
Shredding higher-order nested queries

Sam Lindley
University of Strathclyde

sam.lindley@strath.ac.uk

James Cheney
The University of Edinburgh
jcheney@inf.ed.ac.uk

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

ABSTRACT
We present a modular account of query shredding, the simulation
of a single nested relational query by a number of flat relational
queries, applicable to both set and multiset semantics. Our key
insight is that shredding can be greatly simplified by first rewrit-
ing the input query into a canonical normal form. Normalisation
allows us to define shredding translations on types and terms inde-
pendently of one another, unlike previous work. An added bene-
fit of normalisation is that we support higher-order terms for free,
provided that the result type is a plain nested relation type (without
higher order components). In order to generate SQL we consider
several alternatives for generating indexes, focusing on a lightweight
use of SQL OLAP features.

We prove correctness of our translations, focusing on the cen-
tral shredding step: shredding a nested query, running the shredded
queries, and stitching the results back together yields the same re-
sults as running the nested query directly.

1. INTRODUCTION
Databases are arguably one of the most important applications of

functional or declarative programming techniques. However, rela-
tional databases only support queries against flat tables, while pro-
gramming languages typically provide complex data structures that
allow arbitrary combinations of types including nesting one type
constructor inside another. Motivated by this so-called impedance
mismatch, and inspired by insights into language design based on
monadic comprehensions [28], database researchers introduced nested
relational query languages [22, 4, 5] as a generalisation of flat re-
lational queries to allow nesting collection types inside records or
other types. Several recent language designs, such as XQuery [31]
and PigLatin [17], have further extended these ideas, and they have
have been particularly influential on language-integrated querying
systems such as Kleisli [30], Microsoft’s LINQ [15], Links [8],
Ferry [10], Ur/Web [6], and SML# [16].

This paper considers the problem of translating nested queries
over nested data to flat queries over a flat representation of nested
data, or query shredding for short. Our motivation is to support
a free combination of the features of nested relational query lan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

guages with those of high-level functional programming languages,
particularly languages such as Links, Ferry, and LINQ that support
both nesting and higher-order functions.

Understanding the relative expressiveness of different query lan-
guages, such as nested and flat relational query languages, is a
classical topic in database theory, with many influential papers [18,
29, 26]. The Flat–Flat Theorem of Paredaens and Van Gucht [18]
showed that nested relational queries are no more expressive than
flat queries over flat relations. This result was strengthened by
Wong [29], whose Conservativity Theorem showed that a query
over inputs and outputs of nesting degree n does not require build-
ing intermediate data structures of greater degree. Wong’s proof
gave a concrete algorithm for normalising first-order nested re-
lational queries over flat input data to a form that can be easily
translated to SQL. Van den Bussche gave an alternative proof of
the Flat–Flat Theorem by a simulation technique [26]. Recently,
Cooper [7] extended Wong’s conservativity result to a higher-order
nested relational calculus, in the context of the Links programming
language [8]. This required a logical relations argument for col-
lection types, using proof techniques that have only been devel-
oped recently; Cooper’s proof adapted the approach of Lindley and
Stark [14].

Links and LINQ support queries over nested data structures (e.g.
records containing nested sets, bags, or lists) in principle; however,
in practice, Links, and LINQ currently either reject such queries
at run-time or execute them inefficiently in-memory by loading
unnecessarily large amounts of data or issuing large numbers of
queries (so-called query storms [11]). Recently Grust et al. [10,
11] have developed a first-order, nested relational query language
called Ferry whose implementation performs shredding via a tech-
nique called loop-lifting. However, loop-lifting is a monolithic pro-
gram transformation that is difficult to verify, and produces queries
that make heavy use of advanced On-Line Analytic Processing (OLAP)
features of SQL:1999 such as row_number that are challenging to
optimise.

Query shredding has long been known to be possible in principle
for nested relational queries over sets; this was apparently a folklore
result for several years until the publication of Van den Bussche’s
simulation [26]. To our knowledge, however, Van den Bussche’s
simulation has never been implemented (nor was it proposed as an
efficient implementation technique); it does not appear to be prac-
tical for query shredding because of its free use of conversion be-
tween the active-domain relational calculus and relational algebra.
Moreover, Van den Bussche’s simulation does not work for lists or
bags; in particular, for bag semantics the size of a union of two
nested sets can be quadratic in the size of the inputs — we give a
concrete example illustrating the problem in Appendix A.

In this paper, we introduce a new, modular approach to query

shredding that works uniformly for sets and bags. Our work is
oriented towards the programming model of the Links program-
ming language, but should be applicable to other systems based
on similar ideas, including Ferry. Essentially, our approach de-
composes the translation from nested to flat queries into a number
of simpler translations. These compilation passes are much easier
to implement, verify, debug, and extend than a monolithic whole-
program compilation pass. Our approach, like Ferry, employs some
of SQL:1999’s OLAP features, but we delay their use as long as
possible, so that at most one such operation is needed per gener-
ated query, and we identify cases where their use can be avoided.

Our approach works as follows. The first phase, normalisation,
translates a higher-order query to a normal form in which higher-
order features have been eliminated. The normalisation phase builds
on the rewriting approach taken in a series of papers by Wong [29],
Cooper [7], and our prior work [13], but differs in some minor de-
tails (given in Appendix C) that simplify the proof of correctness
and facilitate later stages. A distinctive feature of our approach
is that we support higher-order query constructs in the source lan-
guage; however, these features are removed in the first stage, which
considerably simplifies subsequent stages.

The second phase, shredding, translates a single, nested query to
a number of flat queries. These queries are organised in a shredded
package, which is essentially a type expression whose collection
type constructors are annotated with queries. The different queries
are linked by indexes, that is, additional keys and foreign keys. The
shredding algorithm, and its definition and proof of correctness,
are new and are the main contributions of the paper. Shredding
leverages the normalisation phase in that we can define translations
on types and terms independently (in contrast to van den Bussche’s
or Ferry’s approaches).

The third phase, let-insertion, hoists nested subqueries using a
let-binding construct (equivalent to SQL’s with) and a row-numbering
operation (equivalent to a restriction of SQL’s row_number). Let-
insertion is conceptually straightforward, but provides a vital link
to proper SQL by providing an implementation of abstract indexes.
Finally, translation to SQL requires a final record flattening phase;
its (standard) details are included in Appendix E for completeness.

1.1 An example
To motivate and illustrate our work, we present a small exam-

ple showing how our shredding algorithm could be used to pro-
vide useful functionality to programmers working in a database
programming language such as Ferry or Links. We first describe
the code the programmer would actually write and the results the
system produces. We then illustrate how the shredding algorithm
implements this behaviour efficiently when the nested data is stored
in tables on a relational database.

Nested database schemas allow free mixing of collection (bag)
types with record or base types. Consider a nested database schema
for an organisation consisting of a collection of departments. Each
department has a name, a collection of employees, and a collec-
tion of external contacts. Each employee has a name, salary and a
collection of tasks. Some contacts are clients.

Task = String
Employee = 〈name : String , tasks : Bag Task , salary : Int〉

Contact = 〈name : String , client : Bool〉
Department = 〈name : String , employees : Bag Employee,

contacts : Bag Contact〉
Organisation = Bag Department

The nested schema Σ contains a single collection organisation
with type Organisation .

To illustrate the main features of shredding, we construct a query
with two levels of nesting and a union operation. Suppose we wish
to find for each department a collection of people of interest, both
employees and contacts, along with a list of the tasks they perform.
Specifically, we are interested in those employees that earn less
than a thousand euros and those who earn more than a million eu-
ros, call them outliers, along with those contacts who are clients.
The following code defines poor, rich, outliers, and clients:

isPoor x = x.salary < 1000
isRich x = x.salary > 1000000
outliers xs = filter (λx.isRich x ∨ isPoor x) xs
clients xs = filter (λx. x.client) xs

In our query language comprehensions are primitive, and we can
define and use a higher-order filter function to build queries. Like-
wise, we introduce a higher-order function get that returns the name
and tasks of each element of a collection.

filter p xs = for (x← xs) where (p(x)) returnx
get xs f = for (x← xs) return 〈name = x.name, tasks = f x〉

The queryQ returns each department, the people of interest asso-
ciated with that department, and their tasks. We assign the special
task “buy” to clients.

Q = for (x← organisation)
return (〈department = x.name,

people =
get(outliers(x.employees)) (λy. y.tasks)
] get(clients(x.contacts)) (λy. return “buy”)〉)

The result type of Q is:

Result = Bag 〈department : String ,
people : Bag 〈name : String , tasks : Bag String〉〉

The result of running Q is:

[〈department = “Product”,
people = [〈name = “Bert”, tasks = [“build”]〉,

〈name = “Pat”, tasks = [“buy”]〉]〉]
〈department = “Research”, people = ∅〉,
〈department = “Quality”, people = ∅〉,
〈department = “Sales”,
people = [〈name = “Erik”, tasks = [“call”, “enthuse”]〉,

〈name = “Fred”, tasks = [“call”]〉,
〈name = “Sue”, tasks = [“buy”]〉]〉]

The nested input data above can be stored in flat relational ta-
bles in a number of ways; one way is via the following schema Σ[

containing four tables:

Σ[(tasks) = Bag 〈employee : String , task : String〉
Σ[(employees) = Bag 〈dept : String , name : String ,

salary : Int〉
Σ[(contacts) = Bag 〈dept : String , name : String ,

client : Bool〉
Σ[(departments) = Bag 〈name : String〉

To simplify the example, we assume in addition that every table
has an integer-value id field, giving each row a unique identifier;
we omit it from the schema for readability. (In the rest of the paper,
we will not require that each row has a unique identifier. Instead we
provide a feature for generating unique indexes that can ultimately
be translated into SQL’s row_number construct.) The tabular form
of the nested data above is shown in Figure 1.

JdepartmentsK =

(id) name
1 Product
2 Quality
3 Research
4 Sales

JemployeesK =

(id) dept name salary
1 Product Alex 20000
2 Product Bert 900
3 Research Cora 50000
4 Research Drew 60000
5 Sales Erik 2000000
6 Sales Fred 700
7 Sales Gina 100000JtasksK =

(id) employee task
1 Alex build
2 Bert build
3 Cora abstract
4 Cora build
5 Cora call
6 Cora dissemble
7 Cora enthuse
8 Drew abstract
9 Drew enthuse

10 Erik call
11 Erik enthuse
12 Fred call
13 Gina call
14 Gina dissemble

JcontactsK =

(id) dept name client
1 Product Pam false
2 Product Pat true
3 Research Rob false
4 Research Roy false
5 Sales Sam false
6 Sales Sid false
7 Sales Sue true

Figure 1: Sample data

We can write a query QΣ that maps data in the flat schema Σ[to
the nested schema Σ, defining the nested view organisation:

for (x← departments)
return (〈name = x.name,

employees =
for (y ← employees) where (x.name = y.dept)

return (〈name = y.name,
tasks =

for (z ← tasks)
where (y.name = z.employee)

return z.task
salary = y.salary〉)〉)

contacts =
for (y ← contacts) where (x.name = y.dept)

return (〈name = y.name, client = y.client〉)〉)

By composing Q with QΣ, we obtain a query of type Result over
input schema Σ[. Next, using a variant of Cooper’s higher-order
generalisation of Wong’s normalisation algorithm [7, 29], we can
normalise the composed query to obtain the following query Q′:

Q′ = for (x← departments)
returna

〈department = x.name,
people =
(for (y ← employees) where (x.name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000))
returnb 〈name = y.name,

tasks = for (z ← tasks)
where (z.employee = y.name)
returnc z.task〉)

]
(for (y ← contacts) where (x.name = y.dept ∧ y.client)

returnd 〈name = y.name,
tasks = returne “buy”〉)〉

Notice that we have annotated each return with a unique tag
a, b, . . . ∈ Tag . These annotations are explained shortly.

Now, however, we are faced with a problem: SQL databases do
not directly support nested multisets (or sets). Our shredding algo-
rithm, like Van den Bussche’s for sets and Grust et al.’s for lists,
can translate a normalised query such as Q′ : Result that maps flat
input Σ[to nested output Result to a fixed number of flat queries
Q1 : Result[1, . . . , Qn : Result[n whose results can be combined
via a stitching operation Q] : Result[1×· · ·×Result[n → Result .
Thus, we can simulate the query Q′ by running Q1, . . . , Qn re-
motely on the database and stitching the results together using Q].
The number of intermediate queries n is the nesting degree of Result ,
that is, the number of collection type constructors in the result type.
This is not the same as the usual nesting depth; for example, the
nesting degree of Bag 〈A : Bag Int , B : Bag String〉 is 3, not 2.
For our example, the nesting degree of Result is 3, which means
Q can be shredded into three flat queries.

The basic idea is straightforward. Whenever a nested bag ap-
pears in the output of a query, we generate an index that uniquely
identifies the current context. Then a separate query produces the
contents of the nested bag, where each element is paired up with its
parent index. Each inner level of nesting requires a further query.
Let us now consider the top-level query Q1.

for (x← departments)
returna 〈department = x.name, people = 〈a, x.id〉〉

For each iteration, we store an index in place of the nested data. The
index consists of a static component a (corresponding to the tag a
on the comprehension) and a dynamic component id. The static
component identifies which comprehension the index is associated
with. The dynamic component identifies the current binding of the
comprehension’s bound variable. In this case a is redundant be-
cause there is only one top-level comprehension, but the need for
static indexes will become apparent later. The result of running Q1

is:

[〈department = “Product”, people = 〈a, 1〉〉,
〈department = “Quality”, people = 〈a, 2〉〉,
〈department = “Research”, people = 〈a, 3〉〉,
〈department = “Sales”, people = 〈a, 4〉〉]

Now let us consider the auxiliary query Q2 for generating the
bag bound to the people field.

(for (x← departments)
for (y ← employees) where (x.name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000))
returnb (〈〈a, x.id〉,
〈name = y.name, tasks = 〈b, x.id, y.id〉〉〉))

] (for (x← departments)
for (y ← contacts) where (x.name = y.dept ∧ y.client)
returnd (〈〈a, x.id〉,
〈name = y.name, tasks = 〈d, x.id, y.id〉〉〉))

The idea here is that we can ultimately stitch the results of Q1 to-
gether with the results of Q2 by joining the inner indexes of Q1

(bound to the people field of each result) with the outer indexes of
Q2 (bound to the first component of each result). In both cases the
static components of these indexes are the same tag a.

