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Abstract
Session types provide static guarantees that concurrent programs
respect communication protocols. In this paper, we give a novel
account of recursive session types, based on the initial algebra
semantics of recursion; we show a strong connection between our
account of recursive session types and linear logic; and, we resolve
long-standing problems in the syntactic treatment of duality for
recursive session types.

Recent work established GV, a small concurrent extension of
linear lambda calculus, as a foundation for functional programming
with session types. We extend GV with recursive types and cata-
morphisms, and show that doing so naturally gives rise to recursive
session types. By taking a principled semantic approach to recur-
sion, we resolve long-standing problems in the syntactic treatment
of duality for recursive session types.

We characterize the expressiveness of GV concurrency, by giv-
ing a CPS translation to (non-concurrent) λ-calculus and proving
that reduction in GV is simulated by full reduction in λ-calculus.
This shows that GV remains terminating in the presence of recur-
sive types, and that such arguments extend to other extensions of
GV, such as polymorphism or non-linear types, by appeal to nor-
malization results for sequential λ-calculi. We also show that GV
remains deadlock free and deterministic in the presence of recur-
sive types.

Finally, we extend CP, a session-typed process calculus based
on linear logic, with recursive types, and show that we preserve the
connection between reduction in GV and cut elimination in CP.

1. Introduction
Concurrency and communication have become central problems
in modern software design and engineering, from hand-held ap-
plications relying on remote services to provide key functionality,
through traditional applications now running on multi-core hard-
ware, to distributed applications running across data centers. As-
suring correct behavior for concurrent programs requires reasoning
not just about the type of data communicated, but about the order in
which communication takes place. For instance, the messages be-
tween an SMTP server and client are all strings representing SMTP
commands, but a client that sends the recipient’s address before the
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sender’s address is in violation of the protocol despite having sent
well-formed SMTP commands.

Session types, originally proposed by Honda [18], are an ap-
proach to statically verifying communicating concurrent programs.
A session type specifies the expected communication along a chan-
nel. For example, consider a simplification of the client’s view of
the SMTP protocol. After being authenticated, a client has the op-
tion of sending one or more messages, each consisting of a sender’s
address, recipient’s address, and message, in that order. We could
express this with the following session type:

Client def
= !FromAddress.!ToAddress.!Message.Client⊕!

!Quit.end

where type constants FromAddress, ToAddress, Message, and Quit
denote the corresponding SMTP commands. This definition makes
use of several session type constructors. The type !T.S denotes
sending a value of type T before continuing with behavior S, S⊕!S′

denotes communicating a choice between behaviors S and S′, end
denotes the end of a session, and finally we make use of recursive
definition to specify repetition in the protocol. A key aspect of
session typing is duality. The session type of an SMTP server is
dual to that of the client:

Server def
= ?FromAddress.?ToAddress.?Message.Server⊕?

?Quit.end

This type definition uses dual features to those in the client’s type:
?T.S denotes receiving a value of type T before continuing as S and
S⊕? S′ denotes receiving a choice between S and S.

We present a novel account of recursive session types. Follow-
ing initial algebra semantics, we characterize recursive computa-
tion by catamorphisms (folds) rather than by an arbitrary fixed-
point operator. This formulation differs from traditional presenta-
tions of recursive session types in three ways. First, we identify dual
notions of recursion, corresponding to producers and consumers,
rather than having a single self-dual notion of recursion in session
types. Second, as they are based in well-founded recursive data
types, our recursive session types guarantee termination and lock
freedom. Third, following algebraic ideas of recursion and duality
leads to a sound syntactic characterization of duality for recursive
session types. Previous syntactic formulations of session type du-
ality rely on ad-hoc expansion of recursive types, and many incor-
rectly identify non-dual processes as dual.

We present our formulation of recursive session types as an ex-
tension, called µGV, to a core concurrent λ-calculus called GV.
We extend GV with recursive types, recursive session types, and
folds over both recursive types and recursive session types, and
show that these are sufficient to write non-trivial programs using
recursive session types. Previous work on GV has minimized the
core calculus by encoding session-typed features in terms of func-
tional features and simple input and output primitives. We continue
this thread, showing that recursive session types can be encoded
in terms of recursive data types. This result simplifies the concur-
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rent semantics of µGV; for example, it allows us to apply previous
results on deadlock freedom and determinism of GV to µGV un-
changed.

We also seek to characterize the expressiveness of µGV’s con-
currency. To do so, we give a CPS translation from GV into lin-
ear λ-calculus (without concurrency), and show that full reduction
in the latter simulates reduction in the former. This also allows us
to extend standard results on termination in sequential λ-calculi
to results for termination of extensions of GV. Most immediately,
we can conclude that µGV is terminating. The approach applies
equally well to other extensions of GV, such as with polymorphism
or non-linear types.

Recent work by Caires and Pfenning [10] and Wadler [29] has
developed a correspondence between reduction in process calculi
and cut elimination in linear logics. GV has a close connection to
Wadler’s logic-based process calculus CP: Lindley and Morris [23]
demonstrated translations between GV and CP such that reduction
in each simulates reduction in the other. We extend this observation
to recursive session types. To do so, we define an extension of CP
to include recursive types, following Baelde’s formulation of fixed
points in classical linear logic [2], and then extend the semantics-
preserving translation between CP and GV to include the recursive
types and their inhabitants.

Finally, we consider extending µGV with corecursive types
as well as recursive data types; correspondingly, we can encode
corecursive session types as well as recursive session types. By
identifying least and greatest fixed points in the resulting calculus,
we obtain a system that admits non-terminating communication,
but still guarantees deadlock freedom and productivity.

Recent work by Toninho et al [27] has also explored corecur-
sive session types from a propositions-as-types perspective. Despite
having similar aims, our approach differs from theirs in three sig-
nificant ways. First, we identify parallels between concurrent and
sequential abstractions, in this case between recursive and core-
cursive data types and recursive session types. Toninho et al., in
contrast, develop corecursive session types directly from the corre-
sponding proof theory. This simplifies our concurrent semantics,
as we do not have to account for recursive communication di-
rectly. Second, we identify two forms of recursive session types—
corresponding to encodings based on recursive and corecursive data
types—and that their composition can provide unbounded compu-
tation. Toninho et al. identify one of these forms, but not the other.
Third, as illustrated by the equivalence with µCP, our session types
are fundamentally classical, while Toninho et al. build on intuition-
istic proof theory. Thus, for example, our results on the duality of
recursive session types do not arise from their approach. We see
the coincidence of our typing rules with theirs, despite the signif-
icant differences in methodology and foundations, as reinforcing
the relevance of both lines of inquiry.

Outline. We present the syntax and semantics of our session-
typed functional language µGV (§2), and demonstrate that recur-
sive session types can be encoded in terms of recursive data types.
We characterize the expressivity of GV concurrency by a CPS
translation to a non-concurrent λ-calculus (§3). In doing so, we
show that µGV is terminating, and thus (in combination with ex-
isting work on GV) free from livelock and deadlock. To establish
a strong connection between µGV and linear logic, we present
an extension of CP, called µCP, which includes least and great-
est fixed points and corresponding recursive and corecursive proof
terms, and show semantics-preserving translations from µGV to
µCP and vice versa (§4). We extend GV with corecursive types and
session types, and discuss the connection to languages with non-
termination (§5). We conclude by discussing related work (§6).

2. The µGV Language
We now turn to the µGV language and its semantics. We be-
gin by introducing functional µGV, the functional fragment of
µGV (§2.1), and give an example of linear recursive data types.
Then we consider the concurrent fragment of µGV, and give sev-
eral examples of processes with recursive session types (§2.2). We
show that recursive session types can be encoded using recursive
data types, simplifying our type system and concurrent seman-
tics (§2.3). Finally, we give a small-step operational semantics for
the concurrent fragment of µGV (§2.4).

2.1 Functional µGV
Functional µGV is a core functional language, based on the
multiplicative-additive fragment of intuitionistic linear logic. The
syntax of functional µGV’s terms and types is given at the top of
Figure 1. Types include binary and nullary multiplicative products
(T ⊗ U and 1), binary and nullary sums (T ⊕ U and 0), and lin-
ear implication (T ( U). We have omitted the additive product
(T & U and unit >) from our core calculus, as it can be simulated
in terms of the other features of functional µGV using a CPS trans-
formation. We will write M; N to abbreviate let () = M in N. Our
treatment of recursive types is based on the initial algebra seman-
tics of recursion [17]. If F is a positive functor, then µF denotes
its least fixed point: in captures that µF itself is the carrier of an
F-algebra, while the fold LMM captures that µF is initial. This pre-
sentation of recursive types has a long history in the functional
programming community, dating at least from the treatment of lists
in Squiggol [8], and generalized by Meijer et al. [25].

