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Abstract— Shape spaces play an important role in several
applications in robotics, most notably by providing a manifold
structure on which to perform motion planning, control, behavior
discovery and related algorithmic operations. Many classical ap-
proaches to defining shape spaces are not well suited to the needs
of robotics. In this abstract, we outline an approach to defining
shape spaces that address the needs of such problems, which
often involve constraints on area/volume, perimeter/boundary,
etc. Using the simple example of the space of constant-area
and constant-perimeter triangles, which are represented as
Riemannian manifolds, we demonstrate efficient solutions to
problems involving continuous shape evolution, optimal sampling,
etc.

I. INTRODUCTION

This work is concerned with shape spaces and their applica-
tions in robotics. The term shape space has been used to refer
to various different concepts in the literature. One common
definition [1] is based on a normalization that eliminates size,
orientation and other effects. While this is useful in recognition
and analysis tasks, this is a very inconvenient definition in
applications involving robot motion planning and control.
Instead, we deal with the space of curves (or surfaces, in higher
dimensions) without such artificial normalization operations.
In addition, we are interested in constrained shapes, such as
the space of curves defined by a constant length or enclosing
a constant area.

A concrete problem that motivates our work is that of
metamorphic robots. We are interested in decentralized control
of the shape of a robot collective and we seek efficient
algorithms for motion planning for such spatially extended
systems. Typical applications include formation control [2]
and locomotion, e.g., the geometric swimming problem [3],
[4] and its robotic analog [5], [6]. There is an unfulfilled
need for efficient ways to encode such tasks and for suitable
decentralized control algorithms. We take the view that the
task encoding problem can be solved in a lower-dimensional
setting and then used to define efficient decentralized planning
and control strategies for the true high dimensional system.
In this setting, the large number of units in the collective
is not a computational cost but, in fact, a desirable way to
drive the approximation error down, see e.g., [7]. In this
abstract, we address the problem of encoding the constrained

shape evolution of simple polygonal shapes. We work out the
concrete case of simple triangle shapes but the approach may
be extended to other polygonal shapes as well.

Our goal is to pose the space of all triangles, or other
polygonal shapes, as a manifold on which we can compute
geodesics, generate sample points, etc. We provide a suitable
parametrization of the manifold and outline some useful
algorithms using this parametrization.

II. PARAMETRIZATION AND COMPUTATIONS IN THE SHAPE
SPACE OF UNIT-AREA AND UNIT-PERIMETER TRIANGLES

We begin with a simple parametrization based on Bookstein
coordinates. The three vertices of a triangle may be represented
as a vector of complex numbers, A = (1,−1, u + iv). We
treat the base as fixed (assumed to be of length 2 here, but
other scaling factors will not affect our argument) and ask the
question of how to move the free vertex in such a way that
the desired constraints may be satisfied. The shape space is
then defined in terms of the feasible set of such points.

Given two triangles represented in the above vector nota-
tion, there exists a simple Euclidean distance between them,
d(A,B) =

√
1− ‖ A∗B ‖2. Such a distance minimizes the

quantity ‖ eiφA−B ‖.
In truth, this distance is a good measure only locally. If a

triangle is perturbed slightly through the movement of u +
iv then we may compute the distance between two triangles
using the normed vector distance. For large deviations, the
true distance will be non-Euclidean and we should deal with
it in a Riemannian geometric sense. In order to obtain this
description, let us define the coordinates of a normalized unit-
area triangle and a slightly perturbed version as τ1 and τ2

respectively, where,

τ1 =

[ (1− u
3 )− iv

3
(−1− u

3 )− iv
3

2
3u + i2

3v

]
, τ2 =

[ (1− u+du
3 )− iv+dv

3

(−1− u+du
3 )− iv+dv

3
2
3 (u + du) + i2

3 (v + dv)

]
(1)

These coordinates are normalized by the area, i.e.,
√

v
to yield unit-area triangles (introducing any other constant
scaling factor would not affect the argument). Using this,
the distance may be expressed as a function of (u, v, du, dv)
and this function may be expanded as a Taylor series. This
expansion provides a Riemannian metric in the following form,
ds2 = E(u, v)du2 + 2F (u, v)dudv + G(u, v)dv2. Beginning
with the coordinates in equation 1, the coefficients in the
Riemannian metric are E(u, v) = 2(3+u2)

3v(3+u2+v2 , F (u, v) =
u(−3−u2+v2)
3v2(3+u2+v2) , G(u, v) = u4−2u2(−3+v2)+(3+v2)2

6v3(3+u2+v2) .
This metric shows that the space is distinctly non-Euclidean.

