A trivial computation (return V) returns value V . The expres-
sion (let x ← M in N) evaluates M and binds the result to x in N .

Operation invocation (do ` V)E performs operation ` with value argument
V . Handling (handleδ M with H) runs a computation M using deep (δ empty)
or shallow (δ = †) handler H . A handler definition H consists of a return clause
{return x 7→ M } and a possibly empty set of operation clauses {` p r 7→
N`}`∈L. The return clause defines how to handle the final return value of the
handled computation, which is bound to x in M . The operation clause for `
binds the operation parameter to p and the resumption r in N`.

We define three projections on handlers: H ret yields the singleton set contain-
ing the return clause of H and H ` yields the set of either zero or one operation

6 Daniel Hillerström, Sam Lindley

clauses in H that handle the operation ` and H ops yields the set of all operation
clauses in H . We write dom(H) for the set of operations handled by H . Various
term forms are annotated with type or kind information; we sometimes omit
such annotations. We write Id(M) for handle M with {return x 7→ return x}.

Syntactic sugar. We make use of standard syntactic sugar for pattern matching,
n-ary record extension, n-ary case elimination, and n-ary tuples.

2.3 Kinding and Typing

The kinding judgement ∆ ` T : K states that type T has kind K in kind
environment ∆. The value typing judgement ∆;Γ ` V : A states that value
term V has type A under kind environment ∆ and type environment Γ . The
computation typing judgement ∆;Γ ` M : C states that term M has computa-
tion type C under kind environment ∆ and type environment Γ . The handler
typing judgement ∆;Γ ` H : C ⇒δ D states that handler H has type C ⇒δ D
under kind environment ∆ and type environment Γ . In the typing judgements,
we implicitly assume that Γ , A, C , and D , are well-kinded with respect to ∆.
We define FTV (Γ) to be the set of free type variables in Γ . The full kinding
and typing rules are given in Appendix A. The interesting rules are those for
performing and handling operations.

T-Do
∆;Γ ` V : A E = {` : A→ B ;R}

∆;Γ ` (do ` V)E : B !E

T-Handle
∆;Γ ` M : C ∆;Γ ` H : C ⇒δ D

∆;Γ ` handleδ M with H : D

T-Handler
C = A!{(`i : Ai → Bi)i ;R}
D = B !{(`i : Pi)i ;R}
H = {return x 7→ M }] {`i p r 7→ Ni}i

∆;Γ, x : A ` M : D
[∆;Γ, p : Ai , r : Bi → D ` Ni : D]i

∆;Γ ` H : C ⇒ D

T-Handler†

C = A!{(`i : Ai → Bi)i ;R}
D = B !{(`i : Pi)i ;R}
H = {return x 7→ M }] {`i p r 7→ Ni}i

∆;Γ, x : A ` M : D
[∆;Γ, p : Ai , r : Bi → C ` Ni : D]i

Γ ` H : C ⇒† D

The T-Handler and T-Handler† rules are where most of the work happens.
The effect rows on the computation type C and the output computation type D
must share the same suffix R. This means that the effect row of D must explicitly
mention each of the operations `i to say whether an `i is present with a given
type signature, absent, or polymorphic in its presence. The row R describes the
operations that are forwarded. It may include a row-variable, in which case an
arbitrary number of effects may be forwarded by the handler. The difference in
typing deep and shallow handlers is that the resumption of the former has return
type D , whereas the resumption of the latter has return type C .

2.4 Operational Semantics

Figure 3 gives a small-step operational semantics for λ†. The reduction relation
 is defined on computation terms. The interesting rules are the handler rules.

Shallow Effect Handlers 7

S-App (λx .M)V M [V /x]
S-TyApp (Λα.M)A M [A/α]
S-Split let 〈` = x ; y〉 = 〈` = V ;W 〉 in N N [V /x ,W /y]
S-Case1 case `V {` x 7→ M ; y 7→ N } M [V /x]
S-Case2 case `V {`′ x 7→ M ; y 7→ N } N [`V /y], if ` 6= `′

S-Rec (rec g x .M)V M [(rec g x .M)/g ,V /x]
S-Let let x ← return V in N N [V /x]

S-Ret handleδ (return V) with H N [V /x],
where H ret = {return x 7→ N }

S-Op handle E [do ` V] with H
N [V /p, λy .handle E [return y] with H /r],

where ` /∈ BL(E) and H ` = {` p r 7→ N }
S-Op† handle† E [do ` V] with H N [V /p, λy .E [return y]/r],

where ` /∈ BL(E) and H ` = {` p r 7→ N }
S-Lift E [M] E [N], if M N

Evaluation contexts E ::= [] | let x ← E in N | handleδ E with H

Fig. 3: Small-Step Operational Semantics

We write BL(E) for the set of operation labels bound by E .

BL([]) = ∅ BL(let x ← E in N) = BL(E)

BL(handleδ E with H) = BL(E) ∪ dom(H)

The S-Ret rule invokes the return clause of a handler. The S-Opδ rules handle
an operation by invoking the appropriate operation clause. The constraint ` /∈
BL(E) asserts that no handler in the evaluation context handles the operation: a
handler reaches past any other inner handlers that do not handle `. The difference
between S-Op and S-Op† is that the former rewraps the handler about the body
of the resumption. We write R+ for transitive closure of relation R.

Definition 1. We say that computation term N is normal with respect to effect
E if N is either of the form return V or E [do ` W], where ` ∈ E and ` /∈ BL(E).

Theorem 2 (Type Soundness). If ` M : A!E then either M 6 ∗ or there
exists ` N : A!E such that M + N 6 and N is normal with respect to E.

3 Deep as Shallow and Shallow as Deep

In this section we show that shallow handlers and general recursion can simulate
deep handlers up to congruence, and that deep handlers can simulate shallow
handlers up to administrative reduction. Both translations are folklore, but we
believe the precise simulation results are novel.

8 Daniel Hillerström, Sam Lindley

3.1 Deep as Shallow

The implementation of deep handlers using shallow handlers (and recursive func-
tions) is by a rather direct local translation. Each handler is wrapped in a re-
cursive function and each resumption has its body wrapped in a call to this
recursive function. Formally, the translation SJ−K is defined as the homomor-
phic extension of the following equations to all terms.

SJhandle M with H K = (rec h f .handle† f 〈〉 with SJH Kh) (λ〈〉.SJM K)
SJH Kh = SJH retKh] SJH opsKh

SJ{return x 7→ N }Kh = {return x 7→ SJN K}
SJ{` p r 7→ N`}`∈LKh = {` p r 7→ let r ← return λx .h (λ〈〉.r x) in SJN`K}`∈L

Theorem 3. If ∆;Γ ` M : C then ∆;Γ ` SJM K : C .

In order to obtain a simulation result, we allow reduction in the simulated
term to be performed under lambda abstractions (and indeed anywhere in a
term), which is necessary because of the redefinition of the resumption to wrap
the handler around its body. Nevertheless, the simulation proof makes minimal
use of this power, merely using it to rename a single variable. We write Rcong

for the compatible closure of relation R, that is the smallest relation including
R and closed under term constructors for λ†.