The typing rules for functional µGV are given at the bottom
of Figure 1. The majority of the rules are standard for linear λ-
calculus; in particular, the variable rule insists on a singleton envi-
ronment, and rules with multiple hypotheses (such as the rule for
application) split the type environment rather than duplicating it.
The typing rule for LMM mandates an empty environment, as the
evaluation of a fold may require arbitrarily many copies of M. Our
core µGV calculus contains only linear assumptions; adding the ex-
ponential modality would introduce non-linear assumptions, which
could be used in the bodies of L− M terms.

Natural Numbers. We turn to natural numbers as a characteristic
example of recursive types. The definition of the type of naturals
parallels the intuitionistic definition:

N(X) = X ⊕ 1 Nat = µN

and we can give familiar definitions of the constructors:

zero = in (inr ()) succ = λz.in (inl z)

Now consider a standard recursive definition of addition:

0 + y = y (S x) + y = S (x + y)

We can give a curried definition of addition in our system as a fold
on the first argument:

plus = Lλx.case x {inr f 7→ succ ◦ f ; inl () 7→ id}M

Unlike addition, however, the product of x and y cannot be com-
puted without duplicating (in some way) either x or y. In an intu-
itionistic setting, we might accomplish this by capturing x in the
body of the fold, and using it in each iteration. We cannot do the
same in the linear setting. Instead, we will begin by demonstrat-
ing terms that duplicate and discard naturals. That is, we show that
contraction and weakening are derivable for proposition Nat. This
is an instance of a general result, due to Filinski [14], that contrac-
tion and weakening are derivable for the positive combinators in
intuitionistic linear logic. In our setting this result is extended to
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Syntax.

Types T,U ::= X | 1 | T ⊗ U | 0 | T ⊕ U
| T ( U | µF

Operators F,G ::= X.T
Terms L,M,N ::= x | K M | λx.M | M N

| (M,N) | let (x, y) = M in N
| inl M | inr M | in M | LMM
| case L {inl x 7→ M; inr x 7→ N}
| () | let () = M in N | absurd M

Typing.

x : T ` x : T
K : T ( U Γ ` M : T

Γ ` K M : U

Γ, x : T ` M : U
Γ ` λx.M : T ( U

Γ ` M : T ( U Γ′ ` N : T
Γ,Γ′ ` M N : U

Γ ` M : T
Γ′ ` N : U

Γ,Γ′ ` (M,N) : T ⊗ U

Γ ` M : T ⊗ T ′

Γ′, x : T, y : T ′ ` N : U
Γ,Γ′ ` let (x, y) = M in N : U

Γ ` M : T
Γ ` inl M : T ⊕ U

Γ ` M : U
Γ ` inr M : T ⊕ U

Γ ` M : T ⊕ T ′ Γ′, x : T ` N : U Γ′, x : T ′ ` N′ : U
Γ,Γ′ ` case M {inl x 7→ N; inr x 7→ N′} : U

` () : 1
Γ ` M : 1 Γ′ ` N : T

Γ,Γ′ ` let () = M in N : T

Γ ` M : 0
Γ,Γ′ ` absurd M : T

Γ ` M : F(µF)

Γ ` in M : µF
` M : F(T)( T
` LMM : µF ( T

Figure 1: Functional µGV Terms and Typing.

include least fixed points µF.

dup = Lλx.case x {inl (y, z) 7→ (succ y, succ z)
inr () 7→ zero}M

drop = Lλx.case x {inl () 7→ ()
inr () 7→ ()}M

We have that dup : Nat ( Nat × Nat, where the output naturals
are equal to the input natural, and drop : Nat ( 1, where we
can then trivially eliminate the unit value. We can now implement
multiplication:

body = λx.λy.case y {inl (x, y) 7→ let (x, x′) = dup x in
(x′, plus x y);

inr () 7→ (x, 0)}
times = λx.λy.let (x′, z) = Lbody xM y in drop x′; z

The body of the fold has type N(Nat × Nat)( Nat × Nat; in the
inductive case, the input pair will be (x, x(y− 1)), and the result is
then (x, xy). We duplicate x at each step: one copy is added to the
product, while the other copy appears in the result. The result of the
Lbody xM y is the pair (x, xy); we call drop to discard the last copy
of x, and return xy.

Semantics. Figure 2 gives a small-step operational semantics
for functional µGV. To maintain a close connection with cut-
elimination, we define term reduction using weak explicit sub-
stitutions [21]. In this approach, we capture substitutions directly

Values and Contexts.
V,W ::= x | λσx.M | () | (V,W) | inl V | inr V | LMM

σ ::= {V1/x1, . . . ,Vn/xn}
where the xi are pairwise distinct

E ::= [ ] | K E | E M | V E | let () = E in M
| (E,M) | (V,E) | let (x, y) = E in M
| inl E | inr E | in E
| case E {inl x 7→ N; inr x 7→ N′}

Covariant Functors.

(X.T)(M) = λx.x
(X.X)(M) = M

(F × G)(M) = λx.let (y, z) = x in (F(M) y,G(M) z)
(F ( G)(M) = λf .G(M) ◦ f ◦ F−(M)
(F ⊕ G)(M) = λx.case x {inl x 7→ F(M) x; inr x 7→ G(M) x}
(X.µF)(M) = Lλx.in ((X.F(µF))(M) x)M

Reduction.

(λσx.M) V −→V M{V/x ] σ}
let (x, y) = (V,W) in M −→V M{V/x,W/y}

case (inl V)

{
inl x 7→ N;

inr y 7→ N′

}
−→V N{V/x}

let () = () in M −→V M
LMM (in V) −→V M (F(LMM) V) if M : F(A)( A

E[M] −→V E[M′] if M −→V M′

Figure 2: Operational Semantics of Functional µGV

at each λ-abstraction instead of them to the body of the abstraction.
Our values thus include closures λσx.M, which pair a function
abstraction λx.M with a captured environment σ. We extend the
typing judgment to include closures by

Γ, x : T ` Mσ : U dom(σ) = fv(M) \ {x}
Γ ` λσx.M : T ( U

where we write fv(M) to denote the free variables of M. The
free variables of a closure are the free variables of the range of
σ; capture-avoiding substitution Mσ is defined on the free vari-
ables of M. We implicitly treat plain abstractions λx.M as closures
λσx.(Mσ′) where σ′ maps each free variable xi of M to a fresh
variable yi, and σ is its inverse. The reduction of a fold LMM over
functor F is defined in terms of the action of F on terms, given in
the middle of Figure 2. With the exception of identity, each type
constructor gives rise to both covariant (F) and contravariant func-
tors (F−). We have the expected typings that if M : T ( U then
F(M) : F(T) ( F(U) and F−(M) : F(U) ( F(T). We use
point-free notation for building functors over binary type construc-
tors: for binary type constructor ∗, we write F ∗G as shorthand for
X.F(X) ∗ G(X).

2.2 Communication and Concurrency
We now consider the concurrent fragment of µGV. The additional
syntax of the concurrent fragment is listed at the top of Figure 3.
Our primitive session types include input (?T.S), output (!T.S), and
closed channels (end?, end!). Unlike many session type systems,
but in keeping with logically-founded approaches, we have dual
types for closed channels rather than a single, self-dual type end.
(Lindley and Morris [23] discuss the semantic and logical conse-
quences of providing a self-dual closed channel.) The remaining
features of concurrent µGV can be encoded in terms of the primi-
tive concurrent features, and the features of functional µGV. These
include selection (S ⊕! S′), branching (S ⊕? S′) and recursive ses-
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Syntax.

Session types S ::= !T.S | ?T.S | end! | end?

| S⊕! S′ | 0! | S⊕? S′ | 0?

| X | X | µ!F | µ?F
Types T,U::= · · · | S
Session functors F ::= X .S
Terms L,M,N::= · · · | inl! M | inr! M | LMM? | in!M
Constants K ::= send | receive | fork | wait | link

Duality.

!T.S = ?T.S
?T.S = !T.S

S⊕! S′ = S⊕? S
′

S⊕? S′ = S⊕! S
′

end! = end?

end? = end!

0! = 0?

0? = 0!

S = S

µ!F = µ?F
µ?F = µ!F
X .S = X .S{X/X}
X.S = X.S

Typing.

