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This dissertation addresses the problem of trajectory generation for dynamical ro-

bots operating in unstructured environments in the absence of detailed models of the dynam-

ics of the environment or of the robot itself. We factor this problem into the subproblem of

task variation, and the subproblem of imprecision in models of dynamics.

The problem of task variation is handled by defining task level control strategies in

terms of qualitative models that support structurally stable phase space trajectories. Such

models define low-dimensional spaces within which it is possible to select trajectories that

constitute plans for achieving a desired goal.
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The second problem, that of model imprecision, arises when embedding the result-

ing trajectories in the phase space of the more complex higher-dimensional system that

actually performs the task of interest. Trajectories in the high-dimensional phase space

that are compatible with the low-dimensional plan are restricted to lie on a manifold. In

the absence of analytical models of the high-dimensional dynamics, this manifold may

be approximated using observed data generated by a randomized exploration of the state

space. Approximations driven by such an imperfect set of observations can lead to spu-

rious trajectories, but this problem is solved by regularizing the approximation using the

low-dimensional model.

This methodology is developed through a sequence of design problems. First, basic

notions regarding control with qualitative models are clarified through the design of a global

controller for the inverted pendulum and cart-pole systems. This is followed by the more

challenging problem of dynamic bipedal walking on irregular terrain, which is the primary

motivating problem for this dissertation. Our solution to the dynamic walking problem

advances the state of the art by simultaneously achieving several important properties. Our

algorithm generates trajectories to walk on irregular terrain, with only a qualitative model

of the dynamics of the robot, and with energy usage comparable with actuated walkers

utilizing passive dynamic principles.

Although the definition of tasks in terms of structurally stable orbits and manifolds

is very natural when talking about physical systems, this representation yields benefits in

more artificial domains as well. This is demonstrated through the example of spatiotemporal

control of polygonal shapes, such as in a robot collective.
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Chapter 1

Introduction

The promise of robotics and autonomous agents derives from the hope that one day we will

be able to construct machines that work alongside humans to assist with tedious, or even

dangerous, tasks - ranging from rescue to interplanetary exploration. Engineers are still far

from being able to fully realize this promise. There are numerous reasons for this, covering

the gamut of engineering technologies - from energy storage to mechanical design, but there

is one that stands out as being particularly challenging and unique to the area of robotics.

This is our inability to efficiently specify and reliably execute movement tasks outside of

highly scripted and structured environments, in the face of significant imprecision in models

of dynamics and the environment [1, 2].

Quite apart from the needs of robotics, the problem of movement generation is of

great scientific interest in many communities, ranging from neuroscience to kinesiology.

As observed by Wolpert et al. [3],

From the motor chauvinist’s point of view the entire purpose of the human

brain is to produce movement. Movement is the only way we have of inter-

acting with the world. All communication, including speech, sign language,

gestures and writing, is mediated via the motor system. All sensory and cogni-

tive processes may be viewed as inputs that determine future motor outputs.

Animals handle such an incredible variety of tasks, seemingly effortlessly, through

the use of a few common planning and control strategies [4, 5]. Can we learn from and

replicate this spectacular success? Can we create a consistent framework of representations

and algorithms that would enable us to build similarly efficient and robust robots?
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1.1 Statement of the Problem

Concretely, the problem of movement generation is one of selecting suitable trajectories

for each of the degrees of freedom of a robot, a high-dimensional nonlinear system, so as to

reliably and predictably achieve spatial and temporal goals in an external world.

The key technical challenge is to find ways to encode and achieve global behaviors

in such complex systems subject to the following constraints:

• Imprecise knowledge of the environment, e.g., in a locomotion task, a robot can only

expect to have reliable information within a small neighborhood in time and space.

The movement generation task involves appropriately reacting to the environment as

new information is acquired and corresponding goals are formulated. This necessi-

tates algorithms that can act on-line in order to handle not just small disturbances

such as due to sensor noise but also much more severe large deviations that require a

global approach to recovery and task level control.

• Imprecise knowledge of dynamics and constraints, models of which must be acquired

and improved upon on-line, from noisy and imperfect experience. This constraint is

driven by the observation that the paradigm of carefully modeling a system and re-

stricting the structure of the task and the environment, that is so common in control

engineering practice, is unrealistic for an autonomous agent that must operate on its

own in novel environments. In particular, many robotic tasks are the result of a cou-

pled interaction between a high-dimensional nonlinear system and an unstructured

environment. It is difficult to model such nonlinear interactions and task-specific

constraints well enough to be able to utilize typical model based design techniques.

The goal we set for ourselves is the development of a consistent framework of repre-

sentations and algorithms that can enable both the achievement of such complex movement

tasks and the analysis of important dynamical properties.

1.2 Thesis Overview

At the highest level, there are two related issues that characterize our problem: complexity

and imprecise knowledge.

The problem of complexity is addressed first, decomposing the movement gener-

ation problem into one of encoding the desired task in terms of simple abstractions and
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then of lifting these tasks to the much more complex system that is really of interest. The

simple abstraction will serve as an efficient way to encode reaction to environmental and

task variations while imprecision about knowledge of the high-dimensional dynamics will

be handled by data-driven learning.

This approach is inspired by biological theories [4, 6] that suggest that nature han-

dles complexity in a similarly hierarchical manner. Moreover, in many cases [4], the sim-

pler abstractions seem to be based on clever use of the natural dynamics of the system, with

minimal active modifications and forces.

The efficiency in animal locomotion is achieved through a combination of morpho-

logical adaptations and fine-tuned control strategies, both resulting from the very complex

satisficing process of evolution. For the purposes of the current dissertation, the emphasis is

on replicating the planning and control strategies, given a typical robotic mechanism. This

is the approach of functional biomimesis.

In this vein, this dissertation is a combination of empirical and theoretical argu-

ments. The work is empirical to the extent that the thesis is developed through a sequence

of specific design problems. However, the solution to each design problem involves princi-

pled analysis and sound algorithms.

Chapter 3 explores the question of what it means to utilize qualitative dynamics to

encode tasks? One of the major benefits of thinking in terms of qualitative models that sup-

port structurally stable dynamical behaviors is the resulting elegant formulation of global

control tasks in a hybrid systems or multiple model [7] setting. It is well known that the

behavior of a nonlinear system can be understood in terms of topologically defined families

of phase space trajectories. If one were to specify the global task as a suitable composi-

tion of these local trajectories then it becomes possible to obtain a corresponding family of

global behaviors. Given a family of such behaviors, a new goal in a changing environment

is handled by appropriate selection of a suitable member of the family, with the assurance

that there exists a behavior capable of achieving the task.

The application of this general idea is demonstrated using a benchmark problem

that is famous in the nonlinear control and machine learning communities - the inverted

pendulum or cart-pole problem. Although the simple local control formulation of stabiliz-

ing the inverted pendulum is considered a solved problem, the problem of ensuring global

stability in the face of arbitrary large disturbances and spatial constraints is nontrivial and

is of continuing interest in the research literature. In chapter 3, this problem is solved and

results from numerical simulation and physical experiments are presented.
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This sets the stage for a much more challenging design problem - that of legged

locomotion on irregular terrain. There is a very long history of research on planning and

control strategies for legged robots. Literally, every major planning and control technique

has been applied to the problem of legged locomotion. Even so, there are some design goals

that have remained elusive.

An important open problem is to combine two formerly dichotomous approaches to

the design of bipedal robot gaits - ballistic walking and actively controlled walking. It has

been shown [8, 9] that robots can be designed to walk down simple and uniform slopes with

absolutely no actuation or run-time computation, powered only by gravity and regulated by

mechanical design. This mirrors observations of similar passive regimes in human gait [10],

[11]. However, a passive robot is not capable of handling irregular terrain or reacting to a

changing environment - which requires active planning and control. Even in the situations

where passive walking works, the gait is often fragile. For this reason, and due to the general

difficulty of constructing reliable passive robots of the multi-link legged form, there is great

interest in understanding how the passive and active paradigms can be combined [12].

This problem is solved in two stages. Firstly, chapter 4 considers the problem of in-

termittently actuating the simplest two-legged robot, similar to the original McGeer walker

[9] and embodying the principle of compass gait pendular walking. An algorithm for inter-

mittently actuated passive walking is presented - one that allows the robot to move ballisti-

cally, unactuated, for much of the walking cycle and requiring only brief pulses of actuation

to influence the dynamics towards planned footfall goals. Moreover, it is shown that the

properties of such a gait can be analyzed in a principled way and its limits of applicability

can be quantitatively established.

This intermittent-actuation scheme can be implemented on a suitable physical in-

stantiation to augment passive walking. However, its real significance is that it constitutes

an excellent template in the spirit of Full and Koditschek [6]. So, the next step is to inves-

tigate how we can lift this behavior to a multi-link legged robot. As stated in the previous

section, this needs to be achieved in the absence of precise models of high-dimensional

dynamics. In chapter 5, this is achieved through machine learning. Much of the template

gait is entirely ballistic, mirroring similar dynamics in human gait. What this really means

is that in between points of discontinuities at footfall and subsequent launch into the next

step, the dynamics is akin to that of a conservative system evolving along suitable energy

level curves. This suggests that the ideal encoding of the task is in terms of a manifold. This

is a natural extension of the approach presented in chapter 3, where the separatrix - a 1-dim
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manifold, is used in the organization of a global control strategy. Then, the learning prob-

lem becomes one of non-parametrically approximating the task manifold given traces of

observations of the robot’s high dimensional dynamics and knowledge of the template gait

from chapter 4. This problem is solved through the use of a novel manifold approximation

algorithm.