Theorem 4 (Simulation up to Congruence). If M N then SJM K +
cong

SJN K.

Proof. By induction on using a substitution lemma. The interesting case is
S-Deep-Op, which is where we apply a single β-reduction, renaming a variable,
under the lambda abstraction representing the resumption.

3.2 Shallow as Deep

Implementing shallow handlers in terms of deep handlers is slightly more involved
than the other way round. It amounts to the encoding of a case split by a fold
and involves a translation on handler types as well as handler terms. Formally,
the translation DJ−K is defined as the homomorphic extension of the following
equations to all types, terms, and type environments.

DJC ⇒ DK = DJC K⇒ 〈〈〉 → DJC K, 〈〉 → DJDK〉

DJhandle† M with H K = let z ← handle DJM K with DJH K in
let 〈f , g〉 = z in g 〈〉

DJH K = DJH retK] DJH opsK
DJ{return x 7→ N }K = {return x 7→ return 〈λ〈〉.return x , λ〈〉.DJN K〉}
DJ{` p r 7→ N }`∈LK = {` p r 7→

let r = λx .let z ← r x in let 〈f , g〉 = z in f 〈〉 in
return 〈λ〈〉.let x ← do ` p in r x , λ〈〉.DJN K〉}`∈L

Each shallow handler is encoded as a deep handler that returns a pair of thunks.
The first forwards all operations, acting as the identity on computations. The
second interprets a single operation before reverting to forwarding.

Shallow Effect Handlers 9

Theorem 5. If ∆;Γ ` M : C then DJ∆K;DJΓ K ` DJM K : DJC K.

As with the implementation of deep handlers as shallow handlers, the imple-
mentation is again given by a local translation. However, this time the adminis-
trative overhead is more significant. Reduction up to congruence is insufficient
and we require a more semantic notion of administrative reduction.

Definition 6 (Administrative Evaluation Contexts). An evaluation con-
text E is administrative, admin(E), iff

1. For all values V , we have: E [return V] ∗ return V
2. For all evaluation contexts E ′, operations ` ∈ BL(E)\BL(E ′), values V :

E [E ′[do ` V]] ∗ let x ← do ` V in E [E ′[return x]]

The intuition is that an administrative evaluation context behaves like the empty
evaluation context up to some amount of administrative reduction, which can
only proceed once the term in the context becomes sufficiently evaluated. Values
annihilate the evaluation context and handled operations are forwarded.

Definition 7 (Approximation up to Administrative Reduction). Define
& as the compatible closure of the following inference rules.

M & M

M M ′ M ′ & N

M & N

admin(E) M & N

E [M] & N

We say that M approximates N up to administrative reduction if M & N .

Approximation up to administrative reduction captures the property that ad-
ministrative reduction may occur anywhere within a term. The following lemma
states that the forwarding component of the translation is administrative.

Lemma 8. For all shallow handlers H , the following context is administrative:

let z ← handle [] with DJH K in let 〈f ; 〉 = z in f 〈〉

Theorem 9 (Simulation up to Administrative Reduction). If M ′ & DJM K
and M N then there exists N ′ such that N ′ & DJN K and M ′ + N ′.

Proof. By induction on using a substitution lemma and Lemma 8. The in-
teresting case is S-Op†, which uses Lemma 8 to approximate the body of the
resumption up to administrative reduction.

4 Abstract Machine

In this section we develop an abstract machine that supports deep and shallow
handlers simultaneously. We build upon prior work [9] in which we developed an
abstract machine for deep handlers by generalising the continuation structure of
a CEK machine (Control, Environment, Kontinuation) [5]. In our prior work we
sketched an adaptation for shallow handlers. It turns out that this adaptation
has a subtle flaw. We fix the flaw here with a full development of shallow handlers
along with a proof of correctness.

10 Daniel Hillerström, Sam Lindley

Configurations C ::= 〈M | γ | κ ◦ κ′〉
Value environments γ ::= ∅ | γ[x 7→ v]
Values v ,w ::= (γ, λxA.M) | (γ, ΛαK .M)

| 〈〉 | 〈` = v ;w〉 | (` v)R | κA | (κ, σ)A

Continuations κ ::= [] | θ :: κ Continuation frames θ ::= (σ, χ)

Handler closures χ ::= (γ,H)δ

Pure continuations σ ::= [] | φ :: σ Pure continuation frames φ ::= (γ, x ,N)

Fig. 4: Abstract Machine Syntax

The informal account. A machine continuation is a list of handler frames. A
handler frame is a pair of a handler closure (handler definition) and a pure
continuation (a sequence of let bindings). Handling an operation amounts to
searching through the continuation for a matching handler. The resumption is
constructed during the search by reifying each handler frame. The resumption
is assembled in one of two ways depending on whether the matching handler is
deep or shallow. For a deep handler, the current handler closure is included, and
a deep resumption is a reified continuation. An invocation of a deep resump-
tion amounts to concatenating it with the current machine continuation. For a
shallow handler, the current handler closure must be discarded leaving behind a
dangling pure continuation, and a shallow resumption is a pair of this pure con-
tinuation and the remaining reified continuation. (By contrast, the prior flawed
adaptation prematurely precomposed the pure continuation with the outer han-
dler in the current resumption.) An invocation of a shallow resumption again
amounts to concatenating it with the current machine continuation, but taking
care to concatenate the dangling pure continuation with that of the next frame.

The formal account. The abstract machine syntax is given in Fig. 4. A configura-
tion C = 〈M | γ | κ◦κ′〉 of our abstract machine is a quadruple of a computation
term (M), an environment (γ) mapping free variables to values, and two contin-
uations (κ) and (κ′). The latter continuation is always the identity, except when
forwarding an operation, in which case it is used to keep track of the extent to
which the operation has been forwarded. We write 〈M | γ | κ〉 as syntactic sugar
for 〈M | γ | κ ◦ []〉 where [] is the identity continuation.

Values consist of function closures, type function closures, records, variants,
and captured continuations. A continuation κ is a stack of frames [θ1, . . . , θn]. We
annotate captured continuations with input types in order to make the results
of §4.1 easier to state. Each frame θ = (σ, χ) represents pure continuation σ,
corresponding to a sequence of let bindings, inside handler closure χ. A pure
continuation is a stack of pure frames. A pure frame (γ, x ,N) closes a let-binding
let x = [] in N over environment γ. A handler closure (γ,H) closes a handler
definition H over environment γ. We write [] for an empty stack, x :: s for the
result of pushing x on top of stack s, and s ++ s ′ for the concatenation of stack
s on top of s ′. We use pattern matching to deconstruct stacks.