Γ ` M : S⊕! S′

Γ ` inl! M : S

Γ ` M : S⊕! S′

Γ ` inr! M : S′

send : T ⊗ !T.S( S
receive : ?T.S( T ⊗ S

fork : (S( end!)( S
wait : end? ( 1
link : S⊗ S( end!

Γ ` L : S⊕? S′ Γ, x : S ` M : T Γ, x : S′ ` N : T

Γ ` case? L {inl x 7→ M; inr x 7→ N} : T

Γ ` L : 0?

Γ ` case? L {} : T

Γ ` M : µ!F
Γ ` in! M : F(µ!F)

` M : F(S)( S

` LMM? : µ?F ( S

(Shaded terms and types, and their typing and duality, can be
encoded in terms of the remaining terms and types.)

Figure 3: Concurrent µGV Terms and Typing

ξ ∈ {X,X}
p(ξ.?T.S) = p(ξ.T) ∧ p(ξ.S), where p ∈ {neg, pos}
pos(ξ.!T.S) = neg(ξ.T) ∧ pos(ξ.S)
neg(ξ.!T.S) = pos(ξ.T) ∧ neg(ξ.S)

Figure 4: Positivity of Functors of Session Type

sion types (µ!F , µ?F). In traditional session typing notation, ⊕!

is written as ⊕, ⊕? as &, inl! as select inl, and case? as offer. To
avoid conflicting with the base features of functional GV and to em-
phasize the uniformity of our extensions, we adopt notation which
makes explicit the direction of communication. For example, the !
denotes that inl! sends a left injection along a channel.

Our treatment of recursive session types is also guided by initial
algebra semantics. We introduce session type variables X and ses-
sion functors F . We insist that the argument to a session functor be
a session type, and guarantee that the result is a session type. We
extend the standard notion of positivity to session functors and or-
dinary functors of session type (Figure 4). Just as we distinguished
between consuming (L − M) and producing (in) values of recursive
types, we distinguish between consuming and producing recursive
communication. Thus, we have two dual constructors for recursive
session types, µ?F for consuming recursive communication and
µ!F for producing it. The terms inhabiting recursive session types
are similar to those for recursive data types: in!M unfolds one iter-
ation of a recursive session type, while LMM? consumes a recursive
session type.

The notion of duality is central to session types: if the process
holding one end of a channel expects to send a value of some
type along that channel, the process holding the other end should
expect to receive a value of the same type. We define the dual of
session type S, S, in the center of Figure 3. The dual of a recursive
session type (µ!F , µ?F) is defined in terms of the dualized session
functor F . In the definition of F , note that we not only dualize
the body of F , but also the variable; this accounts for the duality
between the two forms of recursion. We contrast this approach with
standard approaches to duality for recursive session types following
our discussion of corecursion (§5.2).

Promises. While aesthetically appealing, our formation of recur-
sive session types seems to be of little practical use. The typing of
LMM? requires that M transformF(S) (a session) into S (itself a ses-
sion); that is, it flattens nested sessions into single sessions. In con-
trast, most uses of recursive session types transform the data values
carried by the session into a result value, only incidentally relying
on the nesting of sessions. We can relate these views, however, if we
notice that µGV has a natural notion of promises, and that promises
allow us to treat arbitrary types as session types. Promises [24] in-
troduce asynchrony between the computation of a value and its use;
a promise of type T denotes a value of type T which may not yet
have been computed. This abstraction is entirely natural in our set-
ting, using channels of type ?T.end? as T promises. We introduce
?T to abbreviate ?T.end?, and define mapping between promises
and values:

un? : ?T ( T
un? M = let (z, c) = receive M in

wait c; z

en? : T ( ?T
en? M = fork (λx.send (M, x))

The operation un?M retrieves a value from promise M (blocking
until it is available), while en?M constructs a new promise, already
containing the value of M; observe that un? ◦ en? and en? ◦ un? are
both observationally equivalent to the identity function. The dual
of the type ?T is the type !T.end!, which we will abbreviate !T . We
can also define an operation to eliminate channels of type !T (that
is, to provide a result to an unfulfilled promise):

un! : ((S( T)⊗ !T)( S
un!(L,M) = fork (λx.send (L x,M))

The appearance of the continuation type S may be surprising; this is
a consequence of the different treatment of the continuation in send
and receive. As µGV lacks polymorphism, we will write un? M
to denote the substitution of M into the definition of un?, rather
than to denote an application in µGV, and similarly for the other
definitions in this section.

Channels of naturals. We now present several examples of chan-
nels of naturals, building on our earlier representation of naturals
numbers. We introduce type abbreviations for such channels:

NC(X) = end? ⊕? ?Nat.X Nats = µ?NC

We begin with a term that sends two naturals along a given channel:

twoNats : Nats( end!

twoNats = λc.let c = send (zero, inr! (in! c)) in
let c = send (succ zero, inr! (in! c)) in
inl! (in! c)

Now we present a slightly more interesting example. Given some
starting natural n, we send the sequence n, n − 1, . . . , 0 along a
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channel. We rely on Nat itself being defined recursively.

downFrom : Nats( end!

downFrom n = let (n′, k) = LbodyM n in drop n′; k

body : N(Nat ⊗ (Nats( end!))( (Nat ⊗ (Nats( end!))
body z = case z {inl () 7→ zc;

inr (y, k) 7→ sc y k}
zc : Nat ⊗ (Nats( end!)
zc = (zero, λc.let c = send (zero, inr! (in!c)) in

inl! (in!c))
sc : Nat( (Nats( end!)( (Nat ⊗ (Nats( end!))
sc y k = let (y, y′) = dup y in

(succ y, λc.k (send (y′, inr! (in!c))))

We have a similar challenge in defining body that we did in defining
times: at each step of the recursion, we must both send a value along
the channel and produce the same value for the next step. Observe
that body has type N(Nat ⊗ (Nats ( end!)) ( Nat ⊗ (Nats (
end!), computing both the next natural in the sequence and the
function that sends it along a channel.

We can also write functions that consume channels of naturals.
For a simple example, we could compute the sum of the naturals
received along a channel.

sum : Nats( Nat
sum = Lλc.case? c {

inl c 7→ wait c; en? zero
inr c 7→ let (x, c) = receive c in

let y = un? c in
en? (plus x y)}M?

We wrap the running sum in a promise to lift it to session type;
the body of the fold has type NC(?Nat) ( ?Nat, so sum has type
µ?NC (?Nat. We could compose this with one of the producers
above to compute a value, such as:

un? (sum (fork (downFrom 4)))

where we write n to indicate the representation of natural n. This
term will evaluate to 10.

We can also define channel transformers: processes that con-
sume the naturals on one channel to produce naturals along another.
For each, we could compute the running total of the stream, insert-
ing the total (to that point) after each element.

running : Nats( Nats( end!

running c = un? (Lλc.case? c {inl c 7→ done c;
inr c 7→ more c}M? c) 0

done c = en? (λz.λd.drop z; link (c, inl! (in!d)))
more c = let (y, c) = receive c in

let k = un? c in
let (y, y′) = dup y in
en? (λz.λd.let (w,w′) = dup (plus y′ z) in

let d = send (y, inr! (in!d)) in
let d = send (w, inr! (in!d)) in
k w′ d)

Note that the body of the fold has type NC(?(Nat ( Nats (
end!)) ( ?(Nat ( Nats ( end!); the Nat argument stores the
running sum, and so is initialized to zero by running.

2.3 Encoding Concurrent Features
Prior work on GV [23] has focused on keeping the core language
as simple as possible. For example, rather than include branching
and choice in the concurrent semantics directly, a choice can be
encoded as the promise of a (data type) sum. Kobayashi et al [20]
and Dardha et al. [13] make similar uses of linear promises to relate

Session types.

QJS⊕! S′K = !(QJSK⊕QJS′K)
QJS⊕? S′K = ?(QJSK⊕QJS′K)

QJ0?K = ?0
QJ0!K = !0

QJµ?FK = ?µF?

QJµ!FK = !µF?

F? = X.QJF(?X)K

Terms.
QJ`! MK = un!(λx.` x,QJMK)

Q
s

case? L
{

inl x 7→ M;
inr x 7→ N

}{
= case (un?QJLK)

{
inl x 7→ QJMK
inr x 7→ QJNK

}
QJin! MK = un! (λx.in x,QJMK)
QJLMM? NK = Lλy.en? (QJMK (QJFK(un?) y))M

(un?QJNK)

Figure 5: Translation of µGV concurrency features into core µGV

data types and session types in π-calculi. We extend this view to
include recursive session types. We have two challenges in doing
so: we must encode session functors, and their use of session type
variables, and we must encode their fixed points.