Much of the above argument rests on the identification and utilization of qualitative

structures in phase space. In particular, the reader may have discerned the primary role

played by pendulum systems in the above arguments. However, the proposed methodology

is not restricted to pendular systems, or even just to physical systems.

The notion of utilizing the natural dynamics and organizing global behaviors in

terms of manifold structures has a sound basis in the elegant mathematical machinery of the

geometric approach to dynamical systems. For physical systems, this connection has been

fully developed [13, 14]. However, there are numerous other domains that also utilize this

representation - including problems involving shape spaces [15], the space of probability

distributions [16], etc.

However, in artificial or abstract spaces, not having easy recourse to well known

conservation laws and physical principles that yield qualitative models, how does one rea-

son about dynamics? In fact, where do the dynamics come from? A natural way to encode

tasks in such spaces is to represent the space as a manifold and feasible trajectories as geo-

desics. This leads to constructive algorithms that can work with limited information such

as the specification of the configuration manifold and task constraints.

Chapter 6 explores this direction, using a simple but nontrivial problem involving

the controlled evolution of shape. Shape plays a crucial role in robotics, e.g., formation

control. Problems involving shape have also been the focus of a successful collaboration

between roboticists and computational biologists, e.g., the study of protein behaviors [17,

18].

An important problem involving shape is that of motion planning for robot col-

lectives. As before, decomposing the problem using template and anchor models leads to

more tractable solutions. The template model is a shape manifold that encodes the con-

straints of the task, such as constant enclosed area or constant perimeter. Then, through the

use of efficient algorithms for sampling on such manifolds, and subsequent approximation

of geodesics, it becomes possible to plan and compute with this artificial dynamical model.
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1.3 Major Contributions

1. Hybrid control: A novel approach to the principled design of global behaviors for a

nonlinear system, which is used to solve the global version of a famous benchmark

problem involving the inverted pendulum and cart-pole systems.

2. Robotics (legged locomotion): An encoding of the task of walking on irregular ter-

rain, for a compass-gait template model, that is used to develop a novel algorithm for

intermittently actuated passive dynamic walking.

3. Robotics (legged locomotion): Definition of a scheme by which the gait synthesized

in step 2 can be lifted to a robot with more complex morphology, i.e., multi-link legs.

4. Machine learning: Algorithm for non-parametrically approximating task manifolds,

using data gathered from experience and a template based low-dimensional definition

of tasks.

5. Motion planning in abstract spaces: An encoding of the task of constrained shape

evolution in terms of a Riemannian manifold. This, in conjunction with efficient

algorithms for incremental sampling on nonlinear manifolds, leads to an efficient

solution to the on-line motion planning problem.

6



Chapter 2

Background: Planning and Control

Many problems in robotics are commonly addressed by hierarchically composing modules

that handle deliberative reasoning, task level control and lower level feedback stabilization

or trajectory following. For instance, a humanoid robot that is out on a rescue mission must

first deliberate on high level goals, such as whether it needs to return to its base to recharge

batteries or whether it should cross the river and look for victims who need help. Having

decided to cross the river, it must identify reliable footholds, e.g., a sequence of stepping

stones on the river. Next, it must synthesize a concrete plan, in terms of its degrees of

freedom, that will enable it to physically achieve these foothold targets. This is the trajec-

tory generation problem, the interface between the higher level logical deliberations and

the continuous physical world. The lowest level task is then to execute this planned trajec-

tory through feedback stabilization and trajectory following control laws. This hierarchical

scheme is depicted in figure 2.1.

In practice, there are many good reasons for striving towards a separation of con-

cerns between levels in this hierarchy. This leads to more efficient system design [19].

From the algorithmic point of view, what this hierarchy implies is the need for a consistent

framework in the sense that the choice to a technique to solve one of the constituent prob-

lems should not adversely affect or unduly constrain one’s ability to efficiently solve the

remaining problems.

The focus of this dissertation is primarily on the middle level, the task-level control

or trajectory generation problem. With this in mind, we seek an understanding of how best

to abstract continuous dynamics so that there is a suitably small set of symbolic states useful

for higher-level deliberative reasoning, and also how the complexities of global dynamic

7



Figure 2.1: Canonical hierarchical structure of planning and control problems. The primary
focus of this dissertation is on the middle block - task level control.

behavior can be handled within the process of trajectory generation - enabling the low level

controllers to be locally defined and simple to implement.

This chapter is a brief survey of relevant concepts from the planning and control

literature, covering each of the major steps in the above hierarchy but emphasizing recent

advances that impact the task-level control problem.

2.1 State Space Search and Symbolic Planning

Much of the early work in artificial intelligence was focussed on the problem of synthesiz-

ing sequences of actions in order to achieve specific goals. A canonical approach to this

problem [20] involves encoding the problem in terms of states and operators or primitive

actions. Each operator is precisely specified in terms of pre- and post-conditions so that

the process of going from an initial to a final state involves reasoning about sequencing

such operators. A feasible sequence would lead from the initial to the final states, satisfy-

ing the constraints of every operator along the way. The focus of research in this area is

on efficient representations for state spaces and on algorithmic techniques for eliminating

8



spurious plans, often aided by specialized heuristics for each problem. This approach has

resulted in many memorable successes, including grandmaster-level chess and backgam-

mon programs running on typical desktop computers. However, direct application of such

search techniques to continuous systems has been, by and large, unsuccessful.

2.2 Qualitative Reasoning

The problem of reconciling the search and constraint satisfaction approach to AI with the

demands of a continuous physical world led to research into qualitative simulation and

reasoning [21]. One of the major contributions of this research was the definition of a

language for abstracting continuous dynamics in terms of a finite collection of landmarks,

qualitative states and directions. With this carefully defined finite collection, it becomes

possible to invoke the existing machinery of state space search and constraint satisfaction

in order to automatically reason about the physical world [22, 23, 24, 25, 21]. In fact, this

procedure can be followed in a formal provably correct manner, as shown by Shults [26].

A particularly interesting trend in this research was the use of ideas from nonlinear

dynamics, specifically the use of families of phase space trajectories, as the basis for ab-

stracting the continuous world. This approach was used successfully by Yip in the design

of the KAM program [27] that could autonomously search for interesting dynamic behav-

iors by appropriately invoking numeric simulations and reasoning about qualitative aspects

of the results. Bradley , Zhao and others applied similar ideas in the domain of nonlinear

control [28], [30] and nonlinear system identification [29].

Despite these successes, the qualitative reasoning method has not been developed to

the point where it can be used to solve more demanding, higher-dimensional, problems in

robotics. Part of the problem is with the fact that the dynamics become categorically more

complex when we move into higher dimensions [31], so that the alphabet explodes and tra-

ditional search and constraint satisfaction methods become too cumbersome to use, if not

intractable. In this context, it is interesting to note the success of Hofmann [32], who used

Bradley and Zhao’s flow tubes idea to regularize an optimization problem for humanoid

robot motion planning. What made this possible was the use of conventional model-based

nonlinear control design tools to first transform the high-dimensional nonlinear system into

decoupled linear systems, which can be controlled by multiple proportional-derivative con-

trollers - such that high level planning and qualitative reasoning becomes tractable. The

question remains as to whether it is possible to achieve similar results without reliance on
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linearization and decoupling in the nonlinear control design sense, requiring precise models

of dynamics and interaction effects.

This dissertation is based on similar insights as Yip, Bradley, Zhao and others but

the problem is posed in a different way and qualitative modeling is combined with modern

tools from machine learning to deal with the complexity of the dynamics. The template-

anchor decomposition of robotic tasks naturally sets the stage for such an approach - where

the template (which is still a nonlinear model, of sufficient complexity to fully specify the

task) is amenable to qualitative reasoning and the embedding of the resulting strategy in the

anchor is handled by machine learning.

Chapters 5 and 6 present one approach to making the transition from simple abstrac-

tions to the more complex systems of interest, through the use of appropriate phase-space

geometric representations and machine learning algorithms. Recent advances in related ar-

eas, such as manifold learning [33, 34], computational geometry [35] and topology [36, 37]

represent a repertoire of powerful tools that could be used to carry this program of research

much further.

2.3 Motion Planning and Nonlinear Trajectory Generation

As stated earlier, the primary focus of this dissertation is on the trajectory generation prob-

lem.

There is a long history of investigations into this general area, dating back to the

writings of 17th and 18th century mathematicians involving optimality of paths, etc. Many

deep concepts at the foundation of mechanics and dynamics, particularly the work of La-

grange, Jacobi, Hamilton, Bellman and others, are statements about the nature and behavior

of optimal trajectories subject to various conditions and constraints [38].

From the point of view of applications, the major turning point was the development

of techniques for numerical optimization that made it possible for these abstract ideas to be

computed and implemented. Every standard textbook in robotics, graphics and animation

includes an exposition on methods for computing parameterized trajectories via numeri-

cal optimization. Mombaur [39] presents an excellent recent example of the application of

such methods for gait synthesis. Milam [40] presents another approach to nonlinear tra-

jectory generation, demonstrating how it can be made to work with lower level nonlinear

controllers.