More interestingly, this query also generates further inner in-
dexes for the tasks associated with each person. The two halves
of the union have different static indexes for the tasks b and d, be-
cause they arise from different comprehensions in the source term.
Furthermore, the dynamic index now consists of two id fields (x.id
and y.id) in each half of the union. Like Van den Bussche [26], we
are using vectors of atomic values (integers) as indexes to identify
parts of nested collections.

The result of running Q2 is:

[〈〈a, 1〉, 〈name = “Bert”, tasks = 〈b, 1, 2〉〉〉,
〈〈a, 4〉, 〈name = “Erik”, tasks = 〈b, 4, 5〉〉〉,
〈〈a, 4〉, 〈name = “Fred”, tasks = 〈b, 4, 6〉〉〉,
〈〈a, 4〉, 〈name = “Pat”, tasks = 〈d, 1, 2〉〉〉,
〈〈a, 4〉, 〈name = “Sue”, tasks = 〈d, 4, 7〉〉〉]

Joining the people field of Q1 to the outer index of Q2 correctly
associates each person with the appropriate department.

Finally, let us consider the innermost query Q3 for generating
the bag bound to the tasks field.

(for (x← departments)
for (y ← employees) where (x.name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000))
for (z ← tasks) where (z.employee = y.employee)
returnc 〈〈b, x.id, y.id〉, z.task〉)

] (for (x← departments)
for (y ← contacts) where (x.name = y.dept ∧ y.client)
returne 〈〈d, x.id, y.id〉, “buy”〉)

This query does not have any inner indexes because it is at the deep-
est level of nesting so does not construct any further nested collec-
tions. If it did, then we could use the static indexes c and e in the
same way as before, but we would run into typing difficulties with
the dynamic indexes, as the left branch iterates over three tables,
whereas the right branch iterates over two. This limitation is ad-
dressed by the more general indexing scheme used in Section 4.
The result of running Q3 is:

[〈〈b, 1, 2〉, “build”〉, 〈〈b, 4, 5〉, “call”〉, 〈〈b, 4, 5〉, “enthuse”〉,
〈〈b, 4, 6〉, “call”〉, 〈〈d, 1, 2〉, “buy”〉, 〈〈d, 4, 7〉, “buy”〉]

Joining the tasks field of Q2 to the outer index of Q3 correctly
associates each task with the appropriate outlier.

Note that each of the queries Q1, Q2, Q3 produces records that
contain other records as fields. This is not strictly allowed by SQL,
but it is straightforward to eliminate such nested records from a
query with no nested collections in its result type. Thus, we can
convert each of Q1, Q2, Q3 to queries that run remotely on any
SQL database. For instance, Q3 can be converted to the SQL:

(select 2 as i1 1, x.id as i1 2, y.id as i1 3, z.task as i2
from departments asx, employees as y, tasks as z
where ((x.name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000))
∧ (x.employee = y.employee))

union all
(select 4 as i1 1, x.id as i1 2, y.id as i1 3, “buy” as i2
from departments asx, contacts as y
where (x.name = y.dept ∧ y.client)

Note that each static index a, b, c, . . . has been converted to a num-
ber 1, 2, 3, . . ., and records have been flattened by concatenating
field names using as a delimiter.

The three queries have the following result types:

Result1 = Bag 〈department : String , people : Index 〉
Result2 = Bag 〈Index , 〈name : String , tasks : Index ′〉〉
Result3 = Bag 〈Index ′,String〉

where Index = 〈Tag , Int〉 and Index ′ = 〈Tag , Int , Int〉. Once
the results R1 : Result1, R2 : Result2, R3 : Result3 have been
evaluated on the database, they are shipped back to the host system
where we can run the following code in-memory to stitch the three
tables together into a single value: the result of the original nested

query. The code for this follows the same idea as the queryQΣ that
constructs the nested version of Σ from Σ[.

for (x← Q1)
return (〈department = x.name,

people =
for (〈i, y〉 ← Q2) where (x.people = i))
return (〈name = y.name,

tasks =
for (〈j, z〉 ← Q3) where (y.tasks = j)
return z〉)〉)

We want to emphasise, however, that all of the code mentioned
in this discussion is generated by the implementation, not by the
programmer. All the programmer needs to do is write the concise,
higher-order, nested query shown earlier.

We also want to emphasise that it is unnecessary to construct
the nested version of the input data explicitly in-memory or on the
database. Although the notional first step of our implementation
approach is to apply query QΣ that constructs the nested database
from the flat tables, there is no need to materialise this data struc-
ture anywhere. Instead, by composing with Q and normalising, we
effectively deforest the intermediate nested data structure. In the
common case where the query result is much smaller than the full
database, this is usually much faster than shipping all of the data to
the host system.

In the rest of the paper we focus attention on the critical step
of transforming a query Q whose input is flat and output is nested
to multiple flat queries Q1, . . . , Qn, such that evaluating Q (in-
memory) is equivalent to evaluating Q1, . . . , Qn on the database
and then stitching the results together on the host system.

1.2 Contributions
In contrast to Van den Bussche’s simulation, our approach han-

dles higher-order features and compiles to SQL. In contrast to Ferry,
we do not just describe an algorithm but provide a proof of cor-
rectness. Our approach does have some limitations, which are the
subject of current work: at present, it does not recognise idiomatic
SQL-style grouping and aggregation, nor does it handle queries that
return functions. Some work has been done to handle both features
in Ferry, albeit without any correctness proof [25].

Also, it is important to note that Ferry’s approach is geared to-
wards a list-based interpretation of database queries, while we as-
sume a bag-based semantics (matching proper SQL), and set-based
semantics can be accommodated simply by eliminating duplicates
in the final result. In fact, the core technical part of the paper (Sec-
tions 4–6) works just as well for a list semantics. The only parts
that rely on unordered set or bag semantics are normalisation (Sec-
tion 3) and conversion to SQL (Section 7). We leave extensions to
handle list semantics to future work.

The rest of the paper is organised as follows. Section 2 gives
background and Section 3 reviews query normalisation. Section 4
defines a translation from normal forms to shredded terms, shred-
ded packages for bundling shredded queries or shredded results
together, and a semantics for shredded query packages Section 5
summarises the proof of correctness of the shredding translation.
Section 6 gives a translation for providing flat indexes using let-
insertion. Section 7 outlines a translation to SQL. Section 8 dis-
cusses our prototype implementation. Section 9 discusses related
work and Section 10 concludes.

The details of proofs are given in appendices. Also, for com-
pleteness, the details of the initial normalisation stage and the (stan-
dard) record-flattening stage are given in appendices.

2. BACKGROUND

2.1 Notational conventions
We will use metavariables x, y, . . . , f, g for variables, and c, d, . . .

for constants and primitive operations. We also use letters t, t′, . . .
for table names, `, `′, `i, . . . for record labels and a, b, . . . for tags.

We write M [x := N] for capture-avoiding substitution of N for
x in M . We write ~x for a vector x1, . . . , xn. Moreover, we extend
vector notation pointwise to other constructs, writing, for example,
〈
−−−−→
` = M〉 for a list of correlated pairs 〈`1 = M1, . . . , `n = Mn〉.

We write: square brackets [−] for the meta level list constructor;
w :: ~v for adding the element w onto the front of the list ~v; ~v ++ ~w
for the result of appending the list ~w onto the end of the list ~v; and
concat for the function that concatenates a list of lists.

In the meta language we make extensive use of comprehensions,
primarily list comprehensions. For instance, [v | x ← xs, y ←
ys, p], returns a copy of v for each pair 〈x, y〉 of elements of xs
and ys such that the predicate p holds. We write [vi]

n
i=1 as short-

hand for [v | 1 ≤ i ≤ n] and similarly, e.g., 〈`i = Mi〉ni=1 for
〈`1 = M1, . . . , `n = Mn〉.

2.2 Nested relational calculus
We take the higher-order, nested relational calculus (evaluated

over bags) as our starting point. We call this λNRC . The types of
λNRC include base types (integers, strings, booleans), record types
〈
−−→
` : A〉, bag types BagA, and function types A→ B.

Types A,B ::= O | 〈
−−→
` : A〉 | BagA | A→ B

Base types O ::= Int | Bool | String

We say that a type is nested if it contains no function types and flat
if it is positive and contains no collection types.

The terms of λNRC include λ-abstractions, applications, and the
standard terms of nested relational calculus.

Terms M,N ::= x | c(~M) | table t | ifM thenN elseN ′

| λx.M |M N | 〈
−−−−→
` = M〉 |M.`

| returnM | ∅ |M]N | for (x←M)N
| emptyM

We assume that the constants and primitive functions include
boolean values with negation and conjunction, and integer values
with standard arithmetic operations and equality tests. We assume
special labels #1,#2, . . . and encode tuple types 〈A1, . . . , An〉
as record types 〈#1 : A1, . . . ,#n : An〉, and similarly tuple terms
〈M1, . . . ,Mn〉 as record terms 〈#1 = M1, . . . ,#n = Mn〉. We
assume fixed signatures Σ(t) and Σ(c) for tables and con-
stants. The former are constrained to have flat relation type
(Bag 〈`1 : O1, . . . , `n : On〉), and the latter to be first order n-ary
functions (〈O1, . . . , On〉 → O).

Most language constructs are standard. The ∅ expression builds
an empty bag, returnM constructs a singleton, and M]N builds
the bag union of two collections. The for (x←M) N comprehen-
sion construct iterates over a bag obtained by evaluatingM , binds x
to each element, evaluates N to another bag for each such binding,
and takes the union of the results. (That is, it is a monadic bind or
concat-map operation, not a map). The expression emptyM eval-
uates to true if M evaluates to an empty bag, and false otherwise.

Semantics. We give a denotational semantics in terms of lists.
Though we wish to preserve bag semantics, we interpret object-
level bags as meta-level lists. For meta-level values v and v′, we
write v ' v′ if v and v′ are equivalent up to permutation of list
elements. The reason for using lists rather than bags here is that

N JxKρ = ρ(x)
N Jc(X1, . . . , Xn)Kρ = JcK(N JX1Kρ, . . . ,N JXnKρ)

N Jλx.MKρ = λv.N JMKρ[x 7→v]

N JM NKρ =N JMKρ(N JNKρ)
N J〈`i = Mi〉ni=1Kρ = 〈`i = N JMiKρ〉ni=1

N JM.`Kρ =N JMKρ.`

N Jif L thenM elseNKρ =

{
N JMKρ, ifN JLKρ = true
N JNKρ, ifN JLKρ = false

N JreturnMKρ = [N JMKρ]
N J∅Kρ = []

N JM]NKρ =N JMKρ ++N JNKρ
N Jfor (x←M)NKρ = concat [N JNKρ[x 7→v] | v ← N JMKρ]

N JemptyMKρ =

{
true, ifN JMKρ = []
false, ifN JMKρ 6= []

N Jtable tKρ = JtK

Figure 2: Semantics of higher-order nested relational queries

the order in which indexes are generated must be consistent across
shredded queries.

We interpret base types as base types, functions as functions,
records as records, and bags as lists. For each table t ∈ dom(Σ),
we assume a fixed interpretation JtK of t as a list of records of type
Σ(t). In SQL, tables do not have a list semantics by default, but we
can impose one by choosing a canonical ordering for the rows of
the table. The most general approach, which we adopt, is to order
by all of the columns arranged in lexicographic order (assuming
some ordering on field names).

We assume fixed interpretations JcK for the constants and prim-
itive operations. The semantics of nested relational calculus are
shown in Figure 2; and the (standard) typing rules are given in Ap-
pendix 8; our previous paper [13] shows how to embed λNRC into
a general-purpose programming language using a richer type-and-
effect system.

If Γ ` M,N : A then we write M ' N when N JMKρ '
N JNKρ holds for all ρ : Γ. We let ρ range over environments
mapping variables to values, writing ε for the empty environment
and ρ[x 7→ v] for the extension of ρ with x bound to v.

3. QUERY NORMALISATION
The first stage of our shredding algorithm is to rewrite the query

to a normal form that has a number of useful properties. This is
a simple adaptation of normalisation techniques in prior work [29,
7, 13]. Essentially, the idea is to apply η-expansion, β-reduction,
and commuting conversions for bag comprehensions to reduce the
query to a form with no λ-abstractions and no superfluous com-
prehensions (see also [14, 12]). The full details are given in Ap-
pendix C.

In Links, query normalisation is an important part of the exe-
cution model [7, 13]. When a subexpression denoting a flat–flat
query is evaluated, the subexpression is first normalised and then
converted to SQL, which is sent to the database for evaluation; the
tuples received in response are then converted into a Links value
and execution proceeds. Note that at run-time, the query expression
is closed in the sense that all of its free variables have been replaced
with values; however, it may still contain table names whose values
are stored remotely in the database.

For flat–nested queries that read from flat tables and produce a
nested result value, our normalisation procedure is similar, but in
contrast to Cooper’s algorithm, we hoist all conditionals into the

nearest enclosing comprehension as where clauses. The resulting
normal forms are:

Query terms L ::=
⊎ ~C

Comprehensions C ::= for (~GwhereX) returnM
Generators G ::= x← t
Normalised terms M,N ::= X | R | L
Record terms R ::= 〈

−−−−→
` = M〉

Base terms X ::= x.` | c(~X) | emptyL

Any closed flat–nested query L can be converted to an equivalent
term in the above normal form.

THEOREM 1. Given a closed flat–nested query ` M : BagA,
there exists a normalisation function normBagA, such that M '
normBagA(M) is in normal form.

The normalisation algorithm and correctness proof are similar to
those in previous papers [7, 13], and are given in Appendix C. The
normal forms for flat–nested queries do not correspond directly to
SQL; the next two sections show how to bridge this gap.

4. SHREDDING

4.1 The shredding translation
In order to shred nested queries, we introduce an abstract type

Index of indexes for maintaining the correspondence between outer
and inner queries. An index a � d has a static component a and a
dynamic component d. The static component identifies which com-
prehension the index is associated with. The dynamic component
identifies the current binding of the variable x in the comprehen-
sion.