Shallow Effect Handlers 11

T
ra

n
si

ti
o
n

fu
n
ct

io
n

M
-I
n
it

M
−→
〈M
|∅
|[

([
],

(∅
,{
re

tu
rn

x
7→

x
})

)]
〉

M
-A

p
p
C
l
o
su

r
e

〈V
W
|γ
|κ
〉
−→
〈M
|γ
′ [
x
7→

JW
Kγ

]
|κ
〉,

if
JV

Kγ
=

(γ
′ ,
λ
x
A
.M

)
M
-A

p
p
R
e
c

〈V
W
|γ
|κ
〉
−→
〈M
|γ
′ [
g
7→

(γ
′ ,
re

c
g
A
→

C
x
.M

),
x
7→

JW
Kγ

]
|κ
〉,

if
JV

Kγ
=

(γ
′ ,
re

c
g
A
→

C
x
.M

)
M
-A

p
p
C
o
n
t

〈V
W
|γ
|κ
〉
−→
〈r
e
tu

rn
W
|γ
|κ
′
++

κ
〉,

if
JV

Kγ
=

(κ
′)

A

M
-A

p
p
C
o
n
t
†
〈V

W
|γ
|(
σ
,χ

)
::
κ
〉
−→
〈r
e
tu

rn
W
|γ
|κ
′
++

((
σ
′
++

σ
,χ

)
::
κ

)〉
,

if
JV

Kγ
=

(κ
′ ,
σ
′)

A

M
-A

p
p
T
y
p
e

〈V
A
|γ
|κ
〉
−→
〈M

[A
/
α

]
|γ
′
|κ
〉,

if
JV

Kγ
=

(γ
′ ,
Λ
α
K
.M

)

M
-S
p
l
it

〈l
e
t
〈`

=
x

;y
〉

=
V

in
N
|γ
|κ
〉
−→
〈N
|γ

[x
7→

v
,y
7→

w
]
|κ
〉,

if
JV

Kγ
=
〈`

=
v

;w
〉

M
-C

a
se

〈c
a
se

V
{`

x
7→

M
;y
7→

N
}
|γ
|κ
〉
−→

{ 〈M
|γ

[x
7→

v
]
|κ
〉,

〈N
|γ

[y
7→
`′
v

]
|κ
〉,

if
JV

Kγ
=
`
v

if
JV

Kγ
=
`′
v

a
n
d
`
6=
`′

M
-L

e
t

〈l
e
t
x
←

M
in

N
|γ
|(
σ
,χ

)
::
κ
〉
−→
〈M
|γ
|(

(γ
,x
,N

)
::
σ
,χ

)
::
κ
〉

M
-H

a
n
d
l
e

〈h
a
n
d
le
δ
M

w
it
h
H
|γ
|κ
〉
−→
〈M
|γ
|(

[]
,(
γ
,H

)δ
)

::
κ
〉

M
-R

e
t
C
o
n
t

〈r
e
tu

rn
V
|γ
|(

(γ
′ ,
x
,N

)
::
σ
,χ

)
::
κ
〉
−→
〈N
|γ
′ [
x
7→

JV
Kγ

]
|(
σ
,χ

)
::
κ
〉

M
-R

e
t
H
a
n
d
l
e
r

〈r
e
tu

rn
V
|γ
|(

[]
,(
γ
′ ,
H

))
::
κ
〉
−→
〈M
|γ
′ [
x
7→

JV
Kγ

]
|κ
〉,

if
H

re
t

=
{r

e
tu

rn
x
7→

M
}

M
-R

e
t
T
o
p

〈r
e
tu

rn
V
|γ
|[

]〉
−→

JV
Kγ

M
-D

o
〈(
d
o
`
V

)E
|γ
|(

(σ
,(
γ
′ ,
H

))
::
κ

)
◦
κ
′ 〉
−→
〈M
|γ
′ [
x
7→

JV
Kγ
,r
7→

(κ
′
++

[(
σ
,(
γ
′ ,
H

))
])

B
]
|κ
〉,

if
`

:
A
→

B
∈
E

a
n
d
H
`

=
{`

x
r
7→

M
}

M
-D

o
†

〈(
d
o
`
V

)E
|γ
|(

(σ
,(
γ
′ ,
H

)†
)

::
κ

)
◦
κ
′ 〉
−→
〈M
|γ
′ [
x
7→

JV
Kγ
,r
7→

(κ
′ ,
σ

)B
]
|κ
〉,

if
`

:
A
→

B
∈
E

a
n
d
H
`

=
{`

x
r
7→

M
}

M
-F

o
r
w
a
r
d

〈(
d
o
`
V

)E
|γ
|(

(σ
,(
γ
′ ,
H

)δ
)

::
κ

)
◦
κ
′ 〉
−→
〈(
d
o
`
V

)E
|γ
|κ
◦

(κ
′
++

[(
σ
,(
γ
′ ,
H

)δ
)]

)〉
,

if
H
`

=
∅

V
a
lu

e
in

te
rp

re
ta

ti
o
n

Jx
Kγ

=
γ

(x
)

J〈
〉K
γ

=
〈〉

Jλ
x
A
.M

Kγ
=

(γ
,λ

x
A
.M

)
J〈
`

=
V

;W
〉K
γ

=
〈`

=
JV

Kγ
;J
W

Kγ
〉

JΛ
α
K
.M

Kγ
=

(γ
,Λ
α
K
.M

)
J(
`
V

)R
Kγ

=
(`

JV
Kγ

)R
Jr
e
c
g
A
→

C
x
.M

Kγ
=

(γ
,r
e
c
g
A
→

C
x
.M

)

F
ig

.5
:

A
b

st
ra

ct
M

a
ch

in
e

S
em

a
n
ti

cs

12 Daniel Hillerström, Sam Lindley

The abstract machine semantics defining the transition function −→ is given
in Fig. 5. It depends on an interpretation function J−K for values. The ma-
chine is initialised (M-Init) by placing a term in a configuration alongside
the empty environment and identity continuation. The rules (M-AppClosure),
(M-AppRec), (M-AppCont), (M-AppCont†), (M-AppType), (M-Split), and
(M-Case) enact the elimination of values. The rules (M-Let) and (M-Handle)
extend the current continuation with let bindings and handlers respectively. The
rule (M-RetCont) binds a returned value if there is a pure continuation in the
current continuation frame; (M-RetHandler) invokes the return clause of a
handler if the pure continuation is empty; and (M-RetTop) returns a final value
if the continuation is empty. The rule (M-Do) applies the current handler to an
operation if the label matches one of the operation clauses. The captured contin-
uation is assigned the forwarding continuation with the current frame appended
to the end of it. The rule (M-Do†) is much like (M-Do), except it constructs a
shallow resumption, discarding the current handler but keeping the current pure
continuation. The rule (M-Forward) appends the current continuation frame
onto the end of the forwarding continuation.

4.1 Correctness

The (M-Init) rule provides a canonical way to map a computation term onto a
configuration. Fig. 6 defines an inverse mapping L−M from configurations to com-
putation terms via a collection of mutually recursive functions defined on con-
figurations, continuations, computation terms, handler definitions, value terms,
and values. We write dom(γ) for the domain of γ and γ\{x1, . . . , xn} for the
restriction of environment γ to dom(γ)\{x1, . . . , xn}.