Our translation is given by the homomorphic extension of the
rules in Figure 5. We underline those portions of the translation
that introduce purely administrative reduction. The session functor
F is translated to the ordinary function F?, using promises to lift
an ordinary type variable to session type. This approach naturally
accounts for the use of dualized session type variables; for example,
if F(X ) = !X .X , then we have that F?(X) = !(?X).?X =
!(!X).?X. Recursive session types are interpreted as promises of
recursive types, and the interpretation of their terms is directed by
the interpretation of their types. The definition of LMM? may seem
surprisingly complicated. In fact, we can present a different form of
session-typed catamorphism, directly encoded in terms of recursive
types:

LMMS N = LMM (un?M)

with the following typing rule, which exchanges the restriction to
session functors for a direct use of their encoding:

` M : F?(T)( T

` LMMS : µ?F ( T

We can see that the encoding of L− M? is an instance of L− MS, and
that our examples can be written directly using L− MS, by removing
calls to en?. Nevertheless, we have preferred L − M? as it does
not rely on details of our encoding and is closer to the algebraic
intuition.

2.4 Concurrent Semantics
We give a concurrent semantics of µGV, building on the small-
step operational semantics for functional µGV given in the last sec-
tion. As recursive session types and their terms can be encoded in
terms of the core concurrency features, our semantics is mostly un-
changed from that of Lindley and Morris [23]. Figures 6 and 7 give
the syntax and typing of configurations and configuration contexts;
we will write Γ ` C : T to denote that there is some φ such that
Γ `φ C : T . Figure 8 gives reductions and configuration equiva-
lence. Because of the importance of promises in our interpretation
of µGV’s concurrent features, we give special cases of the functor
map for the promise functor. These have the same behavior as that
given in the general case, but expose potentially administrative re-
ductions sooner. Our treatment of link repairs a defect in that given
by Lindley and Morris and restores the diamond property for GV’s
concurrent semantics.
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Configurations C ::= φM | (new x)C
| z = x↔ y | C ‖ C′

Flags φ ::= ◦ | •
Configuration contexts D ::= [ ] | (new x)D | C ‖ D
Thread evaluation contexts H ::= φE

Figure 6: Configurations and Contexts.

Γ ` M : T
Γ `• •M : T

Γ ` M : end!

Γ `◦ ◦M : end!

Γ, x : S] `φ C : T

Γ `φ (new x)C : T

x : S, y : S, z : end? `◦ z = x↔ y : end!

Γ, x : S `φ C : T Γ′, x : S `◦ C′ : end!

Γ,Γ′, x : S] `φ C ‖ C′ : T

Figure 7: Configuration Typing.

Theorem 1 (Diamond property). If Γ ` C : T, C ≡−→≡ C1, and
C ≡−→≡ C2, then either C1 ≡ C2 or there exists C3 such that
C1 ≡−→≡ C3, and C2 ≡−→≡ C3.

This proof extends to any deterministic extension of the core func-
tional calculus, such as the addition of exponentials or polymor-
phism. The reader may be concerned that the WAIT rule does not
apply in the case that x is returned from the main thread, and simi-
larly for z in the LINK1 rule. However, these cases can never occur
in a closed, well-typed configuration.

The other metatheoretic properties established by Lindley and
Morris hold here as well. In particular, reduction in µGV preserves
typing.

Theorem 2. If Γ `φ C : T and C −→ C′ then Γ `φ C′ : T.

While typing is not preserved by configuration equivalence, reduc-
tion never relies on ill-typed states.

Theorem 3. If Γ ` C1 : T, C1 ≡ C2, and C2 −→ C′2, then there
is some C′1 such that C′2 ≡ C′1, C1 −→ C′1 and Γ ` C′1 : T.

We have encoded recursive session types using features of func-
tional µGV, and so they do not appear in the concurrent semantics
directly. We would like to confirm that their encoding matches the
intuition of the original, unencoded forms. That is, we hope that a
configuration H[LMM? x] ‖ H′[in!x] reduces to H[M (F(LMM?)x)] ‖
H′[x]. This reduction is blocked by the administrative steps intro-
duced in the encoding of L − M?. However, we can show that it
holds if we can suitably ignore administrative reductions. To do so,
we adapt a notion of weak bisimulation to our setting. Unlike stan-
dard presentations of concurrency, all µGV reductions are internal.
Therefore, ignoring all internal reductions would trivially identify
all processes that compute the same results. We intend a finer char-
acterization, in which we ignore only administrative reductions.
We have already identified (by underlining) the relevant sources
of administrative reductions. We say that a reduction is adminis-
trative (−→) if all the reduced subexpressions are underlined. For
example, the reduction of H[send (V, x)] ‖ H′[receive x] to H[x] ‖
H′[(V, x)] is administrative, but the reduction of H[send (M, x)] to
H[send (M′, x)] is not (unless M is itself identified as administra-
tive). We write −→? for the reflexive, transitive closure of −→,
and write C =⇒ C′ to denote C −→?−→−→? C′. Finally, we can
adapt the standard notion of weak bisimulation to our setting.

Definition 4. A relation R on configurations is an administrative
weak bisimulation if, for each C1RC2, whenever C1 =⇒ C′1, then
there is a C′2 such that C2 =⇒ C′2 and C′1RC′2, and similarly for
reduction from C2. We define administrative weak bisimiliarity ≈
to be the union of all administrative weak bisimulations.

We can now relate the encoding of recursive session types to their
expected semantics:

Theorem 5. If · ` M : F(S)( S, then

(new x)(H[LMM? x] ‖ H′[in! x]) −→+≈
(new x)(H[M (F(LMM?) x)] ‖ H′[x])

The key observations to establishing this result are that un? and en?

introduce only incidental additional concurrency.

Lemma 6.

1. (new x)(H[un? x] ‖ H′[un! (λx.M, x)]) ≈
(new x)(H[M] ‖ H′[x])

2. E[F(un?) (F(λx.en? (M x)) N)] ≈ E[F(λx.M x) N]

The first is entirely straightforward, the second can be shown by
induction on the structure of F . The theorem follows directly from
the lemmas and the definition of reduction.

3. Communication without Concurrency
We now show, via a CPS translation, that reduction in µGV can be
simulated by reduction in functional µGV. We begin with a stan-
dard left-to-right call-by-value CPS translation from the core calcu-
lus into itself (Figures 9 and 10), where R is a fixed return type. In
the rest of this subsection, we extend the CPS translation to session
types and show that the CPS translation preserves reduction. As a
corollary, we obtain that µGV is strongly normalising.

Following Danvy and Nielson [11], we mechanically transform
the naive CPS translation N J−K of Figure 10 into a compositional
first-order one-pass CPS transformation KJ−K. By carefully dis-
tinguishing between values and non-values, the one-pass transla-
tion ensures that (most) administrative redexes are contracted by
the translation itself. Contracting these redexes is necessary for the
simulation result (Theorem 10). Due to lack of space, we omit the
(entirely standard) details of the one-pass variant of the translation.

Figure 11 gives the CPS translation of concurrent µGV. The
translations of send, fork, and link depend on the polarities (input
or output) of their arguments and results. We use subscripts to
distinguish output and input session types. To give a compositional
translation of configurations, we restrict attention to a canonical
class of configurations. We write C1 ‖x C2 to denote a parallel
composition in which channel x has input session type in C1 and
the dual output session type in C2. We say that a configuration C
is well-oriented (WO(C)) if all of the parallel compositions in C
are of this form, and in any link configuration z = x ↔ y in C,
x has input session type. Without loss of generality, we need only
consider reduction on well-oriented configurations.

Lemma 7. If Γ ` C : T, then there exists well-oriented C′ ≡ C.

The translation of the main thread is the only place the continuation
is actually used. The translation of a child thread supplies the iden-
tity continuation, which is well-typed as child threads always have
type end!. Name restrictions themselves are ignored, but names are
used in the translation of well-oriented parallel composition. It is
straightforward to verify that the CPS translation preserves typing.

Theorem 8 (Type soundness).

1. If Γ ` M : T, then KJΓK ` KJMK : (KJTK( R)( R.
2. If Γ ` C : T and C is well-oriented, then KJΓK ` KJCK :

(KJTK( R)( R.
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Covariant Functors.

(!F.G)(M) = λc.fork (λd.let (z, d) = receive d in

let c = send (F−(M) z, c) in

link (G(M) d,G(M) c))
(?F.G)(M) = λc.fork (λd.let (z, c) = receive c in

let d = send (F(M) z, d) in

link (G(M) d,G(M) c))

(?F.end?)(M) = λc.en? (F(M) (un? c))

Contravariant Functors.