As a pre-processing step, we annotate each comprehension body
in a normalised term with a unique name a— the static component
of an index. We write the annotations as superscripts, for example:

for (~GwhereX) returnaM

Next, we modify types so that bag types have an explicit index
component and we use indexes to replace nested occurrences of
bags within other bags:

Shredded types A,B ::= Bag 〈Index , F 〉
Flat types F ::= O | 〈

−−→
` : F 〉 | Index

We also adapt the syntax of terms to incorporate indexes. After
shredding, terms will have the following forms:

Query terms L,M ::=
⊎ ~C

Comprehensions C ::= returna 〈I,N〉
| for (~GwhereX)C

Generators G ::= x← t
Inner terms N ::= X | R | I
Record terms R ::= 〈

−−−→
` = N〉

Base terms X ::= x.` | c(~X) | emptyL

Indexes I, J ::= a � d
Dynamic indexes d ::= out | in

A comprehension is now constructed from a sequence of generator
clauses of the form for (~GwhereX) followed by a body of the form
returna 〈I,N〉. Each level of nesting gives rise to such a generator
clause. The body always returns a pair 〈I,N〉 of an outer index I ,
denoting where the result values from the shredded query should

be spliced into the final nested result, and a (flat) inner term N .
Records are restricted to contain inner terms. Inner terms are either
base types, records, or indexes, which replace nested multisets. We
assume a distinguished top level static index >, which allows us to
treat all levels uniformly. Each shredded term is associated with an
outer index out and an inner index in. In fact out always appears
in the left component of a comprehension body, and only there,
and in only appears in the right component of a comprehension
body. These properties will become apparent when we specify the
shredding transformation on terms.

An additional constraint that is not captured by the above gram-
mar is that all comprehensions Ci in a shredded query

⊎n
i=1 Ci

must have the same non-zero nesting degree, that is, there exists
m > 0 such that degree(Ci) = m for 1 ≤ i ≤ n, where:

degree(returna 〈I,N〉) = 0

degree(for (~GwhereX)C) = 1 + degree(C)

This constraint will be guaranteed by the shredding transformation.
To define the shredding transformation we use paths to point to

parts of types. We use paths made up of the symbol ↓ (representing
traversing a bag constructor) and record labels `.

Paths p ::= ε | ↓.p | `.p

As paths are simply lists of ↓s and labels, we will sometimes write
p.↓ for the path p with ↓ appended at the end and similarly for p.`.
Furthermore, we will write p.~̀ for the path p with all the labels of
~̀ appended. The function paths(A) defines the set of paths to bags
in a type A:

paths(O) = {}
paths(〈`i : Ai〉ni=1) = {`i.p | p← paths(Ai)}ni=1

paths(BagA) = {ε} ∪ {↓.p | p← paths(A)}

The nesting degree of a type A is the number of paths to bag con-
structors in A, that is, degree(A) = |paths(A)|.

We now define a shredding translation on types. Given a path
p ∈ paths(A), the type VAWp is the outer shredding of A at p,
a shredded type that corresponds to the bag at path p in A. This
is defined in terms of the inner shredding TAU, a flat type that
represents the contents of the bag.

VBagAWε = Bag 〈Index ,TAU〉
VBagAW↓.p = VAWp
V〈
−−→
` : A〉W`i.p = VAiWp

TOU = O
T〈`i : Ai〉ni=1U = 〈`i : TAiU〉ni=1

TBagAU = Index

For example, consider the example result type Result from Sec-
tion 1.1. Its nesting degree is 3, and its paths are:

paths(Result) = {ε, ↓.people.ε, ↓.people.↓.tasks.ε}

Moreover, we can shred it in three ways using these three paths:

VResultWε = Bag 〈Index , 〈department : String , people : Index 〉〉
VResultW↓.people.ε = Bag 〈Index , 〈name : String , tasks : Index 〉〉
VResultW↓.people.↓.tasks.ε = Bag 〈Index ,String〉

The shredding translation on terms VLWp is given in Figure 3.
This takes a term L and a path p and gives a query VLWp that com-
putes a result of type VAWp, where A is the type of L. The aux-
iliary translation VMW?a,p returns the shredded comprehensions of
M along path p with outer static index a. The auxiliary translation
TMUa produces a flat representation of M with inner static index

VLWp =
⊎

(VLW?>,p)

V
⊎n
i=1 CiW

?
a,p = concat([VCiW?a,p]

n
i=1)

V〈`i = Mi〉ni=1W
?
a,`j .p

= VMjW?a,p
Vfor (~GwhereX) returnbMW?a,ε = [for (~GwhereX) returnb 〈a � out,TMUb〉]

Vfor (~GwhereX) returnbMW?a,↓.p = [for (~GwhereX)C | C ← VMW?b,p]

Tx.`Ua = x.`
Tc([Xi]ni=1)Ua = c([TXiUa]ni=1)
TemptyLUa = empty VLWε

T〈`i = Mi〉ni=1Ua = 〈`i = TMiUa〉
n
i=1

TLUa = a � in

Figure 3: Shredding translation on terms

a. Note that the shredding translation is linear in time and space.
Observe that for emptiness tests we need only the top-level query.

As a basic sanity check, we show that well-formed normalised
terms shred to well-formed shredded terms of the appropriate shred-
ded types. We will show the full correctness of the shredding trans-
lation in Section 5. Typing rules for shredded terms are shown in
Appendix B.

THEOREM 2. Suppose L is a normalised flat-nested query with
` L : A and p ∈ paths(A), then ` VLWp : VAWp.

4.2 Shredded packages
To maintain the relationship between shredded terms and the

structure of the nested result they are meant to construct, we use
shredded packages. A shredded package Â is a nested type with
annotations, denoted (−)α, attached to each bag constructor.

Â ::= O | 〈
−−→
` : Â〉 | (Bag Â)α

For a given package, the annotations are drawn from the same set.
We write Â(S) to denote a shredded package with annotations
drawn from the set S. We write ΛS for the set of shredded terms,
and TS for the set of shredded types. We sometimes omit the type
parameter when it is clear from context. Typing rules for shredded
packages are shown in Appendix 8.

Given a shredded package Â, we can erase its annotations to
obtain its underlying type.

erase(O) = O

erase(〈`i : Âi〉ni=1) = 〈`i : erase(Âi)〉ni=1

erase((Bag Â)α) = Bag erase(Â)

Given a shredded package Â(S) and a function f : S → T , we
can map f over the annotations to obtain a new shredded package
Â′(T) such that erase(Â) = erase(Â′).

pmapf (O) = O

pmapf (〈`i : Âi〉ni=1) = 〈`i : pmapf (Âi)〉ni=1

pmapf ((Bag Â)α) = (Bag pmapf (Â))f(α)

Given a typeA and a shredding function f : paths(A)→ S, we
can construct a shredded package Â(S).

packagef (A) = packagef,ε(A)

packagef,p(O) = O
packagef,p(〈`i : Ai〉ni=1) = 〈`i : packagef,p.`i(Ai)〉

n
i=1

packagef,p(BagA) = (Bag packagef,p.↓(A))f(p)

Using package , we lift the type-level and term-level shredding
functions V−W− to produce shredded packages, where each anno-
tation contains the shredded version of the input type or query along
the path to the associated bag constructor.

shredB(A) = package(VBW−)(A)

shredL(A) = package(VLW−)(A)

JΣK

N JAK AJAK HJAK

N Jerase(L)K AJLK HJLKA

erase

shred(−)(A)

stitch

Figure 4: Correctness of shredding and stitching

For example, shredding Result type from the introduction gives:

shredResult(Result) =
Bag 〈department : String ,

people : Bag 〈name : String ,
tasks : (Bag String)A3〉A2〉A1

where: A1 = Bag 〈Index , 〈department : String , people : Index 〉〉
A2 = Bag 〈Index , 〈name : String, tasks : Index 〉〉
A3 = Bag 〈Index ,String〉

Shredding the query Q′ gives the same package, except the type
annotations A1, A2, A3 become queries Q1, Q2, Q3. We will use
Q2 as a running example for the rest of the paper.

Q2 = (for (x← departments)
for (y ← employees) where (x.name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000))
returnb (〈a � out, 〈name = y.name, tasks = b � in〉〉))

] (for (x← departments)
for (y ← contacts) where (x.name = y.dept ∧ y.client)
returnd (〈a � out, 〈name = y.name, tasks = d � in〉〉))

Again, as a sanity check we show that erasure is the left inverse
of type shredding and that term-level shredding operations preserve
types.

THEOREM 3. For any type A, we have erase(shredA(A)) =
A. Furthermore, if L is a closed, normalised, flat–nested query
such that ` L : A then ` shredL(A) : shredA(A) also.

5. CORRECTNESS
The main result we wish to prove is that if we shred an annotated

normalised nested query, run all the resulting shredded queries, and
stitch the shredded results back together, then that is the same as
running the nested query directly.

Intuitively, the idea is as follows: a) define shredding on nested
values; b) show that shredding commutes with query execution;
and c) show that stitching is a left-inverse to shredding of values.

Unfortunately this naive proof approach fails, because nested val-
ues do not contain enough information about the structure of the
source query in order to generate the same indexes that are gener-
ated by shredded queries.

To fix the problem, we will give an annotated semantics AJ−K
that is defined only on queries that have first been converted to nor-
mal form and annotated with static indexes as described in Sec-
tion 4.1. We will ensure thatN Jerase(L)K = erase(AJLK), where
we overload the erase function to erase annotations on terms and
values. The structure of the resulting proof is depicted in the di-
agram in Figure 4, where we view a query as a function from the
interpretation of the Σ to the interpretation of its result type. To
prove correctness is to prove that this diagram commutes.

5.1 Annotated semantics over nested values
We annotate bag elements with distinct indexes as follows:

Results s ::= [v1@I1, . . . , vm@Im]
Inner values w ::= c | r | I
Rows r ::= 〈`1 = w1, . . . , `n = wn〉
Indexes I, J
Dynamic indexes ι ::= 1 | ι.i

Indexes themselves are still abstract, but we will construct them
from a concrete representation of static and dynamic indexes. Con-
cretely, we represent each dynamic index ι as a list of integers.
Each integer identifies the bag element to which the comprehen-
sion’s variable is bound. The advantage of this particular represen-
tation is that it admits a simple declarative semantics, which will
make it straightforward to relate the nested semantics with a suit-
able semantics for shredded queries. The top level dynamic index
is always 1.

The canonical choice for representing indexes is to take I =
a � ι. We also admit alternative indexing schemes, by parameteris-
ing the semantics over an indexing function index mapping canon-
ical indexes to a concrete representation. In the simplest case, we
take index to be the identity function. More generally, it may de-
pend on the particular query being shredded. Informally, the only
constraints on index are that it is defined on every canonical index
a � ι that we might need in order to shred a query, and it is injec-
tive on all canonical indexes. We will formalise these constraints
in Section 5.5. For now we assume canonical indexes.

Given an indexing function index , the semantics of nested queries
on annotated values is defined as follows:

AJLK = AJLKε,1

AJ
⊎n
i=1 CiKρ,ι = concat([AJCiKρ,ι]ni=1)

AJ〈`i = Mi〉ni=1Kρ,ι = 〈`i = AJMiKρ,ι〉ni=1

AJXKρ,ι =N JXKρ

AJfor ([xi ← ti]
n
i=1 whereX) returnaMKρ,ι =

[AJMKρ[xi 7→ri]ni=1,ι.j
@index (a � ι.j)

| 〈j, ~r〉 ← enum([~r | [ri ← JtiK]ni=1,N JXKρ[xi 7→ri]ni=1
])]

As well as an environment, the current dynamic index is threaded
through the semantics.

The enum function takes a list of elements and returns the same
list with the element number paired up with each source element.

enum([v1, . . . , vm]) = [〈1, v1〉, . . . 〈m, vm〉]

The index annotations @I on collection elements are needed solely
for our correctness proof, and do not need to be materialised at run
time.

5.2 Shredding and stitching annotated values

To define the semantics of shredded queries and packages, we
use annotated values in which collections are annotated pairs of
indexes and annotated values. Again, we allow annotations @J on
elements of collections to facilitate the proof of correctness. Typing
rules for these values are shown in Appendix B.

Results s ::= [〈I1, w1〉@J1, . . . , 〈Im, wm〉@Jm]

Shredding values. Having defined suitably annotated versions
of nested and shredded values, we now overload the shredding
function to operate on nested values.

VsWp = VsW?>� 1,p

V[vi@Ji]
n
i=1W

?
I,ε = [〈I, TviUJi〉@Ji]

n
i=1

V[vi@Ji]
n
i=1W

?
I,↓.p = concat([VviW?Ji,p]

n
i=1)

V〈`i = vi〉ni=1W
?
I,`i.p

= VviW?I,p

TcUI = c
T〈`i = vi〉ni=1UI = 〈`i = TviUI〉

n
i=1

TsUI = I

Note that in the cases for bags, the index annotation J is passed as
an argument to the recursive call: this is where we need the ghost
indexes, to relate the semantics of nested and shredded queries.

We lift the nested result shredding function to build an (anno-
tated) shredded value package in the same way that we did for
nested types and nested queries.

shreds(BagA) = package(VsW−)(BagA)

shreds,p(BagA) = package(VsW−),p(BagA)

Stitching values. A shredded value package can be stitched back
together into a nested value as follows.

stitch(Â) = stitch>� 1(Â)

stitchc(O) = c

stitch〈`i=wi〉ni=1
(〈`i : Âi〉ni=1) = 〈`i = stitchwi(Âi)〉ni=1

stitchI((Bag Â)s) = [(stitchw(Â))@J
| 〈I ′, w〉@J ← s, I ′ = I]

The inner value parameter w to the auxiliary function stitchw(−)
specifies which values to stitch along the current path.

5.3 Annotated semantics over shredded val-
ues

We now show how to interpret shredded queries and query pack-
ages over shredded values. The semantics of shredded queries is
given in Figure 5. The semantics of a shredded query package is a
shredded value package containing indexed results for each shred-
ded query. For each type A we define HJAK = shredA(A) and
for each flat–nested, closed ` L : A we define HJLKA : HJAK as
pmapSJ−K shredL(A).

For example, here is the shredded package that we obtain after
running the query Q′:

HJQ′KA = Bag 〈department : String ,
people : Bag 〈name : String ,

tasks : (Bag String)s3〉s2〉s1
where:

s1 = [〈> � 1, 〈department = “Product”, people = a � 1.1〉〉,
〈> � 1, 〈department = “Quality”, people = a � 1.2〉〉,
〈> � 1, 〈department = “Research”, people = a � 1.3〉〉,
〈> � 1, 〈department = “Sales”, people = a � 1.4〉〉]

s2 = [〈a � 1.1, 〈name = “Bert”, tasks = b � 1.1.2〉〉,
〈a � 1.4, 〈name = “Erik”, tasks = b � 1.4.5〉〉, . . .]

s3 = [〈b � 1.1.2, “build”〉, 〈b � 1.4.5, “call”〉, . . .]