Despite such successes, direct application of numerical optimization can be difficult
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in the face of nontrivial dynamic constraints and conflicting requirements. These issues

complicate the optimization landscape and result in sensitive dependence of the generated

solution on the choice of initial condition, making the overall design process fragile.

In view of this, many modern motion planning algorithms take a different approach

- that of (quasi)randomly sampling the free configuration space and approximating feasible

paths using efficient data structures and algorithms. Techniques such as rapidly exploring

random trees and probabilistic roadmap methods [41] are excellent examples of this trend.

The RRT is a data structure that is constructed incrementally such that it quickly reduces

the expected distance of a randomly chosen point in free space to the tree. An RRT can be

intuitively considered as a Monte-Carlo way of biasing search into largest Voronoi regions

and it has been used a way to generate open-loop trajectories for nonlinear systems with

state constraints. Similarly, a probabilistic roadmap samples the free configuration space

and constructs a graph that represents all feasible paths for the system, subject to obstacles.

Both the numerical optimization approach and the sampling based planning ap-

proach require the ability to evaluate the dynamics of the system at arbitrary points in phase

space, which is only possible given a good analytical model or a suitable simulation of the

complete state and action space. If one were to begin with only imprecise knowledge of

the high-dimensional dynamics and the task constraints, this requirement can turn out to

be problematic. For instance, a preferred approach to learning from experience is based

on traces gathered from imperfect experience. This is difficult to achieve with the above

methods.

In this connection, the work of Frazzoli [42], Dever [43] and others on defining

global trajectories in terms of parameterized maneuvers, that then form the basis of opti-

mization and sampling based planning is very appealing. One way to use these algorithms

is to observe an expert who performs a task, such as acrobatic aerial maneuvering, and to

organize these observations in terms of parameterized families that share underlying Lie

group symmetries or other dynamical invariants. These works do not address all of the re-

quirements stated in section 1.1 in that they are dependent on good models of dynamics and

restrict themselves to interpolation of observed behaviors (which can cause problems when

all observed behaviors are noisy or if a particular behavior of interest was never observed

in the exactly desired form). Nonetheless, they clearly point in the desired direction and

the qualitative models used in this dissertation will have many similarities to this concept

of parameterized maneuvers.
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2.4 Reinforcement Learning

Reinforcement learning [44] is an approach to solving sequential decision making tasks

that does not require models of dynamics or the environment, that is suited to the paradigm

of acquiring knowledge from experience and can accommodate uncertainties in state and

action spaces. The basic idea is to discretize the state and action spaces, assign probabili-

ties to transitions between states, thus setting up a (Partially Observable) Markov Decision

Process which can then be updated and solved by various versions of dynamic programming

algorithms.

Directly applying these algorithms to high-dimensional nonlinear systems results in

poor convergence and intractability. In fact, as noted by Rosenstein and Barto [45],

Reinforcement learning methods provide a means for solving optimal con-

trol problems when accurate models are unavailable. For many such problems,

however, RL alone is impractical and the associated learning problem must be

structured somehow to take advantage of prior knowledge.

Recently, many researchers have explored ways to incorporate such additional knowl-

edge [45, 46, 47]. In general, the approach has been to use classical stability arguments

from control theory, e.g., Lyapunov functions or other stability criteria from linear systems

theory, to filter or shape the outputs of the learning algorithm.

In the robotics literature, Tedrake [48] presents a very nice approach to robot de-

sign where the “prior knowledge” is not another controller but, in fact, a clever mechanical

design that implements passive walking and simplifies the learning problem to one of per-

formance optimization.

These are all highly desirable and instructive directions. However, the dependence

on a fully functional pre-existing solution leaves room for improvements and new ideas.

Can we eliminate this dependence or at least mitigate it to the point where it becomes

possible to learn from crude, imperfect experience? This dissertation will show that the idea

of encoding tasks in terms of manifolds and approximating these geometric structures from

data will yield efficient learning, while allowing for more powerful encoding of imprecise

“prior knowledge”.
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2.5 Learning by Imitation, Lazy Learning and
Manifold Learning

The main drift of the previous few sections is that there is no free lunch [49] in the sense

that efficient solutions to many problems need to exploit the structure of the problem. It has

been proposed by Schaal [50] that the efficient way to exploit problem structure, in tasks

such as humanoid locomotion and manipulation, is to look at an existing solution and to

imitate it. There have been many other attempts within the AI community to acquire skill

in this way, see e.g., [51].

Atkeson et al. have proposed lazy learning algorithms [52] as the way to solve

the imitation learning problem for a fairly broad class of systems and control tasks. The

basic ideas is to store all experience in a database and to locally, statistically, approximate

control actions. The fact that all actions are based on direct experience makes it possible

to capture some of the subtleties of the task fairly efficiently. However, as acknowledged

by these authors, one of the major problems with direct application of this approach is that

lazy learning depends crucially on having good representations already selected. So, while

it is a very good idea - and one that will be adopted in this dissertation, its success depends

on first solving the representation engineering problem.

In high dimensions, one of the reasons this approach works at all is that [52],

... it is actually quite difficult to think of useful tasks that require the system

to have an accurate model over the entire input space. Indeed for a robot of

more than, say, eight degrees of freedom it will not be possible for it to get into

every significantly different configuration even once in its entire lifetime. Many

tasks require high accuracy only in low-dimensional manifolds of input space

or thin slices around those manifolds.

The recent development of manifold learning techniques in the machine learning

community has enabled a new and direct attack on the lazy learning problem, by utiliz-

ing these manifold structures more explicitly. Much of this research has focussed on dis-

covering the low-dimensional manifolds from observations such as human motion capture

[53, 54]. The underlying machinery for solving these problems exploits the fact that com-

putations involving nonlinear manifolds can be carried out in locally linear patches. So,

for purposes of computation, the data can be laid out in a Euclidean space using exten-

sions to the multidimensional scaling approach [33]. Recent work [34] has shown that most
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manifold learning algorithms can be reformulated in a unified framework - as kernel learn-

ing algorithms. The point of dimensionality reduction algorithms for movement generation

problems is that they make it possible to define control laws [55, 56] in a lower-dimensional

subspace, reducing some of the computational burden of controller tuning and adaptation.

However, there are two problems with this program:

1. In the absence of external information about properties of the desired task manifold,

manifold learning algorithms can easily make mistakes with imperfect and noisy ob-

servations. For instance, watching a robot “almost walk” for a period of time will

not, by itself, yield enough information to induce the successful strategy.

2. As stated in [34], a combination of high curvature in the manifold and the presence

of many manifolds (e.g., the case of parameterized maneuvers) can drive the data

requirements for successful learning to be impracticably high.

The above problems are intrinsic to this local approach to learning, so there are

no easy ways to alleviate them. However, we can modify the overall program such that,

rather than depending on acquiring the strategy entirely from observations, we can utilize

a template model to constrain the trajectory. This makes the data-driven manifold learning

or approximation problem more tractable. Then, difficulties like high curvature and the

presence of nearby manifolds are not complete unknowns but, in fact, are anticipated by the

structure of the template dynamics. This is the approach taken in this dissertation.

2.6 Control Theory

Many of the concerns mentioned in the problem statement in section 1.1 - uncertainty, non-

linearity and robustness, have been shared by researchers within the control theory com-

munity. Several mathematically sophisticated methods have been developed to deal with

them. However, the focus of much of modern control theory is on the local problems of

feedback stabilization, around equilibrium points and around specified trajectories. The

classical problem of control design is that of designing feedback control laws that mod-

ify the behavior of the system in question to enable stabilization and disturbance rejection,

subject to various measures of performance such as sensitivity of outputs with respect to

disturbance signals, etc. The linear control problem is considered to be completely solved

and many efficient algorithms exist for stabilizing linear systems [57]. However, hardly any
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system of practical interest in robotics is linear and modeled well enough to directly make

use of this technology. Recent research in control theory has focussed on extending this

technology in various ways. Robust control [58] theory takes the view that disturbances

can be modeled in the same language as system dynamics and sensitivity to errors can be

minimized, adaptive control theory [59] takes the view that a changing environment can be

dealt with by modifying the controller in response to it and nonlinear control [60] is focused

on dealing with nonlinearity by compensating it away - via feedback linearization, sliding

modes and other techniques.

Despite the myriad mathematically sophisticated techniques that are available in

this area, a key problem remains - as stated by Bernstein [61],

What makes some control problems hard? Our holistic point of view is that

a control problem is hard when multiple impediments occur simultaneously.

Constraints on physics, architecture, accessibility, authority, nonlinearity, in-

stability, dimensionality, uncertainty and noise can often be overcome without

much difficulty when they are effectively the only operative constraint. How-

ever, when multiple constraints are present, the control problem becomes vastly

more difficult.

It is precisely this combination of constraints that makes robot motion problems

challenging!

One promising approach to dealing with this issue is to divide and conquer - use

multiple models [7], each specialized to small regions of state space. Recent investigations

into hybrid systems and control develop this approach by considering systems that are com-

posed of logical and dynamic elements - different local models of dynamics and control are

orchestrated by a higher level logical automaton. Many interesting results have come out of

these studies but we are still far from being able to design robots using this technical ma-

chinery. Part of the reason for this is the intractability of the general formulation of hybrid

systems problems, even elementary versions of which can be NP-hard as formulated [62].