The L−M function enables us to classify the abstract machine reduction
rules according to how they relate to the operational semantics. The rules
(M-Init) and (M-RetTop) are concerned only with initial input and final out-
put, neither a feature of the operational semantics. The rules (M-AppContδ),
(M-Let), (M-Handle), and (M-Forward) are administrative in that L−M is
invariant under them. This leaves β-rules (M-AppClosure), (M-AppRec),
(M-AppType), (M-Split), (M-Case), (M-RetCont), (M-RetHandler),
(M-Do†), and (M-Do†), each of which corresponds directly to performing a
reduction in the operational semantics. We write −→a for administrative steps,
−→β for β-steps, and =⇒ for a sequence of steps of the form −→∗a−→β .

Each reduction in the operational semantics is simulated by a sequence of
administrative steps followed by a single β-step in the abstract machine. The Id
handler (§2.2) implements the top-level identity continuation.

Theorem 10 (Simulation). If M N , then for any C such that LCM = Id(M)
there exists C′ such that C =⇒ C′ and LC′M = Id(N).

Proof. By induction on the derivation of M N .

Corollary 11. If ` M : A!E and M + N 6 , then M −→+ C with LCM = N .

Shallow Effect Handlers 13

Configurations

L〈M | γ | κ ◦ κ′〉M = Lκ′ ++ κM(LM Mγ) = Lκ′M(LκMLM Mγ)

Pure continuations

L[]MM = M L((γ, x ,N) :: σ)MM = LσM(let x ← M in LN M(γ\{x}))

Continuations

L[]MM = M L(σ, χ) :: κMM = LκM(LχM(LσM(M)))

Handler closures
L(γ,H)MδM = handleδ M with LH Mγ

Computation terms

LV W Mγ = LV Mγ LW Mγ
LV AMγ = LV MγA

Llet 〈` = x ; y〉 = V in N Mγ = let 〈` = x ; y〉 = LV Mγ in LN M(γ\{x , y})
Lcase V {` x 7→ M ; y 7→ N }Mγ = case LV Mγ {` x 7→ LM M(γ\{x}); y 7→ LN M(γ\{y})}

Lreturn V Mγ = return LV Mγ
Llet x ← M in N Mγ = let x ← LM Mγ in LN M(γ\{x})

Ldo ` V Mγ = do ` LV Mγ
Lhandleδ M with H Mγ = handleδ LM Mγ with LH Mγ

Handler definitions

L{return x 7→ M }Mγ = {return x 7→ LM M(γ\{x})}
L{` x k 7→ M }]H Mγ = {` x k 7→ LM M(γ\{x , k}}] LH Mγ

Value terms and values

Lx Mγ = LvM, if γ(x) = v
Lx Mγ = x , if x /∈ dom(γ)

LλxA.M Mγ = λxA.LM M(γ\{x})
LΛαK .M Mγ = ΛαK .LM Mγ

L〈〉Mγ = 〈〉
L〈` = V ;W 〉Mγ = 〈` = LV Mγ; LW Mγ〉

L(` V)RMγ = (` LV Mγ)R

LκAM = λxA.LκM(return x)
L(κ, σ)AM = λxA.LσM(LκM(return x))

L(γ, λxA.M)M = λxA.LM M(γ\{x})
L(γ, ΛαK .M)M = ΛαK .LM Mγ

L〈〉M = 〈〉
L〈` = v ;w〉M = 〈` = LvM; LwM〉

L(` v)RM = (` LvM)R

Lrec gA→C x .M Mγ = rec gA→C x .LM M(γ\{g , x}) = L(γ, rec gA→C x .M)M

Fig. 6: Mapping from Abstract Machine Configurations to Terms

5 Higher-Order CPS Translation

In this section we formalise a CPS translation for deep and shallow handlers.
We adapt the higher-order translation of Hillerström et al. [10]. They formalise
a translation for deep handlers and then briefly outline an extension for shallow
handlers. Alas, there is a bug in their extension. Their deep handler translation
takes advantage of the rewrapping of the body of a resumption with the current
handler to combine the current return clause with the current pure continuation.
Their shallow handler translation attempts to do the same, but the combination

14 Daniel Hillerström, Sam Lindley

Syntax

Values V ,W ::= x | λx k .M | rec g x k .M | ` | 〈V ,W 〉 | resδ

Computations M ,N ::= V | U @ V @ W | let 〈x , y〉 = V in N

| case V {` 7→ M ; x 7→ N } | appV W
Syntactic sugar

let x = V in N ≡ N [V /x]
` V ≡ 〈`,V 〉

〈〉 ≡ `〈〉
〈` = V ;W 〉 ≡ ` 〈V ,W 〉

[] ≡ `[]
V :: W ≡ `:: 〈V ,W 〉

case V {` x 7→ M ; y 7→ N } ≡
let y = V in let 〈z , x 〉 = y in

case z {` 7→ M ; z 7→ N }

let 〈` = x ; y〉 = V in N ≡
let 〈z , z ′〉 = V in let 〈x , y〉 = z ′ in

case z {` 7→ N ; z 7→ `⊥}
Reductions

U-App (λx k .M) @ V @ W M [V /x ,W /k]
U-Rec (rec g x k .M) @ V @ W M [rec g x k .M /g ,V /x ,W /k]

U-Split let 〈x , y〉 = 〈V ,W 〉 in N N [V /x ,W /y]

U-Case1 case ` {` 7→ M ; x 7→ N } M
U-Case2 case ` {`′ 7→ M ; x 7→ N } N [`/x], if ` 6= `′

U-KAppNil app (〈[], 〈v , e〉〉 :: k)V v @ V @ k

U-KAppCons app (〈f :: s, h〉 :: k)V f @ V @ (〈s, h〉 :: k)

U-Res res (qn :: · · · :: q1 :: []) λx k .app (q1 :: · · · :: qn :: k) x

U-Res† res† (〈f1 :: · · · :: fm , h〉 :: qn :: · · · :: q1 :: [])
λx k .let (〈s ′, h ′〉 :: k ′) = k in

app (q1 :: · · · :: qn :: 〈f1 :: · · · :: fm :: s ′, h ′〉 :: k ′) x

Fig. 7: Untyped Target Calculus

is now unsound as the return clause must be discarded by the resumption. We
fix the bug by explicitly separating out the return continuation. Moreover, our
translation is carefully designed to avoid memory leaks. The key insight is that to
support the typical tail-recursive pattern of shallow handlers without generating
useless identity continuations it is essential that we detect and eliminate them.
We do so by representing pure continuations as lists of pure frames whereby the
identity continuation is just an empty list, much like the abstract machine of §4.

Following Hillerström et al. [10], we present a higher-order uncurried CPS
translation into an untyped lambda calculus. In the style of Danvy and Nielsen [3],
we adopt a two-level lambda calculus notation to distinguish between static
lambda abstraction and application in the meta language and dynamic lambda
abstraction and application in the target language: overline denotes a static syn-
tax constructor; underline denotes a dynamic syntax constructor. To facilitate
this notation we write application as an infix “at” symbol (@). We assume the
meta language is pure and hence respects the usual β and η equivalences.