(!F.G)−(M) = λc.fork (λd.let (z, d) = receive d in
let c = send (F(M) z, c) in

link (G
−
(M) d,G−(M) c))

(?F.G)−(M) = λc.fork (λd.let (z, c) = receive c in

let d = send (F−(M) z, d) in

link (G
−
(M) d,G−(M) c))

(?F.end?)−(M) = λc.en? (F−(M) (un? c))

Configuration Equivalence.

H[link (x, y)] ≡ H[link (y, x)]
z = x↔ y ≡ z = y↔ x

C ‖ C′ ≡ C′ ‖ C
C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C3

C ‖ (new x)C′ ≡ (new x)(C ‖ C′), if x 6∈ fv(C)
D[C] ≡ D[C′], if C ≡ C′

Configuration Reduction.

SEND (new x)(H[receive x] ‖ H′[send (V, x)]) −→ (new x)(H[(V, x)] ‖ H′[x])
FORK H[fork (λσy.M)] −→ (new x)(H[x] ‖ ◦M({x/y} ] σ)), x fresh
WAIT (new x)(H[wait x] ‖ ◦ x) −→ H[()]
LINK0 H[link (x, y)] −→ (new z)(z = x↔ y ‖ H[z]), z fresh
LINK1 (new z x)((z = x↔ y ‖ ◦ z) ‖ φM) −→ φM{y/x}

LIFTV
M −→V M′

φM −→ φM′

LIFT
C −→ C′

D[C] −→ D[C′]

Figure 8: Concurrent Semantics of µGV: Functors, Equivalences, and Reductions.

To reason by induction over the reduction rules, which are
defined in terms of evaluation contexts and configuration contexts,
we extend the CPS translation to contexts (Figure 12). Evaluation
contexts are interpreted as functions. The CPS translation of a
configuration context takes two arguments. The first argument is a
meta-level function, which we instantiate with the CPS translation
of an appropriate configuration. The second is a continuation. The
CPS translation respects decomposition of contexts.

Lemma 9.

1. If E 6= [ ] and Γ ` E[I] : T, then KJE[I]Kk = IJIK(λx.EJEKk).
2. If Γ ` D[C] and D[C] is well-oriented, then KJD[C]Kk =
DJDK KJCK k.

To simulate all reduction paths in µGV by reduction in func-
tional µGV, we must allow reduction under lambda abstractions.
Otherwise, we would be limited to a single schedule in which order
of communication is determined by the outermost input communi-
cation. For an intuition of this schedule, consider the translation of
C ‖x C′. Reduction in C′ cannot proceed until C is ready to receive
a result along x, even if C′ could perform some internal commu-
nication. Allowing reduction under lambda abstractions allows all
valid schedules to be simulated. We define M  N by:

M −→V N
M  N

M  N
λσx.M  λσx.N

The following theorem states that the CPS translation simulates
µGV reduction.

Theorem 10 (Simulation).

1. If Γ ` M : T and M −→ N, then KJMKk  + KJNKk.
2. If Γ ` C : T and C −→ C′, then there exist well-oriented

C′′,C′′′ with C′′ ≡ C and C′′′ ≡ C′ such that KJC′′Kk  +

KJC′′′Kk.

Thus we can simulate concurrent communication using only the
functional core of µGV. As a corollary, we obtain that µGV is
strongly normalising.

Theorem 11 (Strong normalization). If Γ ` C : T, then there are
no infinite ≡−→≡ sequences starting from C.

The proof follows immediately from Theorem 10 and the quite
standard result that the functional µGV (linear λ-calculus with pos-
itive recursive data types) is strongly normalising. (To show the lat-
ter, map functional µGV into System F, forgetting linearity, and en-
coding the positive recursive data types using polymorphism.) An
immediate consequence is that our calculus is free from livelock;
that is, that there are no oscillating sequences of configurations that
diverge.

If our only goal was to prove termination for µGV, then we
could do so more directly, as µGV is both linear (so reduction never
increases the size of the term) and satisfies the diamond property
(so strong normalization and weak normalization are equivalent).
However, the CPS transformation is interesting in its own right as
it provides insights into the restricted nature of the concurrency
provided by µGV. Furthermore, the strong normalization result
straightforwardly extends to the extension of µGV with the expo-
nential modality [23], and to the setting where we allow reduction
under lambdas in the source calculus, results which are consider-
ably less obvious. Furthermore, by composing the CPS translation
with the translation from µCP to µGV (§4.3), we obtain a transla-
tion from µCP into a typed lambda calculus. This shows that the
concurrency of µCP is equivalent to that provided by full reduction
in the λ-calculus.

We can make the translation more uniform by factoring it
through a polarization phase. In particular, polarization allows us
to give a single translation for each of the send, fork, and link cases.
Polarization provides a way of encoding output session types as in-
put session types and vice-versa. It also leads to a clean way of
handling polymorphic session types by uniformly choosing either
a positive (output) or a negative (input) representation for session
type variables.
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KJT ( UK = KJTK( (KJUK( R)( R

KJT ⊗ UK = KJTK⊗KJUK
KJT ⊕ UK = KJTK⊕KJUK

KJ1K = 1
KJ0K = 0

KJµX.TK = µX.KJTK KJXK = X

Figure 9: CPS Translation for Core Types

N JxKk = k x
N JK MKk =N JMK(λx.N JKK x k)

N Jλ{~V/~z}x.MKk = k (λx k.N J~VK(λ~z.N JMKk))
N JM NKk =N JMK(λx.N JNK(λy.x y k))
N J(M,N)Kk =N JMK(λx.N JNK(λy.k (x, y)))

N Jlet (x, y) = M in NKk =N JMK(λz.let (x, y) = z in N JNKk)
N Jinl MKk =N JMK(λx.k (inl x))
N Jinr MKk =N JMK(λx.k (inr x))

N

u

v
case M {

inl x 7→N;
inr y 7→N′}

}

~ k =N JMK

λz.
case z {

inl x 7→N JNKk;
inr y 7→N JN′Kk}


N J()Kk = k ()

N Jlet () = M in NKk =N JMK(λz.let () = z in N JNKk)
N Jabsurd MKk =N JMK(λz.absurd z)

N Jin MKk =N JMK(λx.k (in x))
N JLMMKk =N JMK(λx.k (LxM))

Figure 10: Naive CPS Translation for Core Terms

Types.

KJend!K = R
KJend?K = R( R

KJ!T.SK = KJTK( KJSK( R
KJ?T.SK = (KJTK( KJSK( R)( R

Constants.
KJsend!KV k = let (x, c) = V in c x k
KJsend?KV k = let (x, c) = V in k (λy.c x y)

KJreceiveKV k = V (λx c.k (x, c))

KJfork!KV k = k (λx.V x id)
KJfork?KV k = V k id

KJwaitKV k = V (k ())

KJlink!KV k = let (x, y) = V in k x y
KJlink?KV k = let (x, y) = V in k y x

Shallow Polarization.

S! := !T.S | end! S? ::= ?T.S | end?

send! : T ⊗ !T.S! ( S!

fork! : (S! ( end!)( S!

link! : S! ⊗ S! ( end!

send? : T ⊗ !T.S? ( S?

fork? : (S? ( end!)( S?

link? : S? ⊗ S? ( end!

Configurations.

KJ•MKk = KJMKk KJ(new x)CKk = KJCKk
KJ◦MKk = KJMKid KJz = x↔ yKk = z (x y)

KJC ‖x C′Kk = (KJCKk){(λx.KJC′Kk)/x}

Figure 11: CPS Translation for Concurrent µGV and Contexts.

Evaluation Contexts.

EJEKk = λx.KJE[e]Kk

Configuration Contexts.

DJ[ ]Kf k = f k
DJ(new x)DKf k = KJDKf k
DJC ‖x DKf k = (KJCKk){λx.DJDKf k/x}
DJD ‖x CKf k = (DJDKf k){λx.KJCKk/x}

Figure 12: CPS Translation of µGV Contexts.