This suggests the need for an alternate approach to the overall problem. A more

pragmatic approach to hybrid system design is found in work such as by Burridge et al.

[63], who design several local controllers for primitive behaviors and then sequence them

together with a planning algorithm. In the graphics community, a similar approach has been

taken by Faloutsos et al. [64] who use support vector machine learning to appropriately

sequence hand crafted controllers.
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This dissertation adopts a similar approach to controller composition, but local re-

gions and control strategies are formulated differently, in such a way that they would not

be restricted to stable basins as required in [63], but could also be more complex orbits or

unstable systems.

2.7 Control in Biology and Biomimetic Robotics

So far, in this chapter, the focus has been on algorithmic techniques for movement gener-

ation and control that were largely developed in the engineering setting. It is well worth

remembering that for many robotics problems, natural solutions in the biological world are

significantly better than corresponding engineering solutions in terms of a combination of

efficiency, flexibility and tolerance for imprecision.

How do animals achieve this? There seem to be many design principles that orga-

nize the planning and control process [4, 6]:

• Use of natural dynamics: Locomotion and other behaviors in nature involve signifi-

cant periods of purely ballistic behavior, utilizing the free swing and motion of limbs

and appendages [11, 10, 65, 66].

• Use of motion primitives: Similarly, motion generation in biology seems to be or-

ganized modularly, in terms of units that generate primitive behaviors such as the

generation of oscillations by central pattern generators [67, 68].

• Modulation of primitives by sensory feedback: While the previous two principles

suggest simplification strategies, they are insufficient to explain complex behaviors in

unstructured environments. Realistic motion generation must involve the modulation

of the above elements based on sensory feedback.

Animals adopt such strategies for a number of reasons, including the slow band-

width of the neural circuitry that necessitates decentralization and compartmentalization of

control elements. Robots do not suffer from such bandwidth limitations but they can still

benefit from these same principles. This view is shared by several robotics researchers who

have seriously investigated ways to embody the above principles in robots, e.g., [69, 70]. In

recent years, numerous robot implementations have utilized CPG like periodic gaits [70].

Westervelt and collaborators [71, 72] have demonstrated that it is possible to generate as-

ymptotically stable limit cycles in planar walking robots, using sophisticated nonlinear
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control design. Pratt and collaborators [73] have demonstrated that this kind of periodic

behavior is not critically dependent on specialized nonlinear control elements and it can

be achieved using relatively simple control strategies, composed from ”intuitive” design

principles and clever utilization of the natural dynamics.

However, this exclusive emphasis on stable periodic orbits focusses attention on a

relatively uncommon operational mode in nature. As observed by Dickinson et al. [4],

Because steady locomotion is more the exception than the rule for animals

traveling through natural environments, mechanistic studies of animal behav-

ior must consider not only how animals generate locomotory patterns, but also

how they control them in both time and space.

In fact, although much of the emphasis in the robotic locomotion literature has been

on the stability and performance of closed-loop controllers around limit cycles, much of the

task-level stabilizing control authority in legged locomotion seems to come from appropri-

ate foot-placement, with which even passive walkers can be compelled to safely achieve

tasks, see, e.g., [74]. With this in mind, the focus of this dissertation will be on techniques

for trajectory generation that can accommodate a range of foot placement goals, and em-

phasis will be placed on the question of how passive dynamics and primitive behavioral

orbits can be combined with active planning to achieve any goal within this range.

This brings us to the related point of motor learning. While it is true that important

modules such as central pattern generators seem to be hard-wired into the developmental

and neural processes of animals, many interesting tasks known to animals are learned over

the course of the organism’s lifetime in response to a changing environment [3]. Given our

primitive understanding of motion generation in robotics, the role of learning can only be

greater. How to learn dynamic behaviors in a system that also utilizes these other biological

principles is then a very important question that will be addressed in this dissertation.
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Chapter 3

Task Encoding Using Qualitative
Models

An autonomous robot must operate with limited knowledge of the structure of the environ-

ment (hence, of future goals) as well as the structure of its own dynamics. It must also

achieve tasks that are extended in both time and space. This requirement of tolerance to

lack of predefined structure, combined with the inherent complexity of the task, is unusual

among engineering systems and for this reason many traditional concepts from planning

and control will need to be modified or improved upon to address this need.

To begin with, one needs to have a single consistent representation for what needs

to be done - a language for task encoding. With this language, one can then develop design

techniques and principles to tackle a variety of different problems.

This chapter presents a methodology that involves representing dynamical tasks in

terms of structurally stable orbits, which result from classes of dynamical systems that we

call qualitative models. To the extent that the dynamical task is embedded in a changing

environment, structural stability allows us to describe what does, and should, be preserved

despite these changes. Furthermore, the fact that the dynamical properties are associated

with classes of models enables the design of strategies at a qualitative level, in terms of

functional constraints, leaving room for further quantitative specialization to occur at “run-

time“.

It is difficult to make broadly applicable statements about nonlinear systems that are

also precise enough to capture interesting task specifications. With this in mind, the argu-

ments in this chapter will be presented through the solution of a specific nontrivial design
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problem - global control of the inverted pendulum and cart-pole systems. This problem

involves a variety of concerns that are common in robotics, including nonlinearity, under-

actuation, state and actuation constraints.

The inverted pendulum problem has been studied for several decades now, and an

elementary version of this problem is a standard textbook exercise - to stabilize the pole

upright in a local neighborhood of the fixed point of the linearized system using linear state

feedback control. However, the global problem is nontrivial. For instance, it can be shown

that there is no single continuous controller that can stabilize the cart-pole system globally.

Such technical issues make the design problem one of continuing research interest, and

one that has been addressed extensively in the recent research literature [76, 77, 78, 79,

80]. Speaking more broadly, the cart-pole system studied in this chapter provides a single

succinct problem using which we address the variety of concerns that make control design

hard [61] - so, although the solution pertains to a specific problem, similar ideas can be

applied to numerous other problems that share similar characteristics.

This chapter provides a novel solution to this design problem. The solution not

only addresses the need of global stability, but also constraints (finite actuator strength,

finite track length) and effects such as static friction. Beyond that, from the point of view

of the overall thesis, this chapter uses this concrete example to lay out our approach to

specifying controlled behaviors in terms of multiple qualitative models, composed together

based on considerations of the natural dynamics, such as energy level curves.

We begin with a general introduction to multiple model design, an overview of the

qualitative model based approach and some results about the qualitative behavior of second

order systems. These concepts are then applied to solve the problem of designing global

controllers for the pivot-actuated pendulum and the cart-pole system.

The work presented in this chapter draws on several concepts from nonlinear and

robust control theory, adapting and extending them to the particular needs of our problem.

These connections are mentioned at various points in this chapter. However, the goal of this

chapter is different from other control theoretic investigations in that we wish to develop

a planning and control methodology that can be seamlessly combined with machine learn-

ing algorithms (to be developed in later chapters), making the methodology applicable to

problems that are more demanding in terms of the combination of high-dimensional non-

linearity, constraints and model imprecision. Section 3.7 will summarize the main ideas in

this chapter that will be developed further in the remainder of this dissertation.
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3.1 Multiple Model Approaches to Nonlinear Modeling and
Control

An efficient way to deal with the problem of complexity in dynamical models is through

a decomposition into multiple models, each of which is simpler in some desirable way.

The book by Murray-Smith [7] presents an excellent overview of this general approach to

modeling and control.

A canonical way to think about multiple model problems is in terms of operating

regimes. The essence of this approach is to partition the operating range of the system such

that each simpler local model can be associated with an operating regime and a higher level

automaton can coordinate these models as discrete symbolic entities. One way to represent

the dynamics of the system using multiple models is,

ẋ(t) = fq(t)(x(t), u(t)) (3.1)

q(t + 1) = A(q(t), x(t), u(t)) (3.2)

where x(t) ∈ <N is a continuous state vector, u(t) ∈ <M is a corresponding control

input vector and q(t) ∈ Z is a discrete variable that indexes the operating regime. So,

there are as many continuous models, i.e., equations for ẋ(t), as there are distinct values

of q(t). Here the discrete variable is written as evolving on a unit-time base, but there

are numerous alternatives that could be considered, including state driven change in the

value of q. The notion of piecing together multiple simpler models has a long history in

engineering practice. However, traditional practice has often been based on ad hoc design

choices whereas we seek a more principled approach that provides at least the following:

• Parametrization of the local models in terms of a few, intuitive, variables

• Methods for model coordination such that properties of the global behavior may be

explicitly designed up front (as opposed to the exhaustive testing that typically fol-

lows an ad hoc design).

Over the past few decades, several techniques for multiple model design have been

invented. Some representative examples include:

• Gain scheduling [59]: A very popular approach to dealing with nonlinear dynam-

ics, particularly in aerospace and other mechanical control problems, where multiple
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linear models are stitched together by a scheduling variable that captures the nonlin-

earity. Here, q(t) is tied to 〈x(t), u(t)〉, and each instance of equation 3.1 is a linear

system.

• Fuzzy control [87]: Instead of the hard scheduling implied by equation 3.2 and in

techniques such as gain scheduling, one could do a smoother form of composition,

whose semantics are derived from fuzzy logic and fuzzy set theory. In fuzzy control,

the operation of equation 3.2 is now handled by a more elaborate process involving

membership functions and inference mechanisms.