Shallow Effect Handlers 15

5.1 Target Calculus

The target calculus is given in Fig. 7. As in λ† there is a syntactic distinction
between values (V) and computations (M). Values (V) comprise: lambda ab-
stractions (λx k .M) and recursive functions (rec g x k .M), each of which take an
additional continuation parameter; first-class labels (`); pairs 〈V ,W 〉; and two

special convenience constructors for building deep (res V) and shallow (res†V)
resumptions, which we will explain shortly. Computations (M) comprise: values
(V); applications (U @ V @ W); pair elimination (let 〈x , y〉 = V In N); label
elimination (case V {` 7→ M ; x 7→ N }); and a special convenience constructor
for continuation application (app V W).

Lambda abstraction, pairs, application, and pair elimination are underlined
to distinguish them from equivalent constructs in the meta language. We define
syntactic sugar for variant values, record values, list values, let binding, variant
eliminators, and record eliminators. We assume standard n-ary generalisations
and use pattern matching syntax for deconstructing variants, records, and lists.

The reductions for functions, pairs, and first-class labels are standard. To
explain the reduction rules for continuations, we first explain the encoding of
continuations. Much like the abstract machine, a continuation (k) is given by a
list of continuation frames. A continuation frame (〈s, h〉) consists of a pair of a
pure continuation (s) and a handler (h). A pure continuation is a list of pure
continuation frames (f). A handler is a pair of a return continuation (v) and an
effect continuation (e) which dispatches on the operations provided by a handler.
There are two continuation reduction rules, both of which inspect the first frame
of the continuation. If the pure continuation of this frame is empty then the
return clause is invoked (U-KAppNil). If the pure continuation of this frame is
non-empty then the first pure continuation frame is invoked (U-KAppCons).
A crucial difference between our representation of continuations and that of
Hillerström et al. [10] is that they use a flat list of frames whereas we use a
nested structure in which each pure continuation is a list of pure frames.

To explain the reduction rules for continuations, we first explain the encoding
of resumptions. Reified resumptions are constructed frame-by-frame as reversed
continuations — they grow a frame at a time as operations are forwarded through
the handler stack. Hillerström et al. [10] adopt such an intensional representation
in order to obtain a relatively tight simulation result. We take further advantage
of this representation to discard the handler when constructing a shallow han-
dler’s resumption. The resumption reduction rules turn reified resumptions into
actual resumptions. The deep rule (U-Res) simply appends the reified resump-
tion onto the continuation. The shallow rule (U-Res†) appends the tail of the
reified resumption onto the continuation after discarding the topmost handler
from the resumption and appending the topmost pure continuation from the
resumption onto the topmost pure continuation of the continuation.

The continuation application and resumption constructs along with their
reduction rules are macro-expressible in terms of the standard constructs. We
choose to build them in order to keep the presentation relatively concise.

16 Daniel Hillerström, Sam Lindley

Values

JxK = x

Jλx .M K = λx k .JM K @ k

JΛα.M K = λz k .JM K @ k
J〈〉K = 〈〉

J〈` =V ;W 〉K = 〈` =JV K; JW K〉
J`V K = ` JV K

Jrec g x .M K = rec g x k .JM K @ k

Computations
JVW K = λκ.JV K @ JW K @ ↓κ
JVT K = λκ.JV K @ 〈〉@ ↓κ

Jlet 〈` = x ; y〉 = V in N K = λκ.let 〈` = x ; y〉 = JV K in JN K @ κ

Jcase V {` x 7→ M ; y 7→ N }K = λκ.case JV K {` x 7→ JM K @ κ; y 7→ JN K @ κ}
Jabsurd V K = λκ.absurd JV K

JreturnV K = λκ.app ↓κ JV K
Jlet x ← M in N K = λ〈s, χ〉 :: κ.JM K @ (〈(λx k .JN K @ k) :: s, χ〉 :: κ)

Jdo ` V K = λ〈s, 〈v , e〉〉 :: κ.e @ (` 〈JV K, 〈s, 〈v , e〉〉 :: []〉) @ ↓κ
JhandleδM with H K = λκ.JM K @ 〈[], JH Kδ〉 :: κ

JH Kδ = 〈JH retK, JH opsKδ〉
J{return x 7→ N }K = λx k .JN K @ k

J{(` p r 7→ N`)`∈L}Kδ = λx k .let 〈z , 〈p, rk〉〉 = x in

case z {(` 7→ let r = resδ rk in JN`K @ k)`∈L
y 7→ Mforward((y , p, rk), k)}

Mforward((y , p, rk), k) = let 〈s ′, 〈v ′, e ′〉〉 :: k ′ = k in

e ′ @ (y 〈p, 〈s ′, 〈v ′, e ′〉〉 :: rk〉) @ k ′

Top-level program

>JM K = JM K @ (〈[], 〈λx k .x , λz k .absurd z 〉〉 :: [])

Fig. 8: Higher-Order Uncurried CPS Translation of λ†

5.2 Static Terms

Redexes marked as static are reduced as part of the translation (at compile
time), whereas those marked as dynamic are reduced at runtime.

We make use of static lambda abstractions, pairs, and lists. We let κ range
over static continuations and χ range over static handlers. We let V,W range
over meta language values, M range over meta language expressions, and P,Q
over meta language patterns. We use list and record pattern matching in the
meta language.

(λ〈P,Q〉.M) @ 〈V,W〉 = (λP.λQ.M) @ V @W = (λ(P ::Q).M) @ (V ::W)

(λ〈P,Q〉.M) @ V = let 〈f , s〉 = V in (λP.λQ.M) @ f @ s = (λ(P ::Q).M) @ V

A meta language value V can be reified as a target language value ↓V .

↓V = V ↓(V ::W) = ↓V :: ↓W ↓〈V,W〉 = 〈↓V, ↓W〉

5.3 The Translation

The CPS translation is given in Fig. 8. Its behaviour on constructs for introduc-
ing and eliminating values is standard. Where necessary static continuations in

Shallow Effect Handlers 17

the meta language are reified as dynamic continuations in the target language.
The translation of return V applies the continuation to JV K. The translation
of let x ← M in N adds a frame to the pure continuation on the topmost
frame of the continuation. The translation of do `V dispatches the operation
to the effect continuation at the head of the continuation. The resumption is
initialised with the topmost frame of the continuation. The translations of deep
and shallow handling each add a new frame to the continuation. The translation
of the operation clauses of a handler dispatches on the operation. If a match is
found then the reified resumption is turned into a function and made available
in the body of the operation clause. If there is no match, then the operation is
forwarded by unwinding the continuation, transferring the topmost frame to the
head of the reified resumption before invoking the next effect continuation. The
only difference between the translations of a deep handler and a shallow handler
is that the reified resumption of the latter is specially marked in order to ensure
that the handler is disposed of in the body of a matching operation clause.

Example. The following example illustrates how the higher-order CPS transla-
tion avoids generating administrative redexes by performing static reductions.

>Jhandle (do Await 〈〉) with H K = Jhandle (do Await 〈〉) with H K @K>
= Jdo Await 〈〉K @ 〈[], JH K〉 ::K>
= Jdo Await 〈〉K @ 〈[], 〈JH retK, JH opsK〉〉 ::K>
= JH opsK @ Await 〈〈〉, 〈[], JH K〉 :: []〉@ ↓K>

where K> = (〈[], 〈λx k .x , λz k .absurd z 〉〉 :: []). The resulting term passes Await
directly to the dispatcher that implements the operation clauses of H .