What this really means is that sampling and approximation
(implicit operations in many popular planning algorithms)
using the Euclidean distance will result in inaccurate results.
One may get a better sense of this space by looking at the
Gauss curvature function of this space, κ = 72v3

(3+u2+v2)3 . This
is visualized in figure 1.

With such a characterization of the shape manifold, we
are in a position to perform the first computation of interest
to us - geodesics that provide paths for continuous shape



2

Fig. 1. Gauss curvature function for the space of unit area triangles.

Fig. 2. A typical geodesic, indicating a path for continuous shape evolution,
in the space of unit-area triangles.

evolution. The continuity these paths is very important in our
application domain as large jumps will be difficult to handle
in decentralized control algorithms that are implemented using
largely local information.

The geodesics are computed using differential equations that
have the form [8],

ẍi + Γi
jkẋj ẋk = 0 (2)

where Γi
jk are the Christoffel symbols and repeated indices

are to be summed. Also, all coordinates are indicated by the
generic xi.

Figure 2 depicts typical geodesics along with the corre-
sponding triangle shapes overlaid on the paths.

In addition to computing optimal paths and performing
control, using techniques such as described in [9], we may
also sample this space in a discovery or learning application.
In [10], we presented techniques for the construction of low-
discrepancy curves that optimally cover this space and can be
used for sampling purposes. At a high level, these algorithms
take the form,

1) Define a Riemannian metric and manifold structure for
the space to be covered.

Fig. 3. Approximate geodesics computed on the basis of shortest path
computations using optimally distributed landmark points in the shape space.
Depicted on are low-discrepancy sample points distributed according to a
Riemannian metric, the true geodesic (in blue) and the approximate geodesic
(in green). Also, some points on the true geodesic include the triangle shape
overlaid on the plot.

2) Define a diffeomorphism between a unit rectangle and
this space.

3) Compute the diffeomorphism subject to constraints on
fairness.

The input required by such algorithms is a parametrization
of the shape manifold, which is exactly what we have provided
above. A benefit of defining a Riemannian manifold that is
covered in this way is the fact that we may define optimal low-
discrepancy sample points in the shape space which reduces
online geodesic computations, when a sub-optimal result is
acceptable, to a shortest path problem in a directed graph.
Such an approximate geodesic is depicted in figure 3.

Also, just as with area, we may also constrain the perimeter
or boundary. These constraints often have physical meaning,
e.g., constant area may refer to a nonpermeable cell membrane
in a swimming microorganism while constant perimeter refers
to a cell membrane that cannot be stretched or shrunk. Tra-
ditional approaches to defining shape spaces do not take such
constraints into account in the computations, whereas in our
formulation we are able to accommodate this.

We can carry out the above computations in an identical
manner for the case of constant perimeter when we nor-
malize equation 1 by the perimeter, 2 +

√
(u− 1)2 + v2 +√

(u + 1)2 + v2. This yields a different Riemannian metric
and the entire sequence of computation may be repeated.

III. CONCLUSIONS

We have presented a systematic procedure for defining
constrained shape spaces and computing on such spaces. A
concrete example has been worked out, for the case of trian-
gles. The primary benefits of this methodology are twofold.
Firstly, such a description provides the correct way to perform
planning and control on these spaces. Secondly, the descrip-
tions enable the application of some powerful search and space
coverage algorithms that we have been developing in our



3

research work. This has useful implications for applications
requiring controlled shape evolution.
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