4. The µCP Language
4.1 Syntax
Figure 13 gives the terms and typing of µCP, an extension of
Wadler’s process calculus CP with recursive and corecursive types.
The syntax of types is that of the propositions of linear logic, ex-
tended with least (µF) and greatest (νF) fixed points. As in µGV,
we have omitted polymorphism and the exponentials; their reintro-
duction is entirely orthogonal to our development. The definition
of duality includes the duality of least and greatest fixed points; the
dual of an operator is defined by F⊥(X) = (F(X⊥))⊥, as for µGV.
The terms of µCP are restricted compared to π-calculus in sev-
eral ways. Most significantly, composition and name restriction are
combined in a single syntactic form, and the composed processes
are limited to share only the newly introduced name. The forward-
ing construct x ↔ y corresponds to the axiom rule in linear logic;
it is necessary for the treatment of recursion and for the extension
of µCP to include polymorphism.

Recursion and Corecursion. We extend µCP to include recur-
sion and corecursion, following Baelde’s extension of classical
linear logic to include induction and coinduction [2]. We begin
by considering sequent calculus presentations of introduction and
elimination rules for induction and coinduction, as follows:

Ψ ` F(µF)

Ψ ` µF
F(A) ` A
µF ` A

Ψ, νF ` A
Ψ,F(νF) ` A

A ` F(A)

A ` νF

Note that the hypotheses of the right rule for ν and left rule for µ are
restricted to account for linearity. Baelde observes that, when using
duality to convert these two-sided sequents to one-sided sequents,
the left rule for µ and the right rule for ν collapse, and similarly the
right rule for µ and the left rule for ν. This leaves us with only two
rules, with term assignments as follows:

P ` y⊥ : A, x : F(A)

corec x(y).P ` y : A⊥, x : νF

P ` Ψ, x : F(µF)

rec x.P ` Ψ : x : µF

However, there is a problem with this formulation. Suppose that we
have some term Q ` A. We then have the composition new y (Q |
corec x(y).P) ` x : νF. However, we have no hope of reducing this
cut, as we have no rule which can prove νF in isolation. We can
address this problem by suspending the cut in question, moving
it into the ν rule and giving the rule in Figure 13. Lindley and
Morris [23] observe a similar pattern in comparing the⊗ rule to the
typical process calculus rule for output. As in that case, the version
without the suspended cut may expose reductions not present in
the suspended version. Nevertheless, we can still define the simpler
term as syntactic sugar:

corec x(y).P = corec x[y](y↔ z | P)

Examples. We return to the example of natural numbers to give
some flavor of the use of recursion and corecursion in µCP. We can
define the type of natural numbers much as before

N(X) = 1⊕ X Nat = µN
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Syntax.

Types A,B ::= A⊗ B | A ` B | A⊕ B | A & B
| 1 | ⊥ | > | 0 | X | X⊥ | µF | νF

Operators F,G ::= X.A
Labels ` ∈ inl, inr
Processes P,Q,R ::= x[y].(P | Q) | x(y).P | x[].0 | x().P

| x[`].P | case x {P; Q} | case x {}
| x↔ y | new x (P | Q)
| rec x.P | corec x[y](P | Q)

Typing.

x↔ y ` x : A, y : A⊥
P ` Ψ, x : A Q ` Ψ′, x : A⊥

new x (P | Q) ` Ψ,Ψ′

P ` Ψ, y : A Q ` Ψ′, x : B
x[y].(P|Q) ` Ψ,∆′, x : A⊗ B x[].0 ` x : 1

P ` Ψ, x : B, y : A
x(y).P ` Ψ, x : A ` B

P ` Ψ

x().P ` Ψ, x : ⊥

P ` Ψ, x : A
x[inl].P ` Ψ, x : A⊕ B

P ` Ψ, x : A Q ` Ψ, x : B
case x {P; Q} ` Ψ, x : A & B

case x {} ` Ψ, x : >
P ` Ψ, x : F(µF)

rec x.P ` Ψ, x : µF

P ` Ψ, y : A Q ` y : A⊥, x : F(A)

corec x[y](P | Q) ` Ψ, x : νF

Duality.

(A⊗ B)⊥ = A⊥ ` B⊥

(A ` B)⊥ = A⊥ ⊗ B⊥

(A⊕ B)⊥ = A⊥ & B⊥

(A & B)⊥ = A⊥ ⊕ B⊥

1⊥ = ⊥
0⊥ = >

(µF)⊥ = ν(F⊥)
(νF)⊥ = µ(F⊥)

⊥⊥ = 1
>⊥ = 0

(X⊥)⊥ = X
F⊥(X) = (F(X⊥))⊥

Figure 13: µCP Typing Rules

and we can give very similar definitions of the constructors

zerox = rec x.x[inl].x[].0
succxy = rec x.x[inr].x↔ y

with the expected typings zerox ` x : Nat and succxy ` x : Nat, y :
Nat⊥. We can define the addition operation as follows:

plusxyz = corec z[w].(w〈x〉.w↔ y;
w(x).case z {z().w↔ x;

rec x.x[inr].z〈x〉.z↔ w})

where the recursive body of the corec has type w : Nat ` Nat⊥, z :
N(Nat⊥ ⊗ Nat) and so the term has typing plusxyz ` x : Nat, y :
Nat⊥, z : Nat⊥. Writing nz to denote the encoding of the natural
number n along channel z, we have that

new z (2z | new y (2y | plusxyz))

will reduce to 4x

4.2 Semantics
The semantics of µCP are given by the cut reduction rules in classi-
cal linear logic, extended to account for recursion and corecursion,
as shown in Figure 14. We write fv(P) for the free names of process
P. Terms are identified up to congruence ≡. Many of the principle

cut reductions (−→C) correspond to process calculus reductions.
The reduction of input against output is complicated by the im-
plicit name restriction and composition inherent in the term struc-
ture for output. The new rule for µCP is for rec against corec, and
amounts to one unfolding of the corec term. In defining the unfold-
ing, we rely on functoriality for the operators; if P ` x : A⊥, y : B,
then mapF

x,y(P) ` x : F⊥(A⊥), y : F(B). (We show functoriality
for the positive combinators; the remaining cases can be obtained
by switching the channels in the given cases.) We write −→ for
−→?

C−→?
CC. The following theorem is due to Baelde [2]:

Theorem 12 (Cut elimination). If P ` Ψ, then there is some P′

such that P −→ P′ and P′ is not of the form new x (Q | Q′) for any
x,Q,Q′.

This result corresponds to the termination and lock freedom results
for µGV: any well-typed process reduces to one that is blocked on
external communication. The commuting conversions (−→CC) do
not correspond to computational steps (and thus, do not correspond
to reductions in process calculi), but play a crucial role in cut
elimination by moving remaining internal communication behind
any external communication.

4.3 Translating µCP into µGV
We next show that (the concurrent fragment of) µGV can simulate
µCP. Figure 15 gives the translation; we translate top-level cuts into
configurations (GCJ−K), but cuts under prefixes into applications
of fork (GJ−K). As in the encoding of recursive session types in
µGV, we interpret µCP type variables (X,X⊥) as promises (?X, !X)
in the translation. The translation of µCP terms is entirely to the
concurrent fragment of µGV, so the result of translated terms is
always the empty channel.

Theorem 13. If P ` Ψ, then GJΨK `◦ GJPK : end!.

The proof is by induction on the typing derivation of P ` Ψ.
Finally, we can show that reduction of the translated terms sim-

ulates reduction in µCP. As we did we relating the encoding of re-
cursive session types to their intuitive interpretation in µGV (§2.4),
we rely on administrative weak bisimulation to account for admin-
istrative reductions.

Theorem 14. If P ` Ψ and P −→C Q then GCJPK −→+≈
GCJQK.

The commuting conversions do not expose additional computation,
and so we do not have corresponding reductions in µGV.

4.4 Translating µGV into µCP
We conclude our discussion of µCP by showing that it can sim-
ulate µGV. The translation on types and terms is given in Fig-
ure 16; in the translation of terms, we write xsdy.P to abbreviate
x[z](y ↔ z | P). The translation is essentially identical to that of
Lindley and Morris [22, 23], extended with recursive types. We in-
terpret functional µGV types as µCP types corresponding to their
interfaces, not their implementations. Hence, their interpretations
are dualized. As µCP processes do not return values, the transla-
tion of a µGV term M is parameterized by an output channel z,
which provides the behavior of the result of M. The translation of
session terms include apparently trivial axiom cuts, which we have
highlighted. These expose terms necessary to simulate µGV reduc-
tion. Another feature that is necessary for the simulation result to
hold is the use of closures. We cannot directly simulate substitution
under an abstraction with µCP, as µCP can substitute names but
not entire processes. Closures avoid the need to do so.