5.4 Correctness

The translation naturally lifts to evaluation contexts.

J[]K = λκ.κ

Jlet x ← E in N K = λ〈s, χ〉 :: κ.JEK @ (〈(λx k .JN K @ k) :: s, χ〉 :: κ)

Jhandleδ E with H K = λκ.JEK @ (〈[], JH Kδ〉 :: κ)

Lemma 12 (Decomposition). JE [M]K @ (V ::W) = JM K @ (JEK @ (V ::W))

Though it eliminates static administrative redexes, the translation still yields
administrative redexes that cannot be eliminated statically, as they only appear
at run-time, which arise from deconstructing a reified stack of continuations. We
write a for the compatible closure of U-Split, U-Case1 and U-Case2.

The following lemma is central to our simulation theorem. It characterises
the sense in which the translation respects the handling of operations.

Lemma 13 (Handling). If ` /∈ BL(E) and H ` = {` p r 7→ N`} then:

1. Jdo ` V K @ (JEK @ (〈[], JH K〉 ::W)) + ∗a
(JN`K @W)[JV K/p, λy k .Jreturn yK @ (JEK @ (〈[], JH K〉 :: k))/r]

18 Daniel Hillerström, Sam Lindley

2. Jdo ` V K @ (JEK @ (〈[], JH K†〉 ::W)) + ∗a
(JN`K @W)[JV K/p, λy k .let (〈s, 〈v , e〉〉 :: k) = k in

Jreturn yK @ (JEK @ (〈s, 〈v , e〉〉 :: k))/r]

We now give a simulation result in the style of Plotkin [18]. The theorem
shows that the only extra behaviour exhibited by a translated term is the nec-
essary bureaucracy of dynamically deconstructing the continuation stack.

Theorem 14 (Simulation). If M N then for all static values V and W,
we have JM K @ (V ::W) + ∗a JN K @ (V ::W).

Proof. By induction on the reduction relation () using Lemma 13.

As a corollary, we obtain that the translation simulates full reduction to a value.

Corollary 15. M ∗ V iff >JM K ∗ ∗a >JV K.

6 Empirical Evaluation

We conducted a basic empirical evaluation using an experimental branch of the
Links web programming language [2] extended with support for shallow handlers
and JavaScript backends based on the CEK machine (§4) and CPS translation
(§5). The full details are given in Appendix B. Here we give a brief high-level
summary. Our benchmarks are adapted from Kammar et al. [11], comprising:
pipes, a count down loop, and n-Queens. Broadly, our results align with those
of Kammar et al. Specifically, the shallow implementation of pipes outperforms
the deep implementation. The shallow-as-deep translation fails to complete most
benchmarks as it runs out of memory. The memory usage pattern exhibited by
deep, shallow, and shallow-as-deep implementations are all stable.

Deep handlers perform slightly better than shallow handlers except on the
pipes benchmark (CEK and CPS) and the countdown benchmark on the CEK
machine. The former is hardly surprising given the inherent indirection in the
deep implementation of pipes, which causes unnecessary closure allocations to
happen when sending values from one end of the pipe to the other. We conjecture
that the relatively poor performance of deep handlers on the CEK version of the
countdown benchmark is also due to unnecessary closure allocation in the inter-
pretation of state. Kammar et al. avoid this problem by adopting parameterised
handlers, which thread a parameter through each handler.

7 Related Work

Shallow Handlers. Most existing accounts of effect handlers use deep handlers.
Notable exceptions include Haskell libraries based on free monads [11,12,13], and
the Frank programming language [16]. Kiselyov and Ishii [12] optimise their im-
plementation by allowing efficient implementations of catenable lists to be used
to support manipulation of continuations. We conjecture that both our abstract
machine and our CPS translation could benefit from a similar representation.

Shallow Effect Handlers 19

Abstract Machines for Handlers. Lindley et al. [16] implement Frank using an
abstract machine similar to the one described in this paper. Their abstract ma-
chine is not formalised and differs in several ways. In particular, continuations
are represented by a single flattened stack, rather than a nested stack like ours,
and Frank supports multihandlers, which handle several computations at once.
Biernacki et al. [1] present an abstract machine for deep effect handlers similar
to that of Hillerström and Lindley [9] but factored slightly differently.

CPS for Handlers. Leijen [14] implements a selective CPS translation for deep
handlers, but does not go all the way to plain lambda calculus, relying on a
special built in handling construct.

8 Conclusion and Future Work

We have presented the first comprehensive formal analysis of shallow effect han-
dlers. We introduced the handler calculus λ† as a uniform calculus of deep and
shallow handlers. We specified formal translations back and forth between deep
and shallow handlers within λ†, an abstract machine for λ†, and a higher-order
CPS translation for λ†. In each case we proved a precise simulation result, draw-
ing variously on different notions of administrative reduction. We have imple-
mented the abstract machine and CPS translation as backends for Links and
evaluated the performance of deep and shallow handlers and their encodings,
measuring both execution time and memory consumption. Though deep and
shallow handlers can always encode one another, the results suggest that the
shallow-as-deep encoding is not viable in practice due to administrative over-
head, whereas the deep-as-shallow encoding may be viable. In future we intend
to perform a more comprehensive performance evaluation for a wider range of
effect handler implementations.

Another outstanding question is to what extent shallow handlers are really
needed at all. We have shown that we can encode them generically using deep
handlers, but the resulting cruft hinders performance in practice. Extensions to
deep handlers not explored in this paper, such as parameterised handlers [11,20]
or a deep version of the multihandlers of Lindley et al. [16], offer the potential for
expressing certain shallow handlers without the cruft. Parameterised handlers
thread a parameter through each handler, avoiding unnecessary closure alloca-
tion. Deep multihandlers directly capture mutumorphisms over computations,
allowing a direct implementation of pipes. In future we plan to study the precise
relationship between shallow handlers, parameterised handlers, deep multihan-
dlers, and perhaps handlers based on other structural recursion schemes.