SJLK = SJLKε,1
SJ〈` = N〉ni=1Kρ,ι = 〈`i = SJNiKρ,ι〉ni=1

SJXKρ,ι =N JXKρ
SJa � outKρ,ι.i = index (a � ι)
SJa � inKρ,ι.i = index (a � ι.i)

SJ
⊎n
i=1 CiKρ,ι = concat([SJCiKρ,ι]ni=1) SJreturnaNKρ,ι = [SJNKρ,ι@index (a � ι)]

SJfor ([xi ← ti]
n
i=1 whereX)CKρ,ι = concat([SJCKρ[xi 7→ri]ni=1,ι.j

| 〈j, ~r〉 ← enum([~r | [ri ← JtiK]ni=1,N JXKρ[xi 7→ri]ni=1
])])

Figure 5: Semantics of shredded queries

5.4 Main results
Due to space limits, we relegate the full details of the proof to

Appendix D. There are three key theorems. The first states that
shredding commutes with the annotated semantics.

THEOREM 4. If ` L : BagA then:

HJLKBagA = shredAJLK(BagA)

In order to allow shredded results to be correctly stitched to-
gether, we need the indexes at the end of each path to a bag through
a nested value to be unique. We define indexesp(v), the indexes of
nested value v along path p as follows.

indexesε([vi@Ji]
n
i=1) = [Ji]

n
i=1

indexes↓.p([vi@Ji]
n
i=1) = concat([indexesp(vi)]

n
i=1)

indexes`i.p(〈`i = vi〉ni=1) = indexesp(vi)

We say that a nested value v is well-indexed (at type A) pro-
vided ` v : A, and for every path p in paths(A), the elements of
indexesp(v) are distinct. We sometimes leave A implicit.

LEMMA 5. If ` L : A, then AJLK is well-indexed at type A.

Our next theorem states that for well-indexed values, stitching is
a left-inverse of shredding.

THEOREM 6. If ` s : BagA and s is well-indexed at type
BagA then stitch(shreds(BagA)) = s.

Combining Theorem 4, Lemma 5 and Theorem 6 we obtain the
main correctness result (see Figure 4).

THEOREM 7. If ` L : BagA then: stitch(HJLKBagA) =
AJLK, and in particular: erase(stitch(HJLKBagA)) = N JLK.

5.5 Alternative indexing schemes
In order to formalise valid indexing schemes, we first define a

function for computing the canonical indexes of a nested query.

IJLK = IJLKε,1

IJ
⊎n
i=1 CiKρ,ι = concat([IJCiKρ,ι]ni=1)

IJ〈`i = Mi〉ni=1Kρ,ι = concat([IJMiKρ,ι]ni=1)
IJXKρ,ι = []

IJfor ([xi ← ti]
n
i=1 whereX) returnaMKρ,ι =

concat([a � ι.j :: IJMKρ[xi 7→ri]ni=1,ι.j

| 〈j, ~r〉 ← enum([~r | [ri ← JtiK]ni=1,N JXKρ[xi 7→ri]ni=1
])])

Note that IJ−K follows essentially the same form as AJ−K, but
instead of the nested value v it computes all indexes of v.

We define alternative indexing schemes by instantiating the index
parameter of the shredded semantics (see Section 5.3). An index
parameter is valid with respect to the closed nested query L if it is
injective and defined on every canonical index in IJLK.

LEMMA 8. If index is valid for L then AJLK is well-indexed.

The only requirement on indexes in the proof of Theorem 7 is that
nested values be well-indexed, hence the proof extends to any valid
indexing scheme. We briefly mention two alternative valid index-
ing schemes: natural indexes and flat indexes.

Natural indexes. Natural indexes are synthesised from row data.
In order to generate a natural index for a query every table must
have a key, that is, a collection of fields guaranteed to be unique for
every row in the table. For sets, this is always possible by using all
of the field values as a key; this idea is used in Van den Bussche’s
simulation for sets [26]. However, for bags this is not always pos-
sible, so using natural indexes may require adding extra key fields.
The type of natural indexes is a sum or variant type. The static
index is a tag, and its payload is a tuple of primary keys.

Given a table t, let keyt be the function that given a row r of t
returns the primary key of r. We now define a function to compute
the list of natural indexes for a query L.

I\JLK = I\JLKε,1

I\J
⊎n
i=1 CiKρ,ι = concat([I\JCiKρ,ι]ni=1)

I\J〈`i = Mi〉ni=1Kρ,ι = concat([I\JMiKρ,ι]ni=1)
I\JXKρ,ι = []

I\Jfor ([xi ← ti]
n
i=1 whereX) returnaMKρ,ι =

concat([a � 〈keyti(xi)〉
n

i=1
:: I\JMKρ[xi 7→ri]ni=1,ι.j

| 〈j, ~r〉 ← enum([~r | [ri ← JtiK]ni=1,N JXKρ[xi 7→ri]ni=1
])])

If a � ι is the i-th element of IJLK, then index \L(a � ι) is defined as
the i-th element of I\JLK. The natural indexing scheme is defined
by setting index = index \L.

An advantage of natural indexes is that when translating to SQL
it is unnecessary to use the row_number function. Consequently,
for a given comprehension all where clauses can be amalgamated
(using the ∧ operator) and no auxiliary subqueries are needed. The
downside is that the type of a dynamic index, which is determined
by the tables being queried, may vary across the component com-
prehensions of a shredded query. Variant types can be used to fix
this problem.

There are two ways of encoding variants in SQL. The first en-
coding packs variants into a record. The record consists of a dis-
tinguished tag column, and one column for each column of each
shredded variant argument in the variant type. The tag column
holds an integer encoding which variant tag is active and the columns
associated with the encoded tag are populated with their values.
The other columns can contain nulls or any other values. The sec-
ond encoding generates multiple queries: one for each tag.

Flat indexes. The idea of flat indexes is to enumerate all of the
canonical dynamic indexes associated with each static index and
use the enumeration as the dynamic index.

Let ι be the i-th element of the list [ι′ | a � ι′ ← IJLK], then
index [L(a � ι) = 〈a, i〉. The flat indexing scheme is defined by
setting index = index [L. Let I[JLK = [index [L(I) | I ← IJLK].

We elaborate on flat indexes in the next two sections, illustrat-
ing how they translate to SQL. This depends on the row_number
operator, which we use to implement the functionality of enum .
We choose to focus on flat indexes in the remainder of the paper
because they are more generally applicable than natural indexes,
which require all rows of the source tables to be distinct.

6. FLAT INDEXES AND LET-INSERTION
Our semantics for shredded queries uses canonical indexes. We

now specify an object language providing flat indexes and move
closer towards an SQL implementation. In order to do so, we intro-
duce let-bound sub-queries, and translate each comprehension into
the following form:

let q = for (
−−→
Gout whereXout) returnNout in

for (
−→
Gin whereXin) returnNin

The special index expression is available in each loop body, and is
bound to the current iteration.

Following let-insertion, the types are as before, except indexes
are represented as pairs of integers.

Types A,B ::= Bag 〈〈Int , Int〉, F 〉
Flat types F ::= O | 〈

−−→
` : F 〉 | 〈Int , Int〉

An index is a pair of a static index and a dynamic index; both are
simple integers.

The syntax of terms is adapted as follows:

Query terms L,M ::=
⊎ ~C

Comprehensions C ::= let q = S inS′

Subqueries S ::= for (~GwhereX) returnN
Data sources u ::= t | q
Generators G ::= x← u
Inner terms N ::= X | R | index

Record terms R ::= 〈
−−−→
` = N〉

Base terms X ::= x.~̀ | c(~X) | emptyL

Without loss of generality we rename all the bound variables in
our source query to ensure that all bound variables have distinct
names, and that none coincides with the distinguished name z used
for let-bindings. The let-insertion translation L is defined in Fig-
ure 6. Each comprehension is rearranged into two sub-queries. The
first generates the outer indexes. The second computes the results.

For example, applying L to Q2 from Section 4.2 yields:

(let q = for (x← departments) return 〈〈dept = x.name〉, index〉 in
for (z ← q, y ← employees) where (z.1.1.name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000))
return (〈〈a, z.2〉, 〈name = y.name, tasks = 〈b, index〉〉〉))

]
(let q = for (x← departments) return 〈〈dept = x.name〉, index〉 in

for (z ← q, y ← contacts) where (z.1.1.name = y.dept ∧ y.client)
return (〈〈a, z.2〉, 〈name = y.name, tasks = 〈d, index〉〉〉))

The translation sometimes produces n-ary projections in order
to refer to values bound by the first subquery inside the second.

To state and prove the correctness of let-insertion, we use the
same values as before, but the @I index components are no longer
needed. The semantics is given in Figure 7. Rather than maintain-
ing a canonical index, it generates a flat index for each subquery.

As a sanity check, we show that the translation is type-preserving:

THEOREM 9. Given shredded query ` L : Bag 〈Index , F 〉,
then ` L(L) : Bag 〈〈Int , Int〉, F ′〉 (where F ′ is the result of re-
placing Index with 〈Int , Int〉 in F).

To prove the correctness of let-insertion, we need to show that
the shredded semantics and let-inserted semantics agree. In the
statement of the correctness theorem, note that the translation does
not depend on index [L; it is just used to clarify which valid indexing
scheme is being used in the semantics S to prove correctness.

THEOREM 10. Let ` L : A and VLWp = M , and set index =

index [L, then erase(SJMK) = LJL(M)K.

PROOF SKETCH. The high-level idea is to separate results into
data and indexes and compare each separately. It is straightforward,
albeit tedious, to show that the definitions collapse to the same thing
if we replace all dynamic indexes by unit. It then remains to show
that the dynamic indexes agree. The pertinent case is the translation
of a comprehension:

[for (~Gi ← Xi)]
n
i=1 for (~Gin ← Xin) returnb 〈a � out, N〉

which becomes let q = Sout inSin for suitable Sout and Sin. The
dynamic indexes computed by Sout coincide exactly with those of
I[JLK at static index a, and the dynamic indexes computed by Sin,
if there are any, coincide exactly with those of I[JLK at static index
b.

7. CONVERSION TO SQL
SQL does not support nested records. Our final translation flat-

tens records. (In fact, we could have performed flattening at any
earlier point, but leave it until the end for convenience so that we
can use nested records in the earlier phases.) The (standard) details
are presented in Appendix E for completeness.

In order to interpret shredded, flattened, let-inserted terms as
SQL, we interpret index generators using SQL’s OLAP facilities.

Query terms L ::= (union all) ~C

Comprehensions C ::= with q as (S)C | S′

Subqueries S ::= selectR from ~GwhereX
Data sources u ::= t | q
Generators G ::= u asx

Inner terms N ::= X | row_number() over (order by ~X)

Record terms R ::=
−−−→
N as `

Base terms X ::= x.` | c(~X) | emptyL

This fragment of SQL is almost isomorphic to the language we get
if we apply let-insertion and record flattening to shredded queries.
The only significant difference is the use of row_number in place
of index. Each instance of index in the body R of a subquery:

for (
−−−→
x← twhereX) returnR

is simulated by row_number() over (order by
−→
x.`), where:

xi : 〈`i,1 : Ai,1, . . . , `i,mi〉−→
x.` = x1.`1,1, . . . , x1.`1,m1 , . . . , xn.`n,1, . . . , xn.`n,mn

A possible concern is that row_number is non-deterministic. It
computes row numbers ordered by the supplied columns, but if
there is a tie, then it is free to order the equivalent rows in any
order. However, we always order by all columns of all tables ref-
erenced from the current subquery, so our use of row_number is
always deterministic.

L(
⊎n
i=1 Ci) =

⊎n
i=1 L(Ci)

L(C) = let q = (for (
−−→
Gout whereXout) return 〈Rout, index〉) in for (z ← q,

−→
Gin whereL~y(Xin)) returnL~y(N)

where
−−→
Gout = concat (init (gens C))
Xout =

∧
init (conds C)

−−−→
y = t =

−−→
Gout

Rout = 〈expand(yi, ti)〉ni=1

−→
Gin = last (gens C)
Xin = last (conds C)

N = body C

n = length
−−→
Gout

L~y(x.`) =

{
x.`, if x /∈ {y1, . . . , yn}
z.1.i.`, if x = yi

L~y(c(X1, . . . , Xm)) = c(L~y(X1), . . . ,L~y(Xm))

L~y(emptyL) = empty (L~y(L))
L~y(
⊎n
i=1 Ci) =

⊎n
i=1 L~y(Ci)

L~y(for (~GwhereX) returna 〈a,N〉) = for (~GwhereL~y(X))
return 〈a,L~y(N)〉

L~y(〈`j = Xj〉mj=1) = 〈`j = L~y(Xj)〉mj=1

L~y(a � d) = 〈a,L(d)〉
L(out) = z.2
L(in) = index

expand(x, t) = 〈`i = x.`i〉ni=1 where Σ(t) = Bag 〈
−−→
` : A〉 init [xi]

n
i=1 = [xi]

n−1
i=1 last [xi]

n
i=1 = xn

gens (for (~GwhereX)C) = ~G :: gens C
gens (returnaN) = []

conds (for (~GwhereX)C) = X :: conds C
conds (returnaN) = []

body (for (~GwhereX)C) = body C
body (returnaN) = N

Figure 6: The let-insertion translation

LJLK = LJLKε
LJ
⊎m
j=1 CjKρ = concat([LJCjKρ]mj=1)

LJtKρ = JtK
LJqKρ = ρ(q)

LJ〈`j = Nj〉mj=1Kρ,i = 〈`j = LJNjKρ,i〉mj=1

LJXKρ,i =N JXKρ
LJindexKρ,i = i

LJlet q = Sout inSinKρ = LJSinKρ[q 7→LJSoutKρ]

LJfor ([xj ← uj]
m
j=1 whereX) returnNKρ = [LJNKρ[xj 7→rj]mj=1,i

| 〈i, ~r〉 ← enum([~r | [rj ← LJujKρ]mj=1,N JXKρ[xj 7→rj]mj=1
])]

Figure 7: Semantics of let-inserted shredded queries

Continuing our example, Q2 becomes:

(with q as (selectx.name as i1 name,
row_number() over (order by x.name) as i2

from departments asx)
select a as i1 1, z.i2 as i1 2, y.name as i2 name, b as i2 tasks 1,

row_number() over
(order by z.i1 name, z.i2, y.dept, y.employee, y.salary)

as i2 tasks 2
from employees as y, q as z
where (z.i1 name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000)))
union all
(with q as (selectx.name as i1 name,

row_number() over (order by x.name) as i2
from departments asx)

select a as i1 1, z.i2 as i1 2, y.name as i2 name, d as i2 tasks 1,
row_number() over
(order by z.i1 name, z.i2, y.dept, y.name, y.client)

as i2 tasks 2
from contacts as y, q as z
where (z.i1 name = y.dept ∧ y.client))

8. IMPLEMENTATION
We believe that our shredding and let-insertion algorithms and

their proofs of correctness are significant contributions; however, as
motivation, we also argued that our approach is relatively straight-
forward to implement and should compare favourably to Ferry in
terms of performance by avoiding heavy reliance on SQL:1999
OLAP features. To evaluate these claims, we have implemented
our approach in Links and compared with an implementation of
Ferry in Links due to Ulrich [25]. We should first note that Ulrich’s
system supports features, such as grouping, that are not handled by

our algorithm; thus, we focused on queries that both systems can
handle. Also, Ferry is based on list semantics, which may affect
its performance by limiting optimisation opportunities. Thus, the
experimental results only compare the capabilities of Ferry and our
approach viewed as an implementations of multiset semantics.