• Graphical models and Basis function methods [7, 88]: It is possible to adopt the

membership function idea without reliance on the fuzzy inference process. This is

achieved through the use of basis functions. This technique has a sound mathematical

foundation in approximation theory and forms an established method in the neural

networks literature. The idea here is to sum the effect of all local models, weighted

by the basis functions that act as a kernel.

This chapter presents an alternate approach to the definition and use of operating

regimes, in terms of families of phase space orbits and aspects of the natural dynamics -

such as energy exchange arguments.

3.2 Qualitative Dynamics and a Heterogeneous Control
Problem

The phase space of a dynamical system is the product space of the configuration variables,

x, and the velocities, ẋ. In robotics, configuration variables are typically the positions and

angles that can be measured easily and fairly directly. However, knowing the configuration

is not sufficient to uniquely describe the underlying dynamics - the system can evolve in

different ways from the same initial configuration depending on velocity. The pair of posi-

tion and velocity is sufficient to uniquely identify behaviors of a dynamical system and to

formally describe its properties.

Concretely, consider the phase space of the simple pendulum system depicted in

figure 3.1, which will play an important role in later arguments 1.
1In fact, to the extent that most robots involve pendulum-like appendages, this phase space is of importance

to numerous other robotic manipulation and locomotion applications as well.
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Figure 3.1: A simple pendulum, driven by a torque applied at the pivot.

The equation of motion of the frictionless version of this system takes the form,

θ̈ + k sin θ = 0 (3.3)

where k = g
l is a constant that characterizes the motion. Solutions of this equation can be

described in terms of the first integral of motion [86],

θ̇ =

√
2g

l
(cos θ − cos θ0) (3.4)

These solutions can be organized in the form of a phase space portrait as shown in

figure 3.2. This system has two equilibrium points - the stable elliptic fixed point at θ = 0
and the unstable hyperbolic fixed point at θ = ±π. One of the most important aspects

of this phase portrait is the fact that there is a single trajectory, called the separatrix, that

connects the elliptic and hyperbolic fixed points. This trajectory also divides the phase

space trajectories into two families - the “small oscillation” or libration trajectories, which

oscillate around θ = 0, never visiting θ = ±π, and the rotation trajectories that make full

circles. Intuitively, one can think of the libration trajectories as being akin to the motion of
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(a) (b)

Figure 3.2: Phase portrait of the simple frictionless pendulum, depicting the separatrix
trajectory which divides the phase space into two families of orbits - rotation and libration.
Part a depicts the fact that θ ∈ S1, while part b depicts an “opened out” version of the phase
portrait.

child on a swing while the latter is closer to that of a circus acrobat performing tumbling

maneuvers.

A particularly interesting aspect of this phase portrait is that all trajectories are pa-

rameterized by a single variable - total energy. The separatrix has exactly the same amount

of energy at all points as the hyperbolic fixed point, 〈θ = π, θ̇ = 0〉. All rotation trajectories

have more than this much energy and all libration trajectories have less. We will use this

fact in subsequent arguments.

Using this phase space, we are in a position to state the first design problem - global

control of the pendulum. For this, consider a version of the pendulum that has some friction

at the pivot 2, where it is also driven by a torque u,

θ̈ + f(θ̇) + k sin θ + u(θ, θ̇) = 0 (3.5)

The objective is to design a control law, u(θ, θ̇), that can bring the system to the hyperbolic

fixed point from the elliptic fixed point, and stabilize it there. The key requirement is

global control, i.e., despite arbitrarily large deviations from 〈θ = π, θ̇ = 0〉 the system

should eventually return to stabilize at this point. Moreover, this needs to be achieved with

bounded torques, u(θ, θ̇) < umax.

2Note that we are deliberately leaving the functional form of the friction term unspecified, to emphasize the
difficulty in modeling such terms exactly.
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Before presenting the solution to this design problem, we will discuss several results

that will make the notion of “qualitative dynamics” more concrete.

3.3 Some Results on the Qualitative Dynamics of Second Order
Systems

There are numerous techniques for the analysis of dynamical properties of nonlinear sys-

tems. In this section, we restrict attention to a relatively simple class of systems that can

be represented in terms of qualitative differential equations [21]. This representation, and

the way we will use it, is a simple instance of a much more general approach to modeling

classes of systems in terms of set valued maps [81]. However, in this chapter, we will find

the concrete representation of QDEs to be sufficient for our purposes.

The purpose of the results presented in this section is to identify qualitative model

classes that can be used to describe the global behavior in concise ways. One way to use

this, within the multiple model framework, is to assign to each local model a behavior

described by a qualitative model class. This is in the spirit of model-reference control

[59, 60], although the details differ due to the fact that we are dealing with model classes as

opposed to concrete quantitative models.

In this section, the focus is on systems whose equations of motion, such as the one

in equation 3.5, involve “reasonable” functions - defined below along with some useful

concepts for expressing qualitative models.

Definition 1. Where [a, b] ⊆ <∗ = < ∪ {−∞,∞}, the function f : [a, b] → <∗ is a

reasonable function over [a, b] if

1. f is continuous on [a, b],

2. f is continuously differentiable on (a, b),

3. f has only finitely many critical points in any bounded interval

4. The one-sided limits limt→a+ f ′(t) and limt→b− f ′(t) exist in<∗. Define f ′(a), f ′(b)
to be equal to these limits.

Definition 2. M+ is the set of reasonable functions f : [a, b] → <∗ such that f ′ > 0 over

(a, b).
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Definition 3. M+
0 is the set of f ∈ M+ such that f(0) = 0. In the nonlinear control

literature, these functions are referred to as Class-κ functions [60].

Definition 4. [x]0 = sign(x) ∈ {+, 0,−}.

Definition 5. P+
0 is the set of reasonable functions f : [a, b] → <∗ such that [f(x)]0 = [x]0

over (a, b).

A canonical second order system is the following QDE model,

ẍ + f(ẋ) + g(x) = 0 (3.6)

that encompasses a large number of ordinary differential equation models. Here, f and g

are reasonable functions that might belong to various classes such as M+
0 or P+

0 , including

a whole variety of nonlinear elements that might be found in engineering practice. The

primary benefit of using this representation is this ability to talk about a family of models,

all of which share common dynamical properties. One way to reason about such systems

is through the use of automated tools, of which QSIM [21] is a good example. In [26, 82],

properties of various QDE systems are rigorously established by qualitative simulation and

temporal logic theorem proving. This is particularly useful when discussing properties of a

network of compartmentalized systems described by QDEs [82] and this is one of the major

benefits of adopting this formalism to describe dynamics. Many hybrid system analysis and

design techniques have a similar flavor as well, see, e.g., [83, 84].

For the purposes of this chapter, it is much more convenient to directly establish

relevant results by hand. The following lemmas are statements about properties of specific

types of second order systems that will play a role in subsequent sections.

Lemma 3.3.1 (Qualitative damped spring model) Let S be a dynamical system described

by the QDE

ẍ + f(ẋ) + g(x) = 0 (3.7)

where f, g ∈ P+
0 . Then S has a Lyapunov function

V (x, ẋ) =
1
2
ẋ2 +

x∫
0

g(x)dx
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such that V (0, 0) = 0, V > 0 elsewhere, and dV /dt < 0 everywhere except that dV /dt =
0 where ẋ = 0. Therefore, S is asymptotically stable at (0, 0).

Proof We rewrite equation 3.7 as,

ẋ1 = f1(x1, x2) = x2 (3.8)

ẋ2 = f2(x1, x2) = −f(x2)− g(x1)

Because g is a reasonable function, we know that g′(0) is defined. Since [g(x)]0 =
[x]0, we conclude that g(0) = 0 and g′(0) > 0. Similarly for f . Any fixed point of equation

3.7 must satisfy ẋ1 = ẋ2 = 0, which implies that the only fixed point is at x1 = x2 = 0.

The qualitative behavior of the nonlinear system (equation 3.7) in the neighborhood

of the fixed point at (0,0) is the same as that of its local linearization [85]:

ẋ1 = x2 (3.9)

ẋ2 = −f ′(0)x2 − g′(0)x1

Taking the eigenvalues,

λ1,2 =
1
2

[
−f ′(0)±

√
f ′(0)2 − 4g′(0)

]
(3.10)

Because f ′(0), g′(0) > 0, the eigenvalues have negative real parts, so (0,0) is a

stable fixed point. When the “friction force” term f ′ is small relative to the “spring force”

term g′, the eigenvalues will be complex, in which case (0,0) will be a spiral attractor.

Because [g(x)]0 = [x]0, the “spring force” is always a restoring force, so we can

define a Lyapunov function

V (x, ẋ) =
1
2
ẋ2 +

x∫
0

g(x)dx (3.11)

Clearly, V (x, ẋ) ≥ 0, and V = 0 only at (0,0).
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V̇ = ẋẍ + g(x)ẋ (3.12)

= ẋ(−f(ẋ)− g(x)) + g(x)ẋ

= −ẋf(−ẋ) ≤ 0

Therefore, S is asymptotically stable at (0,0), and has no limit cycles.

Lemma 3.3.2 (Qualitative anti-damped spring model) Let S be a dynamical system de-

scribed by the QDE

ẍ− f(ẋ) + g(x) = 0 (3.13)

where f, g ∈ P+
0 . Then (0, 0) is the only fixed point of S, it is unstable, and there are no

limit cycles.