Acknowledgements. We would like to thank John Longley for insightful dis-
cussions about the inter-encodings of deep and shallow handlers. Daniel Hiller-
ström was supported by EPSRC grant EP/L01503X/1 (EPSRC Centre for Doc-
toral Training in Pervasive Parallelism). Sam Lindley was supported by EPSRC
grant EP/K034413/1 (From Data Types to Session Types—A Basis for Concur-
rency and Distribution).

https://www.epsrc.ac.uk/
http://pervasiveparallelism.inf.ed.ac.uk
https://www.epsrc.ac.uk
http://groups.inf.ed.ac.uk/abcd/

20 Daniel Hillerström, Sam Lindley

References

1. Biernacki, D., Piróg, M., Polesiuk, P., Sieczkowski, F.: Handle with care: rela-
tional interpretation of algebraic effects and handlers. PACMPL 2(POPL), 8:1–
8:30 (2018)

2. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without
tiers. In: FMCO. LNCS, vol. 4709, pp. 266–296. Springer (2006)

3. Danvy, O., Nielsen, L.R.: A first-order one-pass CPS transformation. Theor. Com-
put. Sci. 308(1-3), 239–257 (2003)

4. Dolan, S., White, L., Sivaramakrishnan, K., Yallop, J., Madhavapeddy, A.: Effec-
tive concurrency through algebraic effects. OCaml Workshop (2015)

5. Felleisen, M., Friedman, D.P.: Control operators, the SECD-machine, and the λ-
calculus. In: Formal Description of Programming Concepts III. pp. 193–217 (1987)

6. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: PLDI. pp. 237–247. ACM (1993)

7. Fokkinga, M.M.: Tupling and mutumorphisms. The Squiggolist 1(4), 81–82 (1990)
8. Goodman, N.: Uber AI Labs open sources Pyro, a deep probabilistic programming

language (Nov 2017), https://eng.uber.com/pyro/
9. Hillerström, D., Lindley, S.: Liberating effects with rows and handlers. In:

TyDe@ICFP. pp. 15–27. ACM (2016)
10. Hillerström, D., Lindley, S., Atkey, R., Sivaramakrishnan, K.C.: Continuation pass-

ing style for effect handlers. In: FSCD. LIPIcs, vol. 84, pp. 18:1–18:19 (2017)
11. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: ICFP. pp. 145–158.

ACM (2013)
12. Kiselyov, O., Ishii, H.: Freer monads, more extensible effects. In: Haskell. pp. 94–

105. ACM (2015)
13. Kiselyov, O., Sabry, A., Swords, C.: Extensible effects: an alternative to monad

transformers. In: Haskell. pp. 59–70. ACM (2013)
14. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: POPL.

pp. 486–499. ACM (2017)
15. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-

gramming languages. Inf. Comput. 185(2), 182–210 (2003)
16. Lindley, S., McBride, C., McLaughlin, C.: Do be do be do. In: POPL. pp. 500–514.

ACM (2017)
17. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas,

lenses, envelopes and barbed wire. In: FPCA. Lecture Notes in Computer Science,
vol. 523, pp. 124–144. Springer (1991)

18. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

19. Plotkin, G.D., Power, J.: Adequacy for algebraic effects. In: FoSSaCS. LNCS,
vol. 2030, pp. 1–24. Springer (2001)

20. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Logical Methods in Com-
puter Science 9(4) (2013)

21. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation 11(4), 363–397 (1998)

22. Wu, N., Schrijvers, T.: Fusion for free - efficient algebraic effect handlers. In: MPC.
Lecture Notes in Computer Science, vol. 9129, pp. 302–322. Springer (2015)

23. Yallop, J.: Staged generic programming. PACMPL 1(ICFP), 29:1–29:29 (2017)

https://eng.uber.com/pyro/

Shallow Effect Handlers 21

A Kinding and typing rules for λ†

The kinding rules for λ† are given in Fig. 9 and the typing rules are given in
Fig. 10.

TyVar

∆,α : K ` α : K

Forall
∆,α : K ` C : Comp

∆ ` ∀αK .C : Type

Comp
∆ ` A : Type
∆ ` E : Effect

∆ ` A!E : Comp

Fun
∆ ` A : Type
∆ ` C : Comp

∆ ` A→ C : Type

Record
∆ ` R : Row∅

∆ ` 〈R〉 : Type

Variant
∆ ` R : Row∅

∆ ` [R] : Type

Effect
∆ ` R : Row∅

∆ ` {R} : Effect

Present
∆ ` A : Type

∆ ` Pre(A) : Presence

Absent

∆ ` Abs : Presence

EmptyRow

∆ ` · : RowL

ExtendRow
∆ ` P : Presence
∆ ` R : RowL]{`}

∆ ` ` : P ;R : RowL

Handler
∆ ` C : Comp ∆ ` D : Comp

∆ ` C ⇒δ D : Handler

Fig. 9: Kinding rules for λ†

22 Daniel Hillerström, Sam Lindley

Values

T-Var
x : A ∈ Γ
∆;Γ ` x : A

T-Lam
∆;Γ, x : A ` M : C

∆;Γ ` λxA.M : A→ C

T-PolyLam
∆,α : K ;Γ ` M : C α /∈ FTV (Γ)

∆;Γ ` ΛαK .M : ∀αK .C

T-Unit

∆;Γ ` 〈〉 : 〈〉

T-Extend
∆;Γ ` V : A ∆;Γ `W : 〈` : Abs;R〉
∆;Γ ` 〈` = V ;W 〉 : 〈` : Pre(A);R〉

T-Inject
∆;Γ ` V : A

∆;Γ ` (`V)R : [` : Pre(A);R]

Computations

T-App
∆;Γ ` V : A→ C
∆;Γ `W : A

∆;Γ ` V W : C

T-PolyApp
∆;Γ ` V : ∀αK .C

∆ ` T : K

∆;Γ ` V T : C [T/α]

T-Split
∆;Γ ` V : 〈` : Pre(A);R〉

∆;Γ, x : A, y : 〈` : Abs;R〉 ` N : C

∆;Γ ` let 〈` = x ; y〉 = V in N : C

T-Case
∆;Γ ` V : [` : Pre(A);R]

∆;Γ, x : A ` M : C ∆;Γ, y : [` : Abs;R] ` N : C

∆;Γ ` case V {` x 7→ M ; y 7→ N } : C

T-Absurd
∆;Γ ` V : []

∆;Γ ` absurdC V : C

T-Return
∆;Γ ` V : A

∆;Γ ` return V : A!E

T-Let
∆;Γ ` M : A!E

∆;Γ, x : A ` N : B !E

∆;Γ ` let x ← M in N : B !E

T-Do
∆;Γ ` V : A E = {` : A→ B ;R}

∆;Γ ` (do ` V)E : B !E

T-Handle
Γ ` M : C Γ ` H : C ⇒δ D

Γ ` handleδM with H : D

Handlers

T-Handler
C = A!{(`i : Ai → Bi)i ;R}
D = B !{(`i : Pi)i ;R}
H = {return x 7→ M }] {`i p r 7→ Ni}i

∆;Γ, x : A ` M : D
[∆;Γ, p : Ai , r : Bi → D ` Ni : D]i

∆;Γ ` H : C ⇒ D

T-Handler†

C = A!{(`i : Ai → Bi)i ;R}
D = B !{(`i : Pi)i ;R}
H = {return x 7→ M }] {`i p r 7→ Ni}i

∆;Γ, x : A ` M : D
[∆;Γ, p : Ai , r : Bi → C ` Ni : D]i

Γ ` H : C ⇒† D

Fig. 10: Typing rules for λ†

Shallow Effect Handlers 23

B Empirical Results

We evaluated the performance of native deep handlers, native shallow handlers,
and the two inter-encodings (§3) on the CEK machine (§4) and CPS translation
(§5) using an experimental branch of the Links web programming language [2].
We measured the execution time of the implementations on a set of benchmarks,
and empirically verified that both the CEK machine and CPS translation do not
cause memory leaks for native deep and shallow programs. The deep encoding
of shallow handlers leaks memory, however, which is the expected behaviour as
each handling of an operation causes a new handler to be installed, whilst the
original handler remains live propagating subsequent operation invocations.