The treatment of recursion in µCP differs from that in µGV in
two ways that effect the translation. First, a fold L − M is treated
as a function in µGV, whereas (for cut elimination reasons) a fold
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Structural Congruence.

x↔ y ≡ y↔ x
new x (P | Q) ≡ new x (Q | P)

new y (P | new x (Q | R)) ≡ new x (new y (P | Q) | R) if y 6∈ fv(R)
new x (P1 | Q) ≡ new x (P2 | Q) if P1 ≡ P2

Functoriality (positive cases).

mapX.A
x,y (P) = x↔ y, X /∈ FTV(A)

mapX.X
x,y (P) = P

mapF⊗G
x,y (P) = x(x′).y[y′].(mapF

x′,y′(P{x′/x, y′/y}) | mapG
x,y(P))

mapF⊕G
x,y (P) = case x {y[inl].mapF

x,y(P); y[inr].mapG
x,y(P)}

mapX.µF
x,y (P) = corecF⊥

x(y).rec y.mapX.F(µF)
x,y (P)

Primary Cut Reductions.

new x (x↔ y | P) −→C P{y/x}
new x (x[y].(P|Q) | x(y).R) −→C new x (Q | new y (P | R))

new x (p[inl].P | case x {Q; R}) −→C new x (P | Q)

new x (corecFx[y](P | Q) | rec x.R) −→C new y (P | new z (Q{z/x} | new x (mapF
x,z(corecFx[y](z↔ y | Q)) | R)))

Commuting Conversions.

new z (x[y].(P | Q) | R) −→CC x[y].(new z (P | R) | Q)
new z (x[y].(P | Q) | R) −→CC x[y].(P | new z (Q | R))

new z (x(y).P | Q) −→CC x(y).new z (P | Q)
new z (x().P | Q) −→CC x().new z (P | Q)

new z (x[inl].P | Q) −→CC x[inl].new z (P | Q)

new z (case x {P; Q} | R) −→CC case x {new z (P | R); new z (Q | R)}
new z (case x {} | P) −→CC case x {}

new z (rec x.P | Q) −→CC rec x.new z (P | Q)
new z (corec x[y](P | Q) | R) −→CC corec x[y](new z (P | R) | Q)

Figure 14: µCP Reduction Rules

Types.

GJA⊗ BK = !GJAK.GJBK GJ1K = end!

GJA ` BK = ?GJAK.GJBK GJ⊥K = end?

GJA⊕ BK = GJAK⊕! GJBK GJ0K = 0!

GJA & BK = GJAK⊕? GJBK GJ>K = 0?

GJµFK = µ!GJFK GJXK = ?X
GJνFK = µ?GJFK GJX⊥K = !X

Operators.
GJX.AK = X.GJAK

Terms.

GJnew x (P | Q)K = let x = fork (λx.GJPK) in GJQK
GJx↔ yK = link (x, y)

GJx[y].(P | Q)K = let x = send (fork (λy.GJPK), x) in
GJQK

GJx(y).PK = let (y, x) = receive x in GJPK
GJx[].0K = x
GJx().PK = let x = () in wait xGJPK
GJx[inl].PK = let x = inl! x in GJPK

GJcase x {P; Q}K = case? {inl x 7→ GJPK;
inr x 7→ GJQK}

GJcase x {}K = let (y, x) = receive x in absurd x
GJrec x.PK = let x = in!x in GJPK

GJcorec x[y](P | Q)K = link (fork (λy.GJPK),
Lλx.fork (λy.GJQK)M? x)

Configurations.

GCJnew x (P | Q)K = (new x)(GCJPK ‖ GCJQK)
GCJMK = ◦ GJMK

Figure 15: Translation of µCP into µGV

and its argument are combined in µCP. Second, the functor map
F(−) is treated as a function in µGV, whereas the corresponding
µCP feature, mapF

x,y(−) is a term with two free names. We account
for these differences in the translation from µGV to µCP by giv-
ing translations for terms LMMN and F(M)N, rather than to their
components. Note that this imposes no expressiveness limitation
on µGV: F(−) is only introduced in fully applied form, and uses
of L− M can be η-expanded if necessary.

We use the C ‖x C′ notation (§3) in giving the translation
of configruations, but do not insist that configurations be well-
oriented; for instance, x may have an output session type in C.

Theorem 15 (Type soundness).

1. If Γ ` M : T, then CJMKz ` CJΓK, z : CJTK⊥.
2. If Γ ` C : T, then CJCKz ` CJΓK, z : CJTK⊥.

We write =⇒ for (≡−→≡)+. One step of reduction in µGV is
simulated by one or more cut reductions in µCP.

Theorem 16 (Simulation). If Γ ` C : T and C −→ C′, then
CJCKz =⇒ CJC′Kz.

5. Extensions
5.1 Corecursion and Nontermination
This section describes the extension of µGV with corecursive data
types (νF), the greatest fixed point of the functor F, and the com-
munication patterns they can encode. We also consider the case in
which the greatest and least fixed points are identified (they coin-
cide in many semantic models). This gives rise to a notions of non-
terminating computation in both functional and concurrent settings.

Corecursive Types. Figure 17 gives the extension of µGV to in-
clude corecursive types. Note that the typing rules and interpreta-
tion of corecursive types are dual to those for recursive types: where
recursive types provide an iterated fold operation and a finite num-
ber of unfolding steps, corecursive types provide an iterated unfold
operation and a finite number of folding steps. We restrict the type
environment in unfolding to avoid duplicating linear resources. We
can similarly extend the concurrent fragment of µGV with corecur-
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Session Types.

CJ!T.SK = CJTK⊥ ⊗ CJSK
CJ?T.SK = CJTK ` CJSK
CJTK = CλJTK⊥

CJend!K = 1
CJend?K = ⊥

Functional Types.

CλJT ⊗ UK = CλJTK⊗ CλJUK
CλJT ⊕ UK = CλJTK⊕ CλJUK
CλJT ( UK = CλJTK⊥ ` CλJUK
CλJµX.TK = µX.CλJTK

CλJ1K = 1
CλJ0K = 0
CλJXK = X
CλJSK = CJSK⊥

Session Terms.
CJsend (M,N)Kz = new x (CJNKx | new y (CJMKy | x〈y〉.x↔ z))
CJreceive MKz = new y (CJMKy |

y(x).new w (w↔ y | z〈x〉.w↔ z))
CJfork MKz = new w (w↔ z | new x (CJMKx |

new y (x〈w〉.x↔ y | y[].0)))
CJwait MKz = CJMKz

CJlink (M,N)Kz = new w (w↔ z | new x (CJMKx |
new y (CJNKy | w().x↔ y)))

Terms.
CJxKz = x↔ z

CJλσx.MKz = CJσK(z(x).CJMKz)
CJL MKz = new x (CJMKx |

new y (CJLKy | y〈x〉.y↔ z))
CJ()Kz = z[]

CJlet () = M in NKz = new y (CJMKy | y().CJNKz)
CJ(M,N)Kz = new x (CJMKx |

new y (CJNKy | z〈x〉.y↔ z))
CJlet (x, y) = M in NKz = new y (CJMKy | y(x).CJNKz)

CJinl MKz = new x (CJMKx | z[inl].x↔ z)
CJinr MKz = new x (CJMKx | z[inr].x↔ z)

C
s

case L
{

inl x 7→ M;
inr x 7→ N

}{
z = new x (CJLKx |

case x {CJMKz; CJNKz})
CJabsurd LKz = new x (CJLKx | case x {})
CJin MKz = new x (CJMKx | rec z.x↔ z)
CJLMM NKz = new x (CJNKx |

corec x(z).new y (CJMKy |
y〈x〉.y↔ z))

CJF(M)NKz = new x (mapF
z,x(CJM xKz) | CJNKx)

Configurations.

CJ◦MKz = new y (CJMKy | y[]) CJ•MKz = CJMKz CJ(new x)CKz = CJCKz CJC ‖x C′Kz = new x (CJCKz | CJC′Kz)

Figure 16: Translation of µGV into µCP

Syntax.

Session types S ::= · · · | ν!F | ν?F
Types T ::= · · · | νF
Terms M ::= · · · | out M | M | out?M | M !

Typing.

Γ ` M : νF
Γ ` out M : F(νF)

` M : A( F(A)

` M : A( νF

Γ ` M : ν?F
Γ ` out?M : F(ν?F)

` M : S( F(T)( end!

` M !
: S( ν!F ( end!

Semantics.

out ( M V) −→V F( M ) (M V)

Figure 17: Extension of µGV with Corecursive Data Types.

sive session types; typed similarly to, and implemented by, corecur-
sive types. Following this pattern, we introduce the types ν!F and
ν?F , with the duality relationship ν!F = ν?F , The typing rule for
out?M is a direct reflection of the rule for out M. As the communi-
cation primitives all consume terms of session type, − ! consumes
a channel of type ν!F , and returns the remaining (empty) expecta-
tions of the channel.