Query performance. We measured the query execution time
for four nested queries on randomly generated data, both for Links
extended with our shredding algorithm and for Links+Ferry. All
tests were performed using PostgreSQL 9.05 running on a Dell Op-
tiplex 745 with 3Ghz CPU and 4GB of RAM. Full details of the
queries are given in Appendix F. T1 is a plain query that assembles
a nested bag of bags of integers from three tables using two nested
joins. T2 is similar, but includes a union operation, joining to two
different tables at the deepest level of nesting. T3 involves a union
operation and nested records. T4 includes an emptiness test and a
union operation.

For each query, most of the data occurs at the deepest level of
nesting, and the innermost query dominates execution time (both
for our algorithm and for the Ferry algorithm). Thus we only report
the execution time of the innermost queries. For each measurement,
we took the average of five runs.

Query Shredding Ferry
T1 13 25
T2 42 5672
T3 13 3654
T4 16 7276

Even for a fairly simple nested query T1, our approach performs
almost twice as fast; for queries involving complex nesting struc-
ture with unions inside of nested comprehensions (T2, T3) or empti-
ness testing (T4), the queries generated by Ferry can be up to 100–

400 times slower than our approach. The main performance prob-
lem with the Ferry approach as currently implemented appears to
be that filtering often happens later than it should. This means
that subqueries effectively compute a cartesian product when a join
would suffice. Our approach does not suffer from this problem, at
least on the test queries we considered.

Further work is needed to extend our approach (or determine
how to combine the approaches) to optimise performance and han-
dle grouping.

9. RELATED AND FUTURE WORK
We have already surveyed related work on query normalisation

and shredding in the Introduction. Besides Cooper [7], several au-
thors have recently considered higher-order query languages. Benedikt
et al. [2] and Vu and Benedikt [27] study the complexity of contain-
ment, equivalence and evaluation for higher-order queries over flat
relations. Higher-order features are also being added to XQuery
3.0 [21]. The Ferry system has been interfaced with Links by Ul-
rich [25], and supports higher-order functions via defunctionalisa-
tion [20]; this technique can easily be adapted to work with our ap-
proach. By connecting to Ferry, Ulrich’s system also supports list
semantics and aggregation and grouping operations; to our knowl-
edge, it is an open problem to either prove their correctness or adapt
these techniques to fit our approach.

Our work is also partly inspired by work on unnesting for nested
data parallelism. Blelloch and Sabot [3] give a compilation scheme
for NESL, a data-parallel language with nested lists; Suciu and Tan-
nen [23] give an alternative scheme for a nested list calculus. This
work may provide an alternative (and parallelisable) implementa-
tion strategy for Ferry’s list-based semantics [11].

10. CONCLUSION
Combining efficient database access with functional program-

ming abstractions is challenging in part because of the limitations
of flat database queries. Query shredding can help to bridge this
gap. Although it is known from prior work that query shredding
is possible in principle, and some implementations (such as Ferry)
have tried to realise this, getting the details right is tricky. Our
contribution is an alternative algorithm for shredding that handles
higher-order queries over bags. We give a concrete and modular
implementation strategy for shredding that is proved correct, im-
plemented in Links, and should also be straightforward to extend
and to incorporate into other language-integrated query systems.

11. REFERENCES
[1] A. Beckmann. Exact bounds for lengths of reductions in

typed λ-calculus. Journal of Symbolic Logic, 66, 2001.
[2] M. Benedikt, G. Puppis, and H. Vu. Positive higher-order

queries. In PODS. ACM, 2010.
[3] G. E. Blelloch and G. W. Sabot. Compiling

collection-oriented languages onto massively parallel
computers. J. Parallel Distrib. Comput., 8, February 1990.

[4] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong.
Comprehension syntax. SIGMOD Record, 23, 1994.

[5] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong.
Principles of programming with complex objects and
collection types. Theor. Comput. Sci., 149(1):3–48, 1995.

[6] A. J. Chlipala. Ur: statically-typed metaprogramming with
type-level record computation. In PLDI, 2010.

[7] E. Cooper. The script-writer’s dream: How to write great
SQL in your own language, and be sure it will succeed. In
DBPL, 2009.

[8] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: web
programming without tiers. In FMCO, volume 4709 of
LNCS, 2007.

[9] P. de Groote. On the strong normalisation of intuitionistic
natural deduction with permutation-conversions. Inf.
Comput., 178(2), 2002.

[10] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. Ferry:
Database-supported program execution. In SIGMOD, June
2009.

[11] T. Grust, J. Rittinger, and T. Schreiber. Avalanche-safe LINQ
compilation. PVLDB, 3(1), 2010.

[12] S. Lindley. Extensional rewriting with sums. In TLCA, 2007.
[13] S. Lindley and J. Cheney. Row-based effect types for

database integration. In TLDI, 2012.
[14] S. Lindley and I. Stark. Reducibility and >>-lifting for

computation types. In TLCA, 2005.
[15] E. Meijer, B. Beckman, and G. M. Bierman. LINQ:

reconciling object, relations and XML in the .NET
framework. In SIGMOD, 2006.

[16] A. Ohori and K. Ueno. Making Standard ML a practical
database programming language. In ICFP, 2011.

[17] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD, 2008.

[18] J. Paredaens and D. Van Gucht. Converting nested algebra
expressions into flat algebra expressions. ACM Trans.
Database Syst., 17(1), 1992.

[19] B. Pierce. Types and Programming Languages. MIT Press,
2002.

[20] J. C. Reynolds. Definitional interpreters for higher-order
programming languages. Higher-Order and Symbolic
Computation, 11(4), 1998.

[21] J. Robie, D. Chamberlin, M. Dyck, and J. Snelson. XQuery
3.0: An XML query language. W3C Working Draft,
December 2011.
http://www.w3.org/TR/xquery-30/.

[22] H. J. Schek and M. H. Scholl. The relational model with
relation-valued attributes. Inf. Syst., 11, April 1986.

[23] D. Suciu and V. Tannen. Efficient compilation of high-level
data parallel algorithms. In SPAA. ACM, 1994.

[24] W. W. Tait. Intensional interpretations of functionals of finite
type I. Journal of Symbolic Logic, 32(2), June 1967.

[25] A. Ulrich. A Ferry-based query backend for the Links
programming language. Master’s thesis, University of
Tübingen, 2011.

[26] J. Van den Bussche. Simulation of the nested relational
algebra by the flat relational algebra, with an application to
the complexity of evaluating powerset algebra expressions.
Theor. Comput. Sci., 254(1-2), 2001.

[27] H. Vu and M. Benedikt. Complexity of higher-order queries.
In ICDT. ACM, 2011.

[28] P. Wadler. Comprehending monads. Math. Struct. in Comp.
Sci., 2(4), 1992.

[29] L. Wong. Normal forms and conservative extension
properties for query languages over collection types. J.
Comput. Syst. Sci., 52(3), 1996.

[30] L. Wong. Kleisli, a functional query system. J. Funct.
Programming, 10(1), 2000.

[31] XML Query and XSL Working Groups. XQuery 1.0: An
XML query language. Available at
http://www.w3.org/TR/xquery/, 2007.

APPENDIX
A. BEHAVIOUR OF VAN DEN BUSSCHE’S

SIMULATION ON MULTISETS
As noted in the Introduction, Van den Bussche’s simulation of

nested queries via flat queries does not work properly over mul-
tisets. To illustrate the problem, consider a simple query R ∪ S,
whereR and S have the same schema Bag 〈A : Int , B : Bag Int〉.
Suppose R and S have the following values:

R =
A B
1 {1}
2 {2}

S =
A B
1 {3, 4}
2 {2}

then their multiset union is:

R ∪ S =

A B
1 {1}
1 {3, 4}
2 {2}
2 {2}

Van den Bussche’s simulation (like ours) represents these nested
values by queries over flat tables, such as the following:

R1 =
A id
1 a
2 b

R2 =
id B
a 1
b 2

S1 =
A id
1 a
2 b

S2 =

id B
a 3
a 4
b 2

where a, b are arbitrary distinct ids. Note however that R and S
have overlapping ids, so if we simply take the union of R1 and S1,
and of R2 and S2 respectively, we will get:

Wrong1 =

A id
1 a
2 b
1 a
2 b

Wrong2 =

id B
a 1
b 2
a 3
a 4
b 2

corresponding to nested value:

Wrong =

A B
1 {1, 3, 4}
1 {1, 3, 4}
2 {2, 2}
2 {2, 2}

Instead, both Van den Bussche’s simulation and our approach avoid
clashes among ids when taking unions. Van den Bussche’s simula-
tion does this by adding two new id fields to represent the result of
a union, say id1 and id2. The tuples originating from R will have
equal id1 and id2 values, while those originating from S will have
different id1 and id2 values. In order to do this, the simulation de-
fines two queries, one for each result table. The first query is of the
form:

T1 = (R1 × (id1 : x, id2 : x) | x ∈ adom)

∪ (S1 × (id1 : x, id2 : x′) | x 6= x′ ∈ adom)

and similarly

T2 = (R2 × (id1 : x, id2 : x) | x ∈ adom)

∪ (S2 × (id1 : x, id2 : x′) | x 6= x′ ∈ adom)

where adom is the active domain of the database (in this case,
adom = {1, 2, 3, 4, a, b}) — this is of course also definable as
a query. Thus, in this example, the result is of the form

T1 =

A id id1 id2

1 a x x
2 b y y
1 a z z′

2 b v v′

T1 =

id id1 id2 B
a x x 1
b y y 2
a z z′ 3
a w w′ 4
b v v′ 2

where x, y are any elements of adom (rows mentioning x and y
stand for 6 instances) and z 6= z′, w 6= w′ and v 6= v′ are any
pairs of distinct elements of adom (rows mentioning these vari-
ables stand for 30 instances of distinct pairs from adom). This leads
to an O(|adom| ∗ |R| + |adom|2 ∗ |S|) blowup in the number of
tuples. Specifically, for our example, |T1| = 72, whereas the actual
number of tuples in a natural representation of R ∪ S is only 9. In
a set semantics, the set value simulated by these tables is correct
even with all of the extra tuples; however, for a multiset seman-
tics, this quadratic blowup is not correct — even for our example,
with |adom| = 6, the result of evaluating R ∪ S yields a different
number of tuples from the result of evaluating S ∪ R, and neither
represents the correct multiset in an obvious way. It may be possi-
ble (given knowledge of the query and active domain, but not the
source database) to “decode” the flat query results and obtain the
correct mested result, but doing so appears no easier than develop-
ing an alternative, direct algorithm.

B. TYPING RULES
The (standard) typing rules for λNRC queries are shown in Fig-

ure 8. The typing rules for shredded terms, packages, and values
are shown in Figures 9, 10, 11 and 12.

C. QUERY NORMALISATION
Following our previous work [13], we separate query normalisa-

tion into a rewriting phase and a type-directed structurally recursive
function. Where we diverge from our previous work is that we ex-
tend the rewrite relation to hoist all conditionals up to the nearest
conditional (in order to simplify the rest of the development), and
the structurally recursive function is generalised to handle nested
data. Thus normalisation can be divided into three stages.
• The first stage performs symbolic evaluation, that is, β-reduction

and commuting conversions, flattening unnecessary nesting
and eliminating higher-order functions.
• The second stage hoists all conditionals up to the nearest en-

closing comprehension in order allow them to be converted to
where clauses.
• The third and final stage hoists all unions up to the top-level,
η-expands tables and variables, and turns all conditionals into
where clauses.

Weak normalisation and strong normalisation. Given a
term M and a rewrite relation ;, we write M 6; if M is irre-
ducible, that is no rewrite rules in ; apply to M . The term M is
said to be in normal form.

A term M is weakly normalising with respect to a rewrite rela-
tion ;r , or r-WN, if there exists a finite reduction sequence

M ; M1 ; . . . ; Mn 6;

A term M is strongly normalising with respect to a rewrite relation
;r , or r-SN, if every reduction sequence starting from M is finite.