Proof The proof of this lemma is very similar to the previous one. We rewrite equation

3.13 as

ẋ1 = f1(x1, x2) = x2 (3.14)

ẋ2 = f2(x1, x2) = f(x2)− g(x1)

As before, because g is a reasonable function, we know that g′(0) is defined. Since

[g(x)]0 = [x]0, we conclude that g(0) = 0 and g′(0) > 0. Similarly for f .

Any fixed point of equation 3.13 must satisfy ẋ1 = ẋ2 = 0, so the only fixed point

is x1 = x2 = 0.

As before, the qualitative behavior of the nonlinear system (equation 3.13) around

the fixed point at (0,0) is the same as that of its local linearization:

ẋ1 = x2 (3.15)

ẋ2 = f ′(0)x2 − g′(0)x1

The eigenvalues of this system are

λ1,2 =
1
2

[
f ′(0)±

√
f ′(0)2 − 4g′(0)

]
(3.16)

In this case, since f ′(0) > 0, the eigenvalues have positive real parts, and (0,0) is

27



an unstable fixed point. If the “friction force” term f ′ is small relative to the “spring force”

term g′, then the eigenvalues will be complex, so (0,0) will be a spiral repellor.

By the Bendixon negative criterion [85], there can be no periodic orbits contained

in the phase space of S because

∂f1

∂x1
+

∂f2

∂x2
= f ′(x2) (3.17)

is always positive. Therefore, while S has a fixed point at (0,0), that fixed point is unstable,

and there can be no limit cycles.

There is another form of these lemmas that can sometimes be useful. It is possible

that the “friction force” term in these models may consist of a product of functions of

velocity and position, as shown in the following lemmas.

Lemma 3.3.3 (Qualitative damped spring model, ver. 2) Let S be a dynamical system

described by the QDE

ẍ + f(ẋ)h(x) + g(x) = 0 (3.18)

where f, g ∈ P+
0 , and h is a reasonable function such that h(x) ≥ 0 and h(0) > 0. Then

S is asymptotically stable at (0,0).

Proof The proof is similar to that of Lemma 3.3.1.

We rewrite equation 3.18 as,

ẋ1 = f1(x1, x2) = x2 (3.19)

ẋ2 = f2(x1, x2) = −f(x2)h(x1)− g(x1)

Because g is a reasonable function, we know that g′(0) is defined . Since [g(x)]0 =
[x]0, we conclude that g(0) = 0 and g′(0) > 0. Similarly for f . Further, we define h to

nonnegative, and strictly positive at zero. Any fixed point of equation 3.18 must still satisfy

ẋ1 = ẋ2 = 0, which implies that the only fixed point is at x1 = x2 = 0.

Taking the local linearization,

ẋ1 = x2 (3.20)

ẋ2 = −f ′(0) h(x1)|x1=x2=0 x2 − f(x2)|x1=x2=0 h′(0)x1 − g′(0)x1
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The eigenvalues of this system are

λ1,2 =
1
2

[
−f ′(0)h(0)±

√
(f ′(0)h(0))2 − 4 (g′(0)f ′(0)h′(0))

]
(3.21)

Because f ′(0), h(0) > 0, the eigenvalues have negative real parts, so (0,0) is a

stable fixed point.

Because [g(x)]0 = [x]0, the “spring force” is always a restoring force, so we can

define a Lyapunov function

V (x, ẋ) =
1
2
ẋ2 +

x∫
0

g(x)dx (3.22)

As in the proof of lemma 1, the only fixed point is at (0,0) and the local behavior at

(0,0) is stable. Using the Lyapunov function,

V̇ = ẋẍ + g(x)ẋ (3.23)

= ẋ(−f(ẋ)h(x)− g(x)) + g(x)ẋ

= −ẋf(ẋ)h(x)

which has a consistent negative sign, except for isolated zeros, so the system is asymptoti-

cally stable.

Lemma 3.3.4 (Qualitative anti-damped spring model, ver. 2) Let S be a dynamical sys-

tem described by the QDE

ẍ− f(ẋ)h(x) + g(x) = 0 (3.24)

where f, g ∈ P+
0 , and h is a reasonable function such that h(x) ≥ 0 and h(0) > 0. Then

(0,0) is the only fixed point of S, it is unstable, and there are no limit cycles.

Proof The proof is similar to that of Lemma 3.3.2. We rewrite equation 3.24 as,

ẋ1 = f1(x1, x2) = x2 (3.25)

ẋ2 = f2(x1, x2) = f(x2)h(x1)− g(x1)

As before, because g is a reasonable function, we know that g′(0) is defined. Since

[g(x)]0 = [x]0, we conclude that g(0) = 0 and g′(0) > 0. Similarly for f , [f(ẋ)]0 = [ẋ]0
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and f ′(0) > 0. We have also assumed that h(x) ≥ 0 and h(0) > 0.

Taking the local linearization,

ẋ1 = x2 (3.26)

ẋ2 = f ′(0) h(x1)|x1=x2=0 x2 + f(x2)|x1=x2=0 h′(0)x1 − g′(0)x1

Any fixed point of equation 3.24 must satisfy ẋ1 = ẋ2 = 0, so the only fixed point

is x1 = x2 = 0.

The eigenvalues of this system are

λ1,2 =
1
2

[
f ′(0)h(0)±

√
(f ′(0)h(0))2 − 4 (g′(0)f ′(0)h′(0))

]
(3.27)

Because f ′(0), h(0) > 0, the eigenvalues have positive real parts, so (0,0) is an

unstable fixed point.

By the Bendixon negative criterion, there can be no periodic orbits contained in the

phase space of S because
∂f1

∂x1
+

∂f2

∂x2
= f ′(x2)h(x1) (3.28)

is not always zero and does not change sign. Therefore, while S has a fixed point at (0,0),

that fixed point is unstable, and there can be no limit cycles.

The dynamical systems literature includes many results that could be used to define

other similar forms of local models. These results demonstrate that a variety of dynamical

behaviors, not just stable equilibria, can be efficiently described by the language of QDEs.

One such result, adapted from a theorem due to Levinson and Smith [86], can be used to

construct relaxation oscillators. Such an oscillator is a very robust way to obtain a periodic

orbit from a large set of initial conditions.

Lemma 3.3.5 (Relaxation Oscillators: Levinson-Smith) Let S be a dynamical system de-

scribed by the QDE

ẍ− f(x)ẋ + g(x) = 0 (3.29)

where f, g satisfy the following assumptions:

1. f is an even reasonable function

2. g ∈ P+
0 is an odd reasonable function
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3. ∃a > 0 such that F (x) ≡
∫ x
0 f(s)ds < 0 on 0 < x < a, F (x) > 0 on x > a and

f(x) > 0 on x > a.

4. G(x) ≡
∫ x
0 g(s)ds →∞ as |x| → ∞ and F (x) →∞ as x →∞.

Then the system has a non-constant, orbitally stable periodic solution p(t), that is

unique up to translations p(t + τ), τ ∈ <.

The proof of this result can be found in standard texts on nonlinear differential

equations [86].

Remark There exist natural extensions of the above results, regarding qualitative dynam-

ics of second order systems, to higher order systems. However, the dynamics become

significantly more complex with increasing dimensionality [75, 31]. In this dissertation, we

choose not to deal with this complexity directly - such as by deriving detailed functional

conditions for orbits in higher dimensions. Instead, for the purposes of design, we restrict

qualitative analyses to suitably low dimensions and we utilize approximation and learning

algorithms that will embed the resulting strategies in higher dimensional systems.

As stated earlier, the phase space of the pendulum is parameterized by the total

energy and the global behavior can be largely described with the aid of this one variable.

For this reason, the total energy will play a useful role in subsequent sections, which will be

devoted to global properties of control strategies designed using results from this section.

The following results regarding the work done by the system are also sometimes

useful. In particular, they describe the decomposition of the work done into a conservative

component, which flows back and forth between kinetic and potential energy, and a non-

conservative component, which is dissipated or injected into the system. In this way, we

can reason about long term properties of trajectories in terms of the conservative and non-

conservative energy components. Among other things, these lemmas allow us to describe

energy in a discrete setting such as via a Poincaré map.

Lemma 3.3.6 Consider a system that can be decomposed into two components

ẍ = F (x, ẋ, t) = C(x) + N(x, ẋ, t). (3.30)

Consider two times t1, t2 and let x1 = x(t1) and x2 = x(t2), and let v1 = ẋ(t1) and
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v2 = ẋ(t2). Then

1
2
v2
2 −

1
2
v2
1 =

∫ x2

x1

C(x)dx +
∫ t2

t1

N(x, ẋ, t)ẋdt

Proof Consider the work done by the system over [t1, t2],∫ t2

t1

ẍẋdt =
∫ t2

t1

ẋ
dẋ

dt
dt =

∫ v2

v1

ẋdẋ =
1
2
v2
2 −

1
2
v2
1 (3.31)

Now consider an alternate transformation of the same work:∫ t2

t1

ẍẋdt =
∫ t2

t1

F (x, ẋ, t)ẋdt =
∫ t2

t1

C(x)ẋdt +
∫ t2

t1

N(x, ẋ, t)ẋdt (3.32)

Setting the two terms equal, we obtain the desired result.

The kinetic energy theorem in [21] is a more general application of this method.