Nontermination. Freyd [15] observed that, first, the greatest and
least fixed points of functors coincide in many denotational mod-
els of functional languages and that, second, recognizing this coin-
cidence gives an interpretation to many non-terminating recursive
programs. We can apply this observation to µGV by identifying the
types µF and νF. Doing so has several consequences for the term
language. First, observe that out and in now compose (in either or-
der), giving the identity. We introduce two new reduction rules to

account for these compositions:

out (in V) −→V V in (out V) −→V V

Second, and more interestingly, we can now compose folds and un-
folds to define recursive computations. Such compositions are fre-
quently called hylomorphisms [25]. We account for hylomorphisms
by adding the following reduction:

LNM ( M V) −→V N (F(LNM) (F( M ) (M V))).

Intuitively, each evaluation of a hylomorphism corresponds to one
folding step and one unfolding step. This approach applies to µGV
concurrency as well. If we identify µF and νF in our encodings
of recursive session types and their terms, we get µ?F = ν?F ,
µ!F = ν!F and thus µ?F = ν!F , allowing composition of
concurrent folds and unfolds.

5.2 Recursion, Duality, and Session Types
We relate our statement of duality to previous accounts of recursive
session types. Most existing approaches use equirecursive, self-
dual recursive session types, and do not include dualized type vari-
ables. Our system lacks self-dual constructs, and so cannot encode
self-dual recursive types. However, we can imagine extending our
language with a construct µSF such that µSF = µSF .

Honda et al. [19] originally proposed recursive session types
for a system of first order session types in which messages did not
include channel names. Duality was given by µSX.T = µSX.T ,
where X = X. To distinguish this notion from ours, we write
naive(T) instead of T . In contrast, our approach gives µ?X.T =
µ?X.T{X/X}. It is not hard to see that logical duality coincides
with naive duality for first-order session types. Intuitively, if µSX.T
is first-order, then if we compute µSX.T{X/X} each instance of X
in T will first be dualised by T and then again by the substitution
{X/X}.

Independently, Bono and Padovani [9] and Bernardi and Hen-
nessy [5] observed that naive duality is not enough for higher-
order session types, that is, session types with support for del-
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egation. Consider S = µSX.?X.X. The logical dual of S is
µSX.!(µSX.?X.X).X, whereas the naive dual of S is µSX.!X.X,
which is (equirecursively) equivalent to µSX.!(µSX.!X.X).X. It is
not difficult to show that the logical dual yields the correct be-
haviour, whereas the naive dual does not. They (each) proposed a
new definition of duality for recursive session types, using a selec-
tive form of substitution which applies only inside carried types.
Later, Bernardi and Hennessy [6] observed that even this approach
fails on examples such as µSX.µSY.?Y.X. They propose converting
each recursive session type into a so-called m-closed recursive ses-
sion type before applying native duality. A recursive session type
µSX.T is m-closed if X does not occur free inside a carried type in
T . It is straightforward to show that every recursive session type is
(equirecursively) equivalent to an m-closed one, and that, as they
they are essentially first-order, naive duality and logical duality
coincide on m-closed recursive session types.

Duality for recursive session types clearly needs to be treated
carefully. We are encouraged that our definition coincides with the
state of the art for equirecursive self-dual session types. We believe
that this also shows the value in our deconstruction of recursive
session types to well-understood primitives: we are guided imme-
diately to a correct, compact, and general definition of duality.

Remark. Dualized session type variables are redundant in equire-
cursive session types, as every session type µSX.T is equivalent to
µSX.T{µSY.T{X/Y}/X}, where Y is a fresh type variable. How-
ever, dualized session type variables do lead to a cleaner composi-
tional definition of duality.

6. Related Work
Session Types and Linear Logic. Session types were originally
introduced by Honda [18] as a typing discipline for a CCS-like
process calculus. Takeuchi et al [26] and Honda et al. [19] extended
the original approach to include delegation and recursion. Honda’s
system relied on a substructural type system, and borrowed some
syntax from linear logic, but did not draw a direct connection be-
tween the systems nor suggest the connection between the input
and output session types and the ⊗ and ` connectives. Abram-
sky [1] and Bellin and Scott [4] give interpretations of linear logic
proofs as π-calculus processes, and of cut elimination as π-calculus
reduction. Their interpretation of ⊗ and ` are very different from
the interpretations of input and output in session types. Caires and
Pfenning [10] give the first formal correspondence between session
types and linear logic, interpreting the propositions of intuitionistic
linear logic as session types, and showing that π-calculus reduction
corresponds with cut reduction. As a consequence of the latter cor-
respondence, they show that cut elimination in linear logic proves
deadlock freedom for session-typed π calculus terms. Vasconcelos
et al. [28] and Gay and Vasconcelos [16] consider functional lan-
guages extended with session-typed concurrency. The functional
fragments of their calculi are generally less fully featured than ours
(for example, they omit sums) while their concurrent fragments in-
clude non-determinism and deadlock. Wadler [29] presents a pro-
cess calculus, called CP, similar to that of Caires and Pfenning,
but based on classical rather than intuitionistic linear logic. He also
gives a functional calculus and shows a type-preserving transla-
tion from his functional calculus to his process calculus; however,
his functional calculus is less expressive than his process calculus.
Lindley and Morris [23] give a more expressive functional calculus
and show semantics-preserving translations to and from Wadler’s
CP.

Recursive and Corecursive Definition. The interpretation of re-
cursive data types, and their connection to recursive functions, has
been studied extensively; we highlight the direct precursors of our

approach. Goguen et al [17] introduced the use of initial algebras,
and the corresponding folds, in understanding recursive data types
and their use. Meijer et al. [25] characterized the use of both folds
and unfolds, among other patterns, in the definition of recursive
functional programs. The coincidence of least and great fixed points
for data type constructors in many models was first observed by
Freyd [15]; he argues that this observation justifies the use of such
fixed points for recursive data types. Baelde and Miller [3] first
described an extension of linear logic with induction and coinduc-
tion, encoded using exponentials and second-order quantification.
Baelde [2] gives a treatment of induction and coinduction without
encoding; in particular, he gives a cut reduction rule for recursive
and corecursive terms, and shows cut elimination directly.

Recursive Session Types. There have been several recent devel-
opments of recursive session types and their relationship with linear
logic. We highlight three closely related to our development.

Toninho et al [27] present a system with recursive session types
based on intuitionistic linear logic extended with corecursion. They
arrive at a similar (albeit intuitionistic) typing discipline for core-
cursive session types to ours (§5.1), and give a direct proof of termi-
nation for the resulting system (without encoding). However, their
approach differs from ours in several significant ways. First, they
treat recursive processes as primitive, and so do not expose the con-
nection with recursive data types. In contrast, we believe that the
parallels with data types (and thus, our ability to present a simple
core calculus) is one of the principal benefits of our approach. One
consequence is that they have only corecursive processes (ν!, ν? in
our notation), but not recursive processes (µ?, µ!) nor the possibil-
ity of identifying greatest and least fixed points. Finally, our session
types are classical, while theirs are intuitionistic. One consequence
of our approach is that we are explicit about the role of duality, and
thus identify a new notion of duality for recursive session types,
while their notion of duality is implicit in the type system. We see
the similarities, despite theoretical and methodological differences,
as indicative of the strength of both programs.

Dardha [12] gives an encoding of recursive session-typed π-
calculus into recursive (non-linear) π-calculus, and shows that this
encoding preserves both typing and semantics. Her encoding is
based on self-referential replicated processes, and thus supports ar-
bitrary non-termination, while not attempting to guarantee dead-
lock or livelock freedom. She adopts a coinductive definition of
duality from Bernardi et al. [7], which relies on partially unfolding
recursive types at each computation of their duals.

Bono and Padovani [9] and Bernardi and Hennessy [5] inde-
pendently observed that the standard definition of duality for re-
cursive session types fails when recursion occurs in a carried type.
Bernardi et al [7] systematically study several duality relations, and
propose a notion of session typing independent of the particular
duality relation. They also give a coinductive characterization of
duality, and suggest a syntactic instance of their characterization.
A particular concern of their work, absent from ours, is subtyping:
a process may offer more choices than those from its partner se-
lects. However, their definitions are more complex than ours even
without considering subtyping; in particular, they rely on partially
unfolding recursive types in each computation of their duals.
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