B.1 Experimental Setup

The experiments were conducted using a PC with quad-core Intel Xeon CPU E5-
1620 v2 running at 3.70 GHz and 32 GB of RAM, using an experimental branch
of Links 0.7.3 on Ubuntu 16.04 LTS. The experimental branch contains an imple-
mentation of the CEK machine (§4) in JavaScript along with a translator which
reflects Links source programs in JavaScript. In addition the branch contains an
implementation of the CPS translation (§5) which also targets JavaScript.

We have adapted the Haskell countdown, pipes, and n-Queens benchmarks
from Kammar et al. [11] to Links. We have implemented four variations of the
benchmarks, one for each kind of handler implementation, i.e. native deep, native
shallow, and using the respective encodings of shallow and deep handlers (§3).
Each benchmark was sampled fifteen times on the V8 engine (version 6.8), which
is the JavaScript engine powering the Chrome web browser (version 68). We have
performed two sets of experiments. The first set of experiments measures the me-
dian relative execution time between the different variations of each benchmark.
The second set of experiments measures the memory consumption of each han-
dler implementation strategy for the pipes benchmark.

All performance testing on V8 was done using the --stack-size 13102 and
--use-strict compiler flags, which fixes the call stack size to 128 MB and forces
strict mode interpretation of JavaScript code, respectively. To compensate for
the lack of tail call elimination in V8, the CPS translation was instrumented to
emit trampolined code.

B.2 Time Performance Results

The results for the median relative execution time for the benchmarks on the
CEK machine are shown in Fig. 11a, whilst the results for the CPS benchmarks
are depicted in Fig. 11b. For each benchmark the result is shown relative to the
respective native deep handler implementation.

Pipes. The pipes benchmark constructs a pipeline consisting of 210 nested sub-
pipes, and pushes 1000 integers through it. The native shallow version performs
consistently better than the native deep handler version. On the CEK machine

24 Daniel Hillerström, Sam Lindley

pipes countdown queens
Benchmarks

0.0

0.5

1.0

1.5

2.0

R
el
at
iv
e
sp

ee
d

1.89

1.73

0.96

0.64

0.81

0.93

0.0 0.0

0.82

Shallow
Deep (encoded)
Shallow (encoded)

(a) CEK

pipes countdown queens
Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
sp

ee
d

1.2

0.95
0.97

0.64

0.57

0.95

0.0 0.0

0.84

Shallow
Deep (encoded)
Shallow (encoded)

(b) CPS

Fig. 11: Relative median performance

the shallow version is 1.89× better, whilst for the CPS code it is 1.2× better.
These results conform with the results of Kammar et al. [11]. The performance
difference is due to the deep encoding of pipes as it does allocate more closures.
Thus, the shallow encoding of the native deep handler program suffers from a
“double encoding”, i.e. firstly it is penalised by the deep encoding of pipes and
then secondly by the shallow encoding of deep handlers. The deep encoding of
shallow pipes runs out of memory before producing a result.

Countdown. The countdown program iteratively decrements an ambient state
parameter from 106 to 0. The state is implemented using two operations Get : Int
and Put : Int→ 〈〉 for reading and writing the state parameter, respectively. Thus
the program performs a total of 2 ∗ 106 operations in a tight loop.

The deep state handler gives the standard functional state-passing interpre-
tation of Get and Put, which means that the handler initially returns a closure
that takes as input the initial state. Therefore each invocation of the deep re-
sumption returns a new closure that takes the updated state as its parameter
which causes many closure allocations during evaluation. The shallow formula-
tion of state-passing need not return a closure every time, rather, it takes the
(initial) state as input in addition to the stateful computation. The shallow state
handler is 1.73× faster than the deep handler on the CEK machine, whilst it is
marginally slower in the CPS setting.

Queens. The Queens program is the classic n-Queens problem which we have
implemented using a single nondeterministic nary operation Choose : [a] →
a. The handler for Choose returns the first correct solution to the n-Queens
problem. We tested the implementation with n = 12. The baseline deep handler
program is marginally faster than the shallow and deep encoded variants. This

Shallow Effect Handlers 25

Variation Memory usage (MB)

Baseline (V8) 42.10

Shallow 1032.948

Deep 1355.50

Deep (encoded) 1775.908

Shallow (encoded) more than 2196.63

(a) CEK

Variation Memory usage (MB)

Baseline (V8) 23.50

Shallow 60.48

Deep 61.92

Deep (encoded) 63.04

Shallow (encoded) more than 2191.10

(b) CPS

Table 1: Peak Physical Memory Usage

is the only benchmark where the deep encoding of shallow handlers did not run
out of memory before producing a (correct) result.

B.3 Memory Performance Results

We measure the memory consumed by the four different variations of the pipes
benchmarks using the CEK machine and CPS translation. The default JavaScript
maximum heap size on the test machine is roughly 2.2 GB.

CEK. The baseline memory consumption for the CEK machine on V8 was ob-
tained by observing the memory usage by running a simple tail-recursive function
that would call itself infinitely. The baseline memory consumption and the peak
memory usage for each of four pipes programs are given in Table 1a. The memory
usage pattern of the four pipes programs is depicted in Fig. 12a

The only program to run out of memory is variant using the deep encoding of
shallow handlers. For this particular program the JavaScript engine simply halts
execution and fails with an out of memory error. The other three programs finish
their execution. Moreover, they exhibit a similar oscillating memory pattern. The
rapid increase in memory consumption is due to CEK machine allocating many
objects during each machine-loop iteration. Dually, the rapid decrease is due to
the objects being garbage collected.

CPS. The baseline memory consumption for V8 was obtained by observing the
memory usage of a simple infinite loop with an empty loop-body written in native
JavaScript. Table 1b summarises the peak memory usage and Fig. 12b depicts the
memory usage for each variation of the pipes benchmark. The memory footprint
of the native deep and shallow handlers and encoded deep handlers is roughly
the same. The deep encoding of shallow handlers runs out of memory. In contrast
to the CEK machine, memory usage for the CPS translated programs oscillate
much less, in fact, it remains nearly constant for the programs that do not leak
memory. We believe the reason for this behaviour is that CPS run-time allocates
only small objects which are typically the size of a single cons-cell containing a
function pointer, and quickly becomes available for garbage collection.

26 Daniel Hillerström, Sam Lindley

0 40 80 120 160 200 240
Discrete time [seconds]

0

500

1000

1500

2000

M
em
or
y
co
ns
um
pt
io
n
[M
B]

Variants
Deep
Shallow
Deep (encoded)
Shallow (encoded)

(a) CEK

0 5 10 15 20 25 30 35 40
Discrete time [seconds]

0

500

1000

1500

2000

M
em

or
y
co

ns
um

pt
io
n
[M

B]

Variants
Deep
Shallow
Deep (encoded)
Shallow (encoded)

(b) CPS

Fig. 12: Physical Memory Consumption

	Shallow Effect Handlers