VAR

Γ, x : A ` x : A

CONSTANT
Σ(c) = 〈O1, . . . , On〉 → O′ [Γ `Mi : Oi]

n
i=1

Γ ` c(M1, . . . ,Mn) : O′

LAM
Γ, x : A `M : B

Γ ` λx.M : A→ B

APP
Γ `M : A→ B Γ ` N : A

Γ `M N : B

RECORD
[Γ `Mi : Ai]

n
i=1

Γ ` 〈`i = Mi〉ni=1 : 〈`i = Ai〉ni=1

PROJECT
Γ `M : 〈`i : Ai〉ni=1

Γ `M.`j : Aj

IF
Γ `M : Bool Γ ` N : A Γ ` N ′ : A

Γ ` ifM then N else N ′ : A

EMPTY

Γ ` ∅ : BagA

SINGLETON
Γ `M : A

Γ ` returnM : BagA

UNION
Γ `M : BagA Γ ` N : BagA

Γ `M]N : BagA

FOR
Γ `M : BagA Γ, x : A ` N : BagB

Γ ` for (x←M)N : BagB

ISEMPTY
Γ `M : BagA

Γ ` emptyM : Bool

TABLE

Σ(t) = Bag 〈
−−→
` : O〉

Γ ` table t : Bag 〈
−−→
` : O〉

Figure 8: Typing rules for higher-order nested queries

VAR

Γ, x : 〈
−−→
` : F 〉 ` x : 〈

−−→
` : F 〉

CONSTANT
Σ(c) = 〈O1, . . . , On〉 → O′ [Γ ` Xi : Oi]

n
i=1

Γ ` c(X1, . . . , Xn) : O′

RECORD
[Γ ` Ni : Ai]

n
i=1

Γ ` 〈`i = Ni〉ni=1 : 〈`i = Ai〉ni=1

PROJECT
Γ ` x : 〈`i : Ai〉ni=1

Γ ` x.`j : Aj

INDEX

Γ ` a � d : Index

SINGLETON
Γ ` I : Index Γ ` N : F

Γ ` returna 〈I,N〉 : Bag 〈Index , F 〉

UNION
[Γ ` Ci : Bag 〈Index , F 〉]ni=1

Γ `
⊎

~C : Bag 〈Index , F 〉

FOR
[Σ(ti) = BagAi]

n
i=1 Γ, [xi : Ai]

n
i=1 ` X : Bool Γ, [xi : Ai]

n
i=1 ` C : Bag 〈Index , F 〉

Γ ` for ([xi ← ti]
n
i=1 whereX)C : Bag 〈Index , F 〉

ISEMPTY
Γ ` L : Bag 〈Index , F 〉

Γ ` emptyL : Bool

Figure 9: Typing rules for shredded terms

BASE

` O(ΛS) : O(TS)

RECORD

[` Âi(ΛS) : Â′i(TS)]ni=1

` 〈`i : Âi(ΛS)〉ni=1 : 〈`i : Â′i(TS)〉ni=1

BAG

` Â(ΛS) : Â′(TS) ` L : A erase(Â(ΛS)) = A

` (Bag Â(ΛS))L : (Bag Â′(TS))A

Figure 10: Typing rules for shredded packages

RESULT
[` vi : Ai]

n
i=1 [` J : Index]ni=1

` [vi@Ji]
n
i=1 : BagA

RECORD
[` vi : Ai]

n
i=1

` 〈`i = vi〉ni=1 : 〈`i = Ai〉ni=1

CONSTANT
Σ(c) = O

` c : O

Figure 11: Typing rules for indexed nested values

RESULT
[` Ii : Index]ni=1 [` wi : F]ni=1 [` Ji : Index]ni=1

` 〈I1, w1@J1〉, . . . , 〈In, wn@Jn〉 : Bag 〈Index , F 〉

CONSTANT
Σ(c) = O

` c : O

RECORD
[` ni : Fi]

n
i=1

` 〈`i = wi〉ni=1 : 〈`i = Fi〉ni=1

Figure 12: Typing rules for shredded values

If M is r-SN, then we write max r(M) for the maximum length of
a reduction sequence starting from M .

A rewrite relation ;r is weakly-normalising, or WN, if all terms
M are weakly-normalising with respect to ;r . Similarly, a rewrite
relation ;r is strongly-normalising, or SN, if all terms M are
strongly-normalising with respect to ;r .

We now describe each normalisation stage in turn.

C.1 Symbolic evaluation
The β-rules perform symbolic evaluation, including substituting

argument values for function parameters, record field projection,
conditionals where the test is known to be true or false, or iteration

over singleton bags.

(λx.N) M ;c N [x := M]

〈
−−−−→
` = M〉.`i ;c Mi

if true thenM elseN ;c M
if false thenM elseN ;c N

for (x← returnM)N ;c N [x := M]

Fundamentally, β-rules always follow the same pattern. Each is
associated with a particular type constructor T , and the left-hand
side always consists of an introduction form for T inside an elim-
ination form for T . For instance, in the case of functions (the first
β-rule above), the introduction form is a lambda and the elimina-
tion form is an application. Applying a β-rule eliminates T in the
sense that the introduction form from the left-hand side either no
longer appears or has been replaced by a term of a simpler type on
the right-hand side.

Each instance of a β-rule is associated with an elimination frame.
An elimination frame is simply the elimination form with a desig-
nated hole [] that can be plugged with another expression. For
instance, elimination frames for the function β-rule are of the form
E[] = [] M . If we plug an introduction form λx.N into E[],
written E[λx.N], then we obtain the left-hand side of the associ-
ated β-rule (λx.N) M .

(This notion of an expression with a hole that can be filled by
another expression is commonly used in rewriting and operational
semantics for programming languages [19, ch. 19]; here, it is not
essential but helps cut down the number of explicit rules, and helps
highlight commonality between rules.)

The elimination frames of λNRC are as follows.

E[] ::= [] M | [].` | if [] thenM elseN | for (x← [])N

The following rules express that comprehensions, conditionals, empty
bag constructors, and unions can always be hoisted out of the above
elimination frames. In the literature such rules are often called com-
muting conversions. They are necessary in order to expose all pos-
sible β-reductions. For instance,

(ifM then 〈` = N〉 elseN ′).`

cannot β-reduce, but ifM then 〈` = N〉.` elseN ′.` can.

E[for (x←M)N] ;c for (x←M)E[N]
E[if L thenM elseN] ;c if L thenE[M] elseE[N]

E[∅] ;c ∅
E[M1]M2] ;c E[M1]] E[M2]

For example:

(if L thenM1 elseM2) M ;c if L thenM1 M elseM2 M

Note that some combinations of elimination frames and rewrite rule
are impossible in a well-typed term, such as if ∅ thenM elseN .
For the purposes of reduction we treat empty like an uninterpreted
constant, that is, we do reduce inside emptiness tests, but they do
not in any other way interact with the reduction rules.

Next we prove that ;c is strongly normalising. The proof is
based on our previous proof of strong normalisation for simply-
typed λ-calculus with sums [12], which generalises the >>-lifting
approach [14], which in turn extends Tait’s proof of strong normal-
isation for simply-typed λ- calculus [24].

Frame stacks.
(frame stacks) S ::= Id | S ◦ E
(stack length) |Id | = 0

|S ◦ E| = |S|+ 1

(plugging) Id [M] = M
(S ◦ E)[M] = S[(E[M])]

Following our previous work [12] we assume variables are an-
notated with types. We write A (B for the type of frame stack
S, if S[M] : B for all terms M : A.

Frame stack reduction.

S ;c S
′ def⇐⇒ ∀M.S[M] ;c S

′[M] ⇐⇒ S[x] ;c S
′[x]

Frame stacks are closed under reduction. A frame stack S is c-
strongly normalising, or c-SN, if all reduction sequences starting
from S are finite.

LEMMA 11. If S ;c S
′, for frame stacks S, S′, then |S′| ≤

|S|.

PROOF. Induction on the structure of S.

Reducibility. We define reducibility as follows:
• Id is reducible.
• S ◦ ([] N) : (A → B) (C is reducible if S and N are

reducible.
• S ◦ ([].`) : (A×B) (C is reducible if S is reducible.
• S : BagA (C is reducible if S[returnM] is c-SN for all

reducible M : A.
• S : Bool (C is reducible if S[true] is c-SN and S[false] is
c-SN.
• M : A is reducible if S[M] is c-SN for all reducible S : A (
C.

LEMMA 12. If M : A is reducible then M is c-SN.

PROOF. Follows immediately from reducibility of Id and the
definition of reducibility on terms.

LEMMA 13. x : A is reducible.

PROOF. By induction onA using Lemma 11 and Lemma 12.

COROLLARY 14. If S : A (C is reducible then S is c-SN.

Each type constructor has an associated β-rule. Each β-rule
gives rise to an SN-closure property.

LEMMA 15 (SN-CLOSURE).

(→) If S[M [x : =N]] and N are c-SN then S[(λx.M) N] is c-
SN.

(〈〉) If ~M , are c-SN then S[〈
−−−−→
` = M〉.`i] is c-SN.

(Bag−) If S[N [x : =M]] and M are c-SN then
S[for (x← returnM)N] is c-SN.

(Bool) If S[N] and S[N ′] are c-SN then
S[if true thenN elseN ′] is c-SN and S[if false thenN elseN ′]
is c-SN.

PROOF.

(→): By induction on maxc(S) + maxc(M) + maxc(N).

(〈〉): By induction on maxc S+(
∑n
i=1 maxc(Mi))+maxc(N)+

(
∑n
i=1 maxc(M

′
i)).

(Bag): By induction on |S|+maxc(S[N [x : =M]])+maxc(M).
(Bool): By induction on |S|+ maxc(S[N]) + maxc(S[N ′]).

Now we obtain reducibility-closure properties for each type con-
structor.

LEMMA 16 (REDUCIBILITY-CLOSURE).
(→) If M [x : =N] is reducible for all reducible N , then λx.M is

reducible.
(〈〉) If ~M are reducible, then 〈

−−−−→
` = M〉 is reducible.

(Bag) IfM is reducible,N [x: =M ′] is reducible for all reducible
M ′, then for (x←M)N is reducible.

(Bool) If M,N,N ′ are reducible then ifM thenN else, N ′ is re-
ducible.

PROOF. Each property follows from the corresponding part of
Lemma 15 using Lemma 12 and Corollary 14.

We also require additional closure properties for the empty bag and
union constructs.

LEMMA 17 (REDUCIBILITY-CLOSURE II).
(∅) The empty bag ∅ is reducible.
(]) If M,N are reducible, then M]N is reducible.

PROOF.
(∅): Suppose S : BagA (C is reducible. We need to prove that

S[∅] is c-SN. The proof is by induction on |S| + maxc(S).
The only interesting case is hoisting the empty bag out of a
bag elimination frame, which simply decreases the size of the
frame stack by 1.

(]): Suppose M,N : BagA, and S : BagA (C are reducible.
We need to show that S[M]N] is c-SN. The proof is by
induction on |S| + maxc(S[M]) + maxc(S[N]). The only
interesting case is hoisting the union out of a bag elimination
frame, which again decreases the size of the frame stack by 1,
whilst leaving the other components of the induction measure
unchanged.

THEOREM 18. Let M be any term. Suppose x1 : A1, . . . , xn :
An includes all the free variables of M . If N1 : A1, . . . , Nn : An
are reducible then M [~x : = ~N] is reducible.

PROOF. By induction on the structure of terms using Lemma 16
and Lemma 17.

THEOREM 19 (STRONG NORMALISATION). The relation ;c

is strongly normalising.
PROOF. Let M be a term with free variables ~x. By Lemma 13,

~x are reducible. Hence, by Theorem 18, M is c-SN.

It is well known that β-reduction in simply-typed λ-calculus has
non-elementary complexity in the worst case [1]. The relation ;c

includes β-reduction, so it must be at least as bad (we conjecture
that it has the same asymptotic complexity, as ;c can be reduced
to β-reduction on simply-typed λ-calculus via a CPS translation
following de Groote [9]). However, we believe that the asymptotic
complexity is unlikely to pose a problem in practice, as the kind
of higher-order code that exhibits worst-case behaviour is rare. It
has been our experience with Links that query normalisation time
is almost always dominated by SQL execution time.

C.2 If hoisting
To hoist conditionals (if-expressions) out of constant applica-

tions, records, unions, and singleton bag constructors, we define
if-hoisting frames as follows:

F [] ::= c(~M, [], ~N) | 〈
−−−−→
`′ = M, ` = [],

−−−−→
`′′ = N〉

| []]N |M] [] | return []

The if-hoisting rule says that if an expression contains an if-hoisting
frame around a conditional, then we can lift the conditional up and
push the frame into both branches:

F [if L thenM elseN] ;h if L thenF [M] elseF [N]

We write size(M) for the size of M , as in the total number of
syntax constructors in M .

LEMMA 20.
1. If M,N,N ′ are h-SN then ifM thenN elseN ′ is h-SN.
2. If M,N are h-SN then M]N is h-SN.
3. If ~M are h-SN then c(~M) is h-SN.
4. If ~M are h-SN then 〈

−−−−→
` = M〉 is h-SN.

PROOF.

1: By induction on 〈maxh(M), size(M), maxh(N) +
maxh(N ′), size(N) + size(N ′)〉.
2: By induction on 〈maxh(M) + maxh(N), sizeh(M) +
sizeh(N)〉 using (1).

3 and 4: By induction on 〈
∑n
i=1 maxh(Mi),

∑n
i=1 size(Mi)〉

using (1).

This concludes the proof.

PROPOSITION 21. The relation ;h is strongly normalising.

PROOF. By induction on the structure of terms using Lemma 20.

C.3 The query normalisation function
The following definition of the function norm generalises the

normalisation algorithm from our previous work [13].

normA(M) = LNMA

where M ;∗c M
′ ;∗h N with M ′ 6;c, N 6;h and:

Lc([Xi : O1]ni=1)MO = c([LXiMOi]
n
i=1)

Lx.`MO = x.`
LemptyM : BagAMBool = empty LMMBagA

LMM〈`i:Ai〉ni=1
= 〈`i = FLMMAi,`i〉

n
i=1

LMMBagA =
⊎

(BLMM?A,[],true)

BLreturnMM?
A,~G,L

= [for (~GwhereL) return LMMA]

BLfor (x← t)MM?
A,~G,L

= BLMM?
A,~G++[x←t],L

BLtable tM?
A,~G,L

= BLreturnxM?
A,~G++[x←t],L (x fresh)

BL∅M?
A,~G,L

= []

BLM]NM?
A,~G,L

= BLMM?
A,~G,L

++ BLNM?
A,~G,L

BLif L′M NM?
A,~G,L

= BLMM?
A,~G,L∧L′

++ BLNM?
A,~G,L∧¬L′

FLxMA,`i = Lx.`iMA
FL〈`i = Mi〉ni=1MA,`i = LMiMA

Strictly speaking, in order for the above definition of normA to
make sense we need the two rewrite relations to be confluent. It is

easily verified that the relation ;c is locally confluent, and hence
by strong normalisation and Newman’s Lemma it is confluent. The
relation ;h is not confluent as the ordering of hoisting determines
the final order in which booleans are eliminated. However, it is eas-
ily seen to be confluent modulo reordering of conditionals, which in
turn means that normA is well-defined if we identify terms modulo
commutativity of conjunction, which is perfectly reasonable given
that conjunction is indeed commutative.

THEOREM 22. The function normA terminates.

PROOF. The result follows immediately from strong normalisa-
tion of ;c and ;h, and the fact that the functions L−M, BL−M?, and
FL−M are structurally recursive (modulo expanding out the right-
hand-side of the definition of BLtable tM?

A,~G,L
).

D. PROOF OF CORRECTNESS OF SHRED-
DING

We begin with a simple lemma that states that the inner shredding
function T−U commutes with the semantics.

LEMMA 23. SJTMUaKρ,ι = TAJMKρ,ιUa � ι

PROOF. By induction on the structure of M .