This result can be specialized to investigate the behavior of a trajectory of the system

on successive times that it intersects a particular line in the phase plane - the Poincare

section. This helps us analyze systems in a discrete setting, where energy or state variables

take on extremal values. First, consider the change in velocity between times when x(t) is

equal to a particular value,

Corollary 3.3.7 Consider a system that can be decomposed into two components

ẍ = F (x, ẋ, t) = C(x) + N(x, ẋ, t). (3.33)

Let t1, t2 be two times such that x(t1) = x(t2), and let v1 = ẋ(t1) and v2 = ẋ(t2). Then

1
2
v2
2 −

1
2
v2
1 =

∫ t2

t1

N(x, ẋ, t)dt (3.34)

Corollary 3.3.8 Consider a system that can be decomposed into two components

ẍ = F (x, ẋ, t) = C(x) + N(x, ẋ, t). (3.35)
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Let t1, t2 be two times such that v = ẋ(t1) = ẋ(t2) = 0. Then∫ x2

x1

C(x)dx = −
∫ t2

t1

N(x, ẋ, t)ẋdt (3.36)

Third, consider the special case where an initial kinetic energy is transferred to

potential energy: (0, v1) → (x2, 0).

Corollary 3.3.9 Consider a system that can be decomposed into two components

ẍ = F (x, ẋ, t) = C(x) + N(x, ẋ, t). (3.37)

Let t1, t2 be two times when x(t1) = 0, v1 = ẋ(t1), x2 = x(t2), and v2 = ẋ(t2) = 0. Then∫ x2

0
C(x)dx = −1

2
v2
1 −

∫ t2

t1

N(x, ẋ, t)ẋdt (3.38)

3.4 A Global Control Strategy for the Pendulum

One of the key properties of the pendulum system is that if it is initialized on the separatrix

trajectory then its dynamics will evolve in such a way that it eventually reaches the hyper-

bolic fixed point. Moreover, this trajectory is uniquely characterized by the total system

energy, which must equal the energy of the point 〈θ = π, θ̇ = 0〉. If the system begins

with less energy than this point, such as when it begins close to the elliptic fixed point,

〈θ = 0, θ̇ = 0〉, then energy needs to be injected into the system in order for it to reach

the desired goal. Correspondingly, if the system has more energy, then energy needs to be

drained in order for it to reach the point 〈θ = π, θ̇ = 0〉. Note that we are not just interested

in reaching the vertical position, θ = π, instead we need to reach a phase space point that

also involves stopping at this position, i.e., θ̇ = 0. Once on the separatrix, if the energy is

maintained then the system will evolve towards the desired equilibrium point 3.

This is a simple, highly intuitive, scheme that can be used to achieve the task of

globally stabilizing the pendulum. However, a naive application of this strategy is not

sufficient. For instance, we could find the system oscillating between having too much and

too little energy, never staying on the separatrix long enough to be brought to the desired
3The separatrix trajectory reaches the goal asymptotically which means that it takes infinite time. However,

the designs presented in this chapter will have much better convergence properties, which has been verified in
practice.
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goal. So, in fact, the design must address not only the local issue of energy control, but also

the global issue of task achievement.

Remark In this chapter, for ease of exposition, we will use two coordinate frames to refer

to the same system dynamics - 〈θ, θ̇〉 and 〈φ, φ̇〉 which are separated by an angle of π

such that the hyperbolic fixed point is at (φ = 0, φ̇ = 0) and the elliptic fixed point is at

(θ = 0, θ̇ = 0).

3.4.1 Stabilizing the Pendulum: Balance Mode

The QDE describing the dynamics of the pendulum near the hyperbolic fixed point is,

φ̈ + f(φ̇)− g(φ) + u(φ, φ̇) = 0 (3.39)

where g(φ) = k sinφ.

In order for the system to stabilize at the desired goal, 〈φ = 0, φ̇ = 0〉, its dynamics

must be that of the system in Lemma 3.3.1. This provides a simple sufficient condition:

make the pendulum behave like a monotonic, but otherwise possibly nonlinear, damped

spring. Define the controller for the Balance region to be:

u(φ, φ̇) = gb(φ) (3.40)

[gb(φ)− g(φ)]0 = [φ]0

Since g(φ) = k sinφ increases monotonically with φ over
[
−π

2 , π
2

]
, gb(φ) must

increase at least as fast in order to ensure that [gb(φ)− g(φ)]0 = [φ]0. We can get faster

convergence by augmenting the natural damping f(φ̇) with a damping term h(φ̇) included

in the control law, giving us

u(φ, φ̇) = gb(φ) + fb(φ̇) (3.41)

[gb(φ)− g(φ)]0 = [φ]0[
fb(φ̇)

]
0

=
[
φ̇
]
0

If there is a bound on the control action u < umax, then the limiting angle φmax

beyond which the controller cannot restore the pendulum to φ = 0 is given by the constraint

umax = g(φmax) = k sinφmax (3.42)
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The maximum velocity φ̇max that the Balance controller can tolerate at φ = 0 is

then determined by the constraint

1
2
φ̇2

max =
∫ φmax

0
gb(φ)− g(φ)dφ (3.43)

which represents the conversion of the kinetic energy of the system (equation 3.39) at

〈0, φ̇max〉 into potential energy at 〈φmax, 0〉.
We would like to define the boundary of the Balance region as a level curve of the

Lyapunov function for the controlled system (equation 3.39), from Lemma 3.3.1,

V
(
φ, φ̇

)
=

1
2
φ̇2 +

∫ φ

0
gb(φ)− g(φ)dφ (3.44)

It is easy to check that V (φmax, 0) = V
(
0, φ̇max

)
, so their intercepts lie on the

same level curve of V . When a trajectory intersects this level curve, V
(
φ, φ̇

)
= 1

2 φ̇2
max.

Expanding and dividing by 1
2 φ̇2

max, we get

φ̇2

φ̇2
max

+

∫ φ
0 gb(φ)− g(φ)dφ

1
2 φ̇2

max

= 1 (3.45)

Substituting the definition of φ̇2
max (equation 3.43) into the second term gives

φ̇2

φ̇2
max

+

∫ φ
0 gb(φ)− g(φ)dφ∫ φmax

0 gb(φ)− g(φ)dφ
= 1 (3.46)

Because [gb(φ)− g(φ)]0 = [φ]0, we know that both the integrals are non-negative,

so equation (equation 3.46) defines an “ellipse-like” curve that intersects the axes at±φmax

and ±φ̇max. Furthermore, the curve changes monotonically between the intercepts.

In the special case where gb(φ)− g(φ) ∼= φ, we can evaluate the integrals and show

that the level curve of V is an ellipse:

φ̇2

φ̇2
max

+
φ2

φ2
max

= 1 (3.47)

Note that the shapes of the non-linear functions g and h are only very weakly con-

strained. The qualitative constraints in (equation 3.41) provide weak sufficient conditions
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guaranteeing the stability of the inverted pendulum controller. However, there is plenty

of freedom available to the designer to select the properties of gb and fb to optimize any

desired criterion.

3.4.2 Escaping the Elliptic Fixed Point: Pump Mode

For any point lying within the libration region of the pendulum phase space (see figure

3.2), the goal is to pump energy into the pendulum, swinging it progressively higher, until

it reaches the region where the inverted pendulum controller can balance it in the upright

position.

The QDE describing motion is similar to equation 3.39, but is written in terms of

θ, θ̇,

θ̈ + f(θ̇) + g(θ) + u(θ, θ̇) = 0. (3.48)

Without control action, since [sin θ]0 = [θ]0 over −π < θ < π, the model ex-

actly matches the monotonic damped spring model of Lemma 3.3.1, so we know that it is

asymptotically stable at (θ, θ̇) = (0, 0). Unfortunately, this is not where we want it.

Instead, Lemma 3.3.2 gives us a sufficient condition to transform the stable fixed

point into an unstable repellor. Define the controller for the Pump region so that the system

is modeled by a spring with negative damping, pumping energy into the system. That is,

u(θ, θ̇) = −fp(θ̇) (3.49)

fp − f ∈ P+
0

Starting with an infinitesimal perturbation from the elliptic fixed point, or from any

point inside the libration region, this controller will pump the pendulum to higher and higher

swings. Lemma 3.3.2 is sufficient to assure us that there are no limit cycles in the region

−π < θ < π to prevent the trajectory from approaching θ = π so the Balance control law

can stabilize it.

3.4.3 Handling High Energy Rotations: Spin Mode

For any point lying within the rotation region of the pendulum phase space (see figure 3.2),

the goal is to slow down the rotations - either by allowing friction to work its course, or
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with additional damping. For this, define

u(θ, θ̇) = fs(θ̇) (3.50)

fs ∈ P+
0

3.4.4 Ensuring Correct Mode Transitions: Separatrix as a Sliding Mode

The above arguments ensure that all trajectories beginning in the Libration region will even-

tually reach the separatrix, as do all trajectories beginning in the rotation region. The key

point that needs to be verified to ensure task achievement is that these crossings are not just

wild oscillations but in fact constitute progress towards the desired goal.

It turns out that the choices made so far are sufficient to endow the separatrix tra-

jectory with the properties of a sliding mode [60] between the Pump and Spin modes.