Case x.`:

SJTx.`UaKρ,ι
=
SJx.`Kρ,ι

=
AJx.`Kρ,ι

=
TAJx.`Kρ,ιUa � ι

Case c([Xi]ni=1):

SJTc([Xi]ni=1)UaKρ,ι
=
SJc([TXiUa]ni=1)Kρ,ι

=
AJc([TXiUa]ni=1)Kρ,ι

=
JcK([AJTXiUaKρ,ι]

n
i=1)

=
TAJc([Xi]ni=1)Kρ,ιUa � ι

Case emptyM :

SJTemptyMUaKρ,ι
=
SJempty VMWεKρ,ι

=
AJempty VMWεKρ,ι

=
TAJemptyMKρ,ιUa � ι

Case 〈
−−−−→
` = M〉:

SJT〈`i = Mi〉ni=1UaKρ,ι
=
SJ〈`i = TMiUa〉

n
i=1Kρ,ι

=
〈`i = SJTMiUaKρ,ι〉

n
i=1

= (Induction hypothesis)
〈`i = TAJMiKρ,ιUa � ι〉

n
i=1

=
T〈`i = AJMiKρ,ι〉ni=1Ua � ι

=
TAJ〈`i = Mi〉ni=1Kρ,ιUa � ι

Case L:

SJTLUaKρ,ι
=
SJa � inKρ,ι

=
a � ι

=
TAJLKρ,ιUa � ι

The first part of the following lemma allows us to run a shredded
query by concatenating the results of running the shreddings of its
component comprehensions. Similarly, the second part allows us
to shred the results of running a nested query by concatenating the
shreddings of the results of running its component comprehensions.

LEMMA 24.
1. SJ

⊎
V
⊎n
i=1 CiW

?
a,pKρ,ι = concat([SJVCiW?a,pKρ,ι]

n
i=1)

2. VAJ
⊎n
i=1 CiKρ,ιW

?
a � ι,p = concat([VAJCiKρ,ιW?a � ι,p]

n
i=1)

PROOF.
1.

SJ
⊎
V
⊎n
i=1 CiW

?
a,pKρ,ι

=
SJ
⊎

concat([VCiW?a,p]
n
i=1)Kρ,ι

=

SJ
⊎

concat([VCW?a,p | C ← ~C])Kρ,ι
=

concat(concat([SJC′Kρ,ι | C ← ~C,C′ ← VCW?a,p]))
=

concat([SJ
⊎
VCW?a,pKρ,ι | C ← ~C])

=
concat([SJ

⊎
VCiW?a,pKρ,ι]

n
i=1)

2.

VAJ
⊎n
i=1 CiKρ,ιW

?
a � ι,p

=
Vconcat([AJCiKρ,ι]ni=1)W?a � ι,p

=

Vconcat([AJCKρ,ι | C ← ~C])W?a � ι,p
=

concat(concat([VsW?a � ι,p | C ← ~C, s← AJCKρ,ι]))
=

concat([VAJCKρ,ιW?a � ι,p | C ← ~C])

=
concat([VAJCiKρ,ιW?a � ι,p]

n
i=1)

We are now in a position to prove that the outer shredding func-
tion V−W commutes with the semantics.

LEMMA 25. SJVLWpKρ,1 = VAJLKρ,1Wp
PROOF. We prove the following:
1. SJVLWpKρ,1 = VAJLKρ,1Wp
2. SJ

⊎
VCW?a,pKρ,ι = VAJCKρ,ιW?a � ι,p

3. SJVMW?a,pKρ,ι = VAJMKρ,ιW?a � ι,p
The first equation is the result we require. Observe that it follows
from (2) and Lemma 24. We now proceed to prove equations (2)
and (3) by mutual induction on the structure of p.

There are only two cases for (2), as the `i.p case cannot apply.

Case ε:

SJ
⊎
Vfor (

−−−→
x← twhereX) returnbMW?a,εKρ,ι

= (Definition of SJ−K)
SJfor (

−−−→
x← twhereX) returnb 〈a � ι, TMUb〉Kρ,ι

= (Definition of SJ−K)
[〈a � ι,SJTMUbKρ[−−−→x 7→v],ι.i〉@b � ι.i
| 〈i, ~v〉 ← enum([~v |

−−−−−→
v ← JtK,SJXKρ[−−−→x 7→v]])]

= (Lemma 23)
[〈a � ι,TAJMKρ[−−−→x 7→v],ι.iUb � ι.i〉@b � ι.i
| 〈i, ~v〉 ← enum([~v |

−−−−−→
v ← JtK,SJXKρ[−−−→x 7→v]])]

= (Definition of V−W?)
V[AJMKρ[−−−→x 7→v],ι.i@b � ι.i
| 〈i, ~v〉 ← enum([~v |

−−−−−→
v ← JtK,SJXKρ[−−−→x 7→v]])]W

?
a � ι,ε

= (Definition of AJ−K)
VAJfor (

−−−→
x← twhereX) returnbMKρ,ιW?a � ι,ε

Case ↓.ε:

SJ
⊎
Vfor (

−−−→
x← twhereX) returnbMW?a,↓.pKρ,ι

= (Definition of V−W?)
SJ
⊎

[for (
−−−→
x← twhereX)C | C ← VMW?b,p]Kρ,ι

= (Definition of SJ−K)
concat([concat

([SJCKρ[−−−→x 7→v],ι.i

| 〈i, ~v〉 ← enum([~v |
−−−−−→
v ← JtK,SJXKρ[−−−→x 7→v]])])

| C ← VMW?b,p])
= (Definition of SJ−K)

concat
([SJVMW?b,pKρ[−−−→x 7→v],ι.i

| 〈i, ~v〉 ← enum([~v |
−−−−−→
v ← JtK,SJXKρ[−−−→x 7→v]])])

= (Induction hypothesis (3))
concat

([VAJMKρ[−−−→x7→v],ι.iW
?
b,p

| 〈i, ~v〉 ← enum([~v |
−−−−−→
v ← JtK,SJXKρ[−−−→x 7→v]])])

= (Definitions of AJ−K and V−W?)
VAJfor (

−−−→
x← twhereX) returnbMKρ,ιW?a � ι,↓.p

There are three cases for (3).

Cases ε and ↓.ε: follow from (2) by applying the two parts of Lemma 24
to the left and right-hand side respectively.

Case `i.ε:

SJV〈
−−−−→
` = M〉W?a,`i.pKρ,ι

= (Definition of V−W?)
SJVMiW?a,pKρ,ι

= (Induction hypothesis (3))
VAJMiKρ,ιW?a � ι,p

= (Definition of AJ−K)
VAJ〈

−−−−→
` = M〉Kρ,ιW?a � ι,`i.p

We now lift Lemma 25 to shredded packages.

PROOF OF THEOREM 4. We need to show that if ` L : BagA
then

HJLKA = shredAJLK(BagA)

This is straightforward by induction on A, using Lemma 25.

We have proved that shredding commutes with the semantics.
It remains to show that stitching after shredding is the identity on
index-annotated nested results. We need two auxiliary notions: the
descendant of a value at a path, and the indexes at the end of a path
(which must be unique in order for stitching to work).

We define �vp,w, the descendant of a value v at path p with
respect to inner value w as follows.

�vp,w = �v>� 1,p,w

�vJ,p,c = c

�vJ,p,〈`i=wi〉ni=1
= 〈`i = �vJ,p.`i,wi〉

n
i=1

�sJ,ε,I =

{
s, if J = I
[], if J 6= I

�[vi@Ji]
n
i=1J,↓.p,I = concat([�viJi,p,I]

n
i=1)

�〈`i = vi〉ni=1J,`i.p,I = �viJ,p,I

Essentially, this extracts the part of v that corresponds to w. The
inner value w allows us to specify a particular descendant as an in-
dex, or nested record of indexes; for uniformity it may also contain
constants.

We can now formulate the following crucial technical lemma,
which states that given the descendants of a result v at path p.↓ and
the shredded values of v at path p we can stitch them together to
form the descendants at path p.

LEMMA 26 (KEY LEMMA). If v is well-indexed and ` �vJ,p,I :
BagA, then

�vJ,p,I = [�vJ,p.↓,w@Iin | 〈Iout, w〉@Iin ← VvW?J,p, Iout = I]

PROOF. First we strengthen the induction hypothesis to account
for records. The generalised induction hypothesis is as follows.

If v is well-indexed and ` �vJ′,p.~̀,I : BagA, then

[�vJ′,p.↓.~̀,w@Iin | 〈Iout, w〉@Iin ← VvW?
J′,p.~̀, Iout = I]

= [v′.~̀@Iin | v′@Iin ← �vJ′,p,I]

The proof now proceeds by induction on the structure of A and
side-induction on the structure of p.

Case O:

Subcase ε: If J ′ 6= I then both sides are empty lists. Suppose that
J ′ = I .

[(�sJ′,↓.~̀,c@Iin
| 〈Iout, c〉@Iin ← VsW?

J′,~̀, Iout = I]

= (Definition of �−)
[c@Iin | 〈Iout, c〉@Iin ← VsW?

J′,~̀, Iout = I]

= (J ′ = I)
s

= (Definition of �−)

[v′.~̀@Iin | v′@Iin ← �sJ′,ε,I]

Subcase `i.p:

[(�〈
−−−→
` = v〉J′,`i.p.↓.~̀,c@Iin
| 〈Iout, c@Iin〉 ← V〈

−−−→
` = v〉W?

J′,`i.p.~̀
, Iout = I]

= (Definition of �−)

[c@Iin | 〈Iout, c@Iin〉 ← V〈
−−−→
` = v〉W?

J′,`i.p.~̀
, Iout = I]

= (Definition of V−W?)
[c@Iin | 〈Iout, c@Iin〉 ← VviW?J′,p.~̀, Iout = I]

= (Definition of �−)
[(�viJ′,p.↓.~̀,c@Iin | 〈Iout, c〉@Iin ← VviW?J′,p.~̀, Iout = I]

= (Induction hypothesis)
[v′.~̀@Iin | v′@Iin ← �viJ′,p,I]

= (Definition of V−W?)
[v′.~̀@Iin | v′@Iin ← �〈

−−−→
` = v〉J′,`i.p,I]

Subcase ↓.p:

[(�[vi@Ji]
n
i=1J′,↓.p.↓.~̀,c)@Iin

| 〈Iout, c〉@Iin ← V[vi@Ji]
n
i=1W

?
J′,↓.p.~̀, Iout = I]

= (Definitions of �− and V−W?)
concat([c@Iin | 〈Iout, c@Iin〉 ← VviW?Ji,p.~̀, Iout = I]ni=1)

= (Induction hypothesis)
concat([v′.~̀@Iin | v′@Iin ← �viJi,p]

n
i=1)

= (Definition of �−)

[v′.~̀@Iin | v′@Iin ← �[v@J]ni=1J′,p]

Case 〈〉: The proof is the same as for base types with the constant
c replaced by 〈〉.

Case 〈
−−→
` : A〉 where |~̀| ≥ q: We rely on the functions zip~̀, for trans-

forming a record of lists of equal length to a list of records, and
unzip~̀, for transforming a list of records to a record of lists of
equal length. In fact we require special versions of zip and unzip
that handle annotations, such that zip takes a record of lists of equal
length whose annotations must be in sync, and unzip returns such
a record.

zip~̀ 〈`i = []〉ni=1 = []
zip~̀ 〈`i = vi@J :: si〉ni=1 = 〈`i = vi〉ni=1@J :: zip~̀ 〈`i = si〉ni=1

unzip~̀(s) = 〈`i = [v.`i@J | v@J ← s]〉ni=1

If ~̀ is a non-empty list of column labels then zip~̀ is the inverse of
unzip~̀.

zip~̀(unzip~̀(s)) = s, if |~̀| ≥ 1

[�v
J′,p.↓.~̀′,w@Iin
| 〈Iout, w〉@Iin ← VvW?

J′,p.~̀′
, Iout = I]

= (Definition of �−)
[〈`i = �v

J′,p.↓.~̀′.`i,w
〉ni=1@Iin

| 〈Iout, w@Iin〉 ← VvW?
J′,p.~̀′.`

, Iout = I]

= (Definition of zip)
zip~̀ 〈`i = [v`i,w@Iin | 〈Iout, w@Iin〉 ← VvW?

J′,p.~̀′.`i
,

Iout = I]〉ni=1

where v`,w stands for �v
J′,p.↓.~̀′.`,w

= (Induction hypothesis)
zip~̀ 〈`i = [v′.~̀′.`i@Iin | v′@Iin ← �vJ′,p,I]〉

n
i=1

= (Definition of zip)

[v′.~̀′@Iin | v′@Iin ← �vJ′,p,I]

Case Bag ~A: Subcase ε: If J ′ 6= I then both sides of the equation
are equivalent to the empty bag. Suppose J ′ = I .

[�[vi@Ji]
n
i=1J′,↓.~̀,Iin@Iin

| 〈Iout, Iin〉@Iin ← V[vi@Ji]
n
i=1W

?
J′,~̀, Iout = I]

= (Definition of �−)
[concat([�viJi,~̀,Iin]ni=1)@Iin
| 〈Iout, Iin〉@Iin ← V[vi@Ji]

n
i=1W

?
J′,~̀, Iout = I]

= (V[vi@Ji]
n
i=1W

?
J′,~̀ = 〈J ′, J1〉@J1, . . . , 〈J ′, Jn〉@Jn)

[concat([�viJi,~̀,Iin]ni=1)@Iin | Iin ← ~J, J ′ = I]

= (J ′ = I)

[concat([�viJi,~̀,Iin]ni=1)@Iin | Iin ← ~J]

= (Definition of �−)
[concat([�viJi,~̀,Iin

| vi@Ji ← [vi@Ji]
n
i=1])@Iin | Iin ← ~J]

= (Definition of �−)

[concat([�vi.~̀Ji,ε,Iin | vi@Ji ← [vi@Ji]
n
i=1])@Iin

| Iin ← ~J]
= (Definition of �−)

[concat([vi.~̀

| vi@Ji ← [vi@Ji]
n
i=1, Ji = Iin])@Iin | Iin ← ~J]

= (v is well-indexed)

[vi.~̀@Iin | vi@Iin ← [vi@Ji]
n
i=1]

= (Definition of �− and J ′ = I)

[vi.~̀@Iin | vi@Iin ← �[vi@Ji]
n
i=1J′,ε,I]

Subcase `i.p:

[�〈`i = vi〉ni=1J′,`i.p.↓.~̀′,Iin@Iin
| 〈Iout, Iin〉@Iin ← V〈`i = vi〉ni=1W

?

J′,`i.p.~̀′
, Iout = I]

= (Definitions of �− and V−W?)
[�viJ′,p.↓.~̀′,Iin@Iin
| 〈Iout, Iin〉@Iin ← VviW?J′,p.~̀′ , Iout = I]

= (Induction hypothesis)
[v′.~̀′@Iin | v′@Iin ← �viJ′,p,I]

= (Definition of�−)

[v′.~̀′@Iin | v′@Iin ← �〈`i = vi〉ni=1J′,`i.p,I]

Subcase ↓.p:

[�[vi@Ji]
n
i=1J′,↓.p.↓.~̀,Iin@Iin

| 〈Iout, Iin〉@Iin ← V[vi@Ji]
n
i=1W

?
Iout,↓.p.~̀

, Iout = I]

= (Definitions of �− and V−W?)
[(concat([�viJi,p.↓.~̀,Iin]))@Iin
| 〈Iout, Iin〉@Iin ← concat([VviW?Ji,p.~̀]

n
i=1), Iout = I]

= (Expanding concat([V−W?]ni=1))
[(concat([�viJi,p.↓.~̀,Iin]))@Iin
| vi@Ji ← [vi@Ji]

n
i=1,

〈Iout, Iin〉@Iin ← VviW?Ji,p.~̀, Iout = I]

= (v is well-indexed)
[�viJi,p.↓.~̀,Iin@Iin
| vi@Ji ← [vi@Ji]

n
i=1,

〈Iout, Iin〉@Iin ← VviW?Ji,p.~̀, Iout = I]

= (Comprehension→ concatenation)
concat

([�viJi,p.↓.~̀,Iin@Iin
| 〈Iout, Iin〉@Iin ← VviW?Ji,p.~̀, Iout = I]ni=1)

= (Induction hypothesis)
concat([v′.~̀@Iin | v′@Iin ← �viJi,↓.p,I]

n
i=1)

= (Concatenation→ comprehension)

[v′.~̀@Iin | v′@Iin ← �[vi@Ji]
n
i=1J′,↓.p,I]

The proof of this lemma is the only part of the formalisation that
makes use of values being well-indexed. Stitching shredded results
together does not depend on any other property of indexes, thus any
representation of indexes that yields unique indexes suffices.

THEOREM 27. If s is well-indexed and ` �sp,w : A then
stitchw(shreds,p(A)) = �sp,w.

PROOF. By induction on the structure of A.

Case O:

stitchc(shreds,p(O))
=

c
=

�sp,c

Case 〈
−−−→
` = A〉:

stitch〈`i=wi〉ni=1
(shreds,p(〈`i : A〉ni=1))

=
〈`i = stitchwi(shreds,p.l(A))〉ni=1

= (Induction hypothesis)
〈`i = �sp.l,wi〉

n
i=1

=
�sp,〈`i=wi〉ni=1

Case BagA:

stitchI(shreds,p(BagA))
=

stitchI(((shreds,p.↓(A))VsWp))
=

[(stitchn(shreds,p.↓(A))@Iin)
| 〈Iout, w〉@Iin ← VsW?p, Iout = I]

= (Induction hypothesis)
[�sp.↓,w@Iin | 〈Iout, w〉@Iin ← VsW?p, Iout = I]

= (Lemma 26)
�sp,I

PROOF OF THEOREM 6. By Theorem 27, setting p = ε and
n = >� 1.

We now obtain the main result.

PROOF OF THEOREM 7. Recall the statement of Theorem 7: we
need to show that ` L : BagA then:

stitch(HJLKBagA) = AJLK

and in particular:

erase(stitch(HJLKBagA)) = N JLK

This follows immediately from Theorem 4, Lemma 5 and Theo-
rem 6.

E. RECORD FLATTENING

Flat types. For simplicity we extend base types to include the
unit type 〈〉. This allows us to define an entirely syntax-directed
unflattening translation from flat record values to nested record val-
ues.

Types A,B ::= Bag 〈
−−→
` : O〉

Base types O ::= Int | Bool | String | 〈〉

Our Links implementation diverges slightly from the presentation
here. Rather than treating the unit type as a base type, it relies on
type information to construct units when unflattening values.

Flat terms.
Query terms L,M ::=

⊎ ~C

Comprehensions C ::= let q = S inS′

Subqueries S ::= for (~GwhereX) returnR
Data sources u ::= t | q
Generators G ::= x← u
Inner terms N ::= X | index

Record terms R ::= 〈
−−−→
` = N〉

Base terms X ::= x.` | c(~X) | emptyL

Flattening types. The record flattening function (−)� flattens
record types.

(BagA)� = Bag (A�)

O� = 〈• : O〉
〈〉� = 〈• : 〈〉〉

〈
−−→
` : F 〉

�
= 〈[(`i `′) : O | i← dom(~̀), (`′ : O)← Fi

�]〉

Labels in nested records are concatenated with the labels of their
ancestors. Base and unit types are lifted to 1-ary records (with
a special • field) for uniformity and to aid with reconstruction of
nested values from flattened values.

Flattening terms. The record flattening function (−)� is de-
fined on terms as well as types.

(
⊎n
i=1 Ci)

� =
⊎n
i=1 (Ci)

�

(let q = Sout inSin)� = let q = Sout
� inSin

�

(for (~GwhereX) returnN)
�

= for (~GwhereX†) returnN�

X� = 〈• = X†〉
〈〉� = 〈• = 〈〉〉

(〈`i = Ni〉mi=1)� = 〈`i `′j = Xj〉(m,ni)(i=1,j=1),

where Ni� = 〈`′j = Xj〉nij=1

(x.`1. · · · .`n)† = x.`1 . . . `n •
c(X1, . . . , Xn)† = c((X1)†, . . . , (Xn)†)

(emptyL)† = emptyL�

The auxiliary (−)† function flattens n-ary projections.

Type soundness.

` L : A ⇒ ` L� : A�

Flat values.
Results s ::= ~r
Rows r ::= 〈`1 = c1, . . . , `n = cn〉

Semantics of flat record queries.

RJLK = LJLK

Unflattening record values.

[r1, . . . , rn]≺ = [(r1)≺, . . . , (rn)≺]

〈• = c〉≺ = c
〈• = 〈〉〉≺ = 〈〉

(〈`i `′j = cj〉(m,ni)(i=1,j=1))
≺

= 〈`i = (〈`′j = cj〉nij=1)
≺〉mi=1

Type soundness.

` L : A ⇒ ` L≺ : A≺

Correctness

PROPOSITION 28. IfL is a let-inserted query and ` L : BagA,
then (

RJL�K
)≺

= LJLK

F. SAMPLE QUERIES
We tested the shredded queries generated by our shredding al-

gorithm and by Ferry on four queries T1, T2, T3, T4. The queries
T1, T2, and T4 are over the following schema:

Σ(t1) = Bag 〈v : Int , a : Int〉
Σ(t2) = Bag 〈a : Int , b : Int〉
Σ(t3) = Bag 〈b : Int , v : Int〉
Σ(t4) = Bag 〈b : Int , v : Int〉

The query T3 is over the following schema:

Σ(t1) = Bag 〈v : Int , a1 : Int , a2 : Int〉
Σ(t2) = Bag 〈a : Int , v : Int , b1 : Int , b2 : Int〉
Σ(t3) = Bag 〈b : Int , v : Int〉
Σ(t4) = Bag 〈b : Int , v : Int〉

The queries are as follows:

T1 : Bag (Bag (Bag Int))
T1 = for (x← t1)

return (for (y ← t2) where (x.a = y.a)
return (for (z ← t3)

where (x.b = y.b) return z.v))

T2 : Bag (Bag (Bag Int))
T2 = for (x← t1)

return (for (y ← t2) where (x.a = y.a)
return (for (z ← t3) where (x.b = y.b)

return z.v)
]
for (y ← t2) where (x.a = y.a)

return (for (z ← t4) where (x.b = y.b)
return z.v)

T3 : Bag 〈v : Int , a1 : Bag 〈v : Int , a : Bag Int〉,
a2 : Bag 〈v : Int , a : Bag Int〉〉

T3 = for (x← t1)
return (〈v = x.v,

a = for (y ← t2) where (x.a1 = y.a)
return (〈v = y.v,

b = (for (z ← t3)
where (y.b1 = z.b)

return z.v)
]
(for (z ← t4)
where (y.b2 = z.b)

return z.v)〉)〉)
]
for (x← t1)

return (〈v = x.v,
a = for (y ← t2) where (x.a2 = y.a)

return (〈v = y.v,
b = (for (z ← t3)

where (y.b1 = z.b)
return z.v)

]
(for (z ← t4)
where (y.b2 = z.b)

return z.v)〉)〉)

T4 : Bag (Bag (Bag Int))
T4 = for (x← t1)

return (for (y ← t2) where (x.a = y.a)
return (if (empty (for (z ← t3)

where (y.b = z.b)
return z.v))

{{1, 2, 3, 4, 5}}
(for (z ← t3)
where (y.b = z.b) return z.v)))

For T1, we generated a regular three-dimensional array structure
with dimensions 10 × 100 × 100 populated by random positive
integers of maximum size 1000000. For T2, we generated a random
10 × 10 × 200 array. For T3, we generated the same order of
magnitude of data as for T2, but in a slightly more intricate record
structure. For T4, we generated a 10 × 10 × 10 array of random
integers.

Note that the types tell us that the nesting degree of T1, T2, and
T4 is three, and that of T3 is five. Thus, both our algorithm and
Ferry generate three shredded queries for the former and five shred-

ded queries for the latter.
As an example, here is the innermost shredded query generated

by our implementation on T2:
(with q1691 as
(select (t1677."a") as "1_1_a",

(t1678."a") as "1_2_a",
(t1678."b") as "1_2_b",
(row_number() over (order by t1677."a",t1678."a",t1678."b")) as "2"

from t1 as t1677,
t2 as t1678

where (t1677."a") = (t1678."a"))
select (2) as "1_1",

(t1692."2") as "1_2",
(t1679."v") as "2"

from q1691 as t1692,
t3 as t1679

where (t1692."1_2_b") = (t1679."b"))
union all

(with q1693 as
(select (t1680."a") as "1_1_a",

(t1681."a") as "1_2_a",
(t1681."b") as "1_2_b",
(row_number() over (order by t1680."a",t1681."a",t1681."b")) as "2"

from t1 as t1680,
t2 as t1681

where (t1680."a") = (t1681."a"))
select (5) as "1_1",

(t1694."2") as "1_2",
(t1682."v") as "2"

from q1693 as t1694,
t4 as t1682

where (t1694."1_2_b") = (t1682."b"))

and the corresponding shredded query generated by Ferry:
with
-- binding due to rownum operator
t0000 (item3_int, iter4_nat) as

(select a0000.a as item3_int,
row_number () over (order by a0000.a asc) as iter4_nat

from t1 as a0000),

-- binding due to rownum operator
t0001 (item3_int, iter4_nat, item1_int, item2_int, iter50_nat) as

(select a0001.item3_int, a0001.iter4_nat, a0002.a as item1_int,
a0002.b as item2_int,
row_number () over
(order by a0001.iter4_nat asc, a0002.a asc, a0002.b asc) as iter50_nat

from t0000 as a0001,
t2 as a0002),

-- binding due to rownum operator
t0002 (item3_int, iter4_nat, item1_int, item2_int, iter50_nat,

item51_bool, item30_int, item31_int, iter52_nat) as
(select a0003.item3_int, a0003.iter4_nat, a0003.item1_int, a0003.item2_int,

a0003.iter50_nat,
case when a0003.item3_int = a0003.item1_int then 1 else 0 end as
item51_bool, a0004.b as item30_int, a0004.v as item31_int,
row_number () over
(order by a0003.iter50_nat asc, a0004.b asc, a0004.v asc) as
iter52_nat

from t0001 as a0003,
t3 as a0004

where a0003.item3_int = a0003.item1_int),

-- binding due to rownum operator
t0003 (item3_int, iter4_nat, item1_int, item2_int, iter50_nat,

item51_bool, item18_int, item19_int, iter56_nat) as
(select a0006.item3_int, a0006.iter4_nat, a0006.item1_int, a0006.item2_int,

a0006.iter50_nat,
case when a0006.item3_int = a0006.item1_int then 1 else 0 end as
item51_bool, a0007.b as item18_int, a0007.v as item19_int,
row_number () over
(order by a0006.iter50_nat asc, a0007.b asc, a0007.v asc) as
iter56_nat

from t0001 as a0006,
t4 as a0007

where a0006.item3_int = a0006.item1_int),

-- binding due to set operation
t0004 (iter42_nat, pos43_nat, item44_int, pos45_nat) as

((select a0005.iter50_nat as iter42_nat, a0005.iter52_nat as pos43_nat,
a0005.item31_int as item44_int, 1 as pos45_nat

from t0002 as a0005
where a0005.item3_int = a0005.item1_int
and a0005.item2_int = a0005.item30_int)

union all
(select a0008.iter50_nat as iter42_nat, a0008.iter56_nat as pos43_nat,

a0008.item19_int as item44_int, 2 as pos45_nat
from t0003 as a0008

where a0008.item3_int = a0008.item1_int
and a0008.item2_int = a0008.item18_int)),

-- binding due to set operation
t0005 (iter13_nat, pos14_nat, item15_nat, pos16_nat) as

((select a0010.iter4_nat as iter13_nat, a0010.iter50_nat as pos14_nat,
a0010.iter50_nat as item15_nat, 2 as pos16_nat

from t0001 as a0010
where a0010.item3_int = a0010.item1_int)

union all
(select a0011.iter4_nat as iter13_nat, a0011.iter50_nat as pos14_nat,

a0011.iter50_nat as item15_nat, 1 as pos16_nat
from t0001 as a0011

where a0011.item3_int = a0011.item1_int)),

-- binding due to rownum operator
t0006 (iter13_nat, pos14_nat, item15_nat, pos16_nat, pos17_nat) as

(select a0012.iter13_nat, a0012.pos14_nat, a0012.item15_nat, a0012.pos16_nat,

row_number () over
(order by a0012.iter13_nat asc, a0012.pos14_nat asc, a0012.pos16_nat
asc) as pos17_nat

from t0005 as a0012)

select a0013.pos17_nat, a0009.item44_int
from t0004 as a0009,

t0006 as a0013
where a0009.iter42_nat = a0013.item15_nat
and a0013.pos16_nat = a0009.pos45_nat

order by a0013.pos17_nat asc, a0009.pos43_nat asc

The Ferry backend includes some information about where each
with-bound subquery comes from. Notice that in this instance
Ferry generates five row number operations to our two. Generat-
ing row numbers prematurely can be particularly costly, as it can
require materialising large amounts of data that could be filtered
out.