All points on the separatrix trajectory have the total system energy,

KE + PE =
1
2
θ̇2 +

∫ θ

0
k sin θdθ = 2k (3.51)

Evaluating the integral and simplifying, we can represent the separatrix as an equa-

tion of the form s(θ, θ̇) = 0, with the Spin region corresponding to s > 0 and Pump to

s < 0.

s(θ, θ̇) =
1
2
θ̇2 − k(1 + cos θ) = 0 (3.52)

Differentiating (equation 3.52) and substituting for θ̈, we get

ṡ = θ̇θ̈ + k sin θθ̇

ṡ = θ̇(−f(θ̇)− k sin θ − u(θ, θ̇)) + k sin θθ̇

ṡ = −θ̇f(θ̇)− θ̇u(θ, θ̇) (3.53)

Now, examine the Pump region, inside the separatrix where s < 0, and substitute

the Pump control law (equation 3.49).

ṡpump = −θ̇f(θ̇) + θ̇fp(θ̇), fp − f ∈ P+
0

ṡpump = θ̇(fp − f)(θ̇) ≥ 0 (3.54)

37



Similarly for Spin (equation 3.50),

ṡspin = −θ̇f(θ̇)− θ̇fs(θ̇), fs ∈ P+
0

ṡspin = θ̇(f + fs)(θ̇) ≤ 0 (3.55)

This establishes that all trajectories, no matter where they begin will eventually

reach the goal and stabilize there. Once there, arbitrarily large disturbances may have the

effect of sending the system to a different point in phase space, but the subsequent trajectory

is guaranteed to reach the goal. The behavior of the resulting controller can be summarized

in the form of the following result.

Theorem 3.4.1 Any pendulum system of the qualitative form of equation 3.39, subject to a

hybrid control strategy which involves the control functions defined by equations 3.41, 3.49,

3.50, the constraint defined by equation 3.46 and the switching logic,

If α ≤ 1, Then Balance

Else If s < 0, Then Pump

Else Spin

where α =
R
0

φgb(φ)−g(φ)dφ
R
0

φmaxgb(φ)−g(φ)dφ
+ φ̇2

φ̇2
max

and s = 1
2 φ̇2−k(1−cos φ), is globally asymptotically

stable at φ = 0, φ̇ = 0.

Proof The proof follows from the following assertions that have been established in the

above arguments:

• For any trajectory beginning in the libration region, ṡ(θ, θ̇) > 0. Therefore, the

maximum swing amplitude θmax|θ̇=0 must increase. This value must continue to

increase as θmax → ±π until one of two events occur - either the point (θmax, 0) lies

inside the region of applicability of the Balance controller, or the value of s reaches

that of the separatrix and the trajectory has reached the sliding mode.

• Similarly, for any trajectory beginning in the rotation region, ṡ(θ, θ̇) < 0. Therefore,

the swing velocity θ̇θ=±π must decrease. This value must continue to decrease until

one of two events occur - either the point (θ, θ̇) lies inside the region of applicability

of the Balance controller, or the value of s reaches that of the separatrix and the

trajectory has reached the sliding mode.
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• Any trajectory reaching the sliding mode, i.e., the separatrix, will chatter in a suitably

small neighborhood until the trajectory is within the region of applicability of the

Balance controller.

• Any trajectory inside or at the boundary of the Balance region will asymptotically

stabilize at the hyperbolic fixed point, φ = 0, φ̇ = 0.

These assertions are summarized in figure 3.3.

Remark In fact, there exists one singular point that does not fall in the basin of attraction

of φ = 0, φ̇ = 0 and this is the elliptic fixed point, θ = 0, θ̇ = 0. So strictly speaking,

this theorem only guarantees almost global asymptotic stability. However, in practice, even

an infinitesimal perturbation away from this point is sufficient to bring the system into the

desired basin and so this is not an issue.

Figure 3.4 depicts the operation of this control strategy as a very weak controller

pumps the pendulum up from θ ' 0 and balances it at φ = 0, φ̇ = 0. We define an instance

of the pendulum model and the local control laws:

Plant: φ̈ + cφ̇− k sinφ + u(φ, φ̇) = 0 c = 0.01, k = 10, umax = 4

Balance Control: u = (c11 + k)φ + c12φ̇ c11 = 0.4, c12 = 0.3

Spin Control: u = c2φ̇ c2 = 0.5

Pump Control: u = −(c + c3)φ̇ c3 = 0.5

The plant model is chosen with normal gravity, slight friction, and a maximum

control action too weak to lift the pendulum directly up. The local control laws are all

linear for simplicity, although they could be designed to be nonlinear. The desired behavior

is achieved as long as the parameters ci are all positive. Given the maximum control action

umax and the gain c11 +k of the Balance controller, we can determine the bounds φmax = 4
and φ̇max = 0.3 for the Balance region from equations (3.42) and (3.43), respectively.

In the above example, specific values for ci were simply chosen by hand from the

feasible intervals. In section 3.6, we discuss the use of numerical optimization to automate

this controller synthesis step.
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Figure 3.3: Discrete state transition behavior of the pendulum control strategy of section
3.4

(a) (b)

Figure 3.4: Typical trajectories corresponding to the example in section 3.4.4. Part a depicts
the time domain trajectories of θ(t) and θ̇(t), while part b depicts the phase space.
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3.5 A Global Control Strategy for the Cart-Pole System

Having understood the issues associated with global control of the pivot-actuated pendulum,

we are ready to consider its higher dimensional analog - the pendulum on a cart. This system

is depicted in figure 3.5. It consists of a cart that moves on a horizontal track of finite length.

The pendulum, i.e., a pole, is represented by a point mass attached to the end of a massless

thin rod of length l that is attached to the cart at a pivot capable of complete 360o rotation. It

is worth noting that this system is underactuated in that there is only one control, the force

applied to the cart, that must be used to simultaneously stabilize the cart and the pole.

Figure 3.5: The cart-pole system. The cart runs on a finite track of length xm while the
pole is capable of full 360o rotation.

The objective is to stabilize this system at [x, ẋ, φ, φ̇] = [0, 0, 0, 0], starting from

[0, 0, π, 0], despite arbitrarily large disturbances to the pole (such as an adversary who de-

livers arbitrarily large impacts to the pole). As before, this global control must be achieved

using bounded forces on the cart, and eventually with bounds on the track length. The strat-

egy adopted here is to extend the strategy defined in section 3.4 to this higher dimensional

system.
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The dynamic model for the cart-pole system is given by,

(M + m)ẍ + ml cos φφ̈−ml sinφφ̇2 = F − fc(ẋ) (3.56)

ml cos φẍ + ml2φ̈−mgl sin φ = −fp(φ̇) (3.57)

where x, φ represent the cart position and pole angle respectively, F is a force applied to the

cart and fc, fp are frictional terms. In fact, F can be suitably chosen such that arbitrary ẍ

(within a suitably small bounded interval) can be achieved and the problem can be reduced

to that of controlling the system in equation 3.57. This equation can be expressed as the

following QDE. There are two versions of the equation, one around φ = 0 and the other

around θ = 0.

φ̈ + f(φ̇)− k sinφ + ẍ cos φ = 0 (3.58)

θ̈ + f(θ̇) + k sin θ − ẍ cos θ = 0 (3.59)

3.5.1 Using Time-Scale Separation to Deal with Underactuation

Although we are dealing with a 4-dim system, in terms of (θ, θ̇, x, ẋ), there are clearly two

subsystems here and the task can be decomposed into one of global control of the pendulum,

much as in section 3.4, and stabilization of the cart. The complexity in the dynamics of the

cart is derived from the nonlinear dynamics of the pendulum.

Any realization of ẍ(t) that satisfies the conditions of theorem 3.4.1 is sufficient

to stabilize the pole at (φ = 0, φ̇ = 0). The goal of the design then becomes to find a

suitable ẍ(t) within this qualitatively constrained space that can also stabilize the cart at

(x = 0, ẋ = 0).
Consider a control action of the form,

ẍ = varsat

{
−fc(ẋ)

cos φ
− gc(x)

cos φ
+

u(φ, φ̇)
cos φ

}
(3.60)

where fc(ẋ), gc(x) represent any reasonable functions satisfying Lemma 3.3.1, used to reg-

ulate the position and velocity of the cart. The term u(φ, φ̇) represents the control law for

the three control modes of the pole from section 3.4. varsat refers to a saturation action

whose magnitude depends on the controller mode. This allows the designer to set local

control law parameters in such a way that the system never saturates in Balance while the
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Pump and Spin control actions can be restricted in strength.

varsat(x) =


sat(x, xmax bal), controller = Balance

sat(x, xmax pump), controller = Pump

sat(x, xmax spin), controller = Spin

, (3.61)

sat(x, xmax i) =


−xmax i, x < −xmax i

x,−xmax i ≤ x ≤ xmax i

xmax i, x > xmax i

Let us now derive the constraints on this cart control action, corresponding to Pump

and Spin modes of the pole controller. Taking the derivative of the expression for s, ex-

pressed in terms of the variables φ and φ̇,

ṡ(φ, φ̇) = −φ̇f(φ̇) + φ̇fc(ẋ) + φ̇gc(x)− φ̇u(φ, φ̇) (3.62)

Substitute the Pump control law,

ṡ = φ̇(fp − f)(φ̇) + φ̇fc(ẋ) + φ̇gc(x) (3.63)

In order to have ṡ ≥ 0,

[(fp − f)(φ̇) + fc(ẋ) + gc(x)]0 = [φ̇]0 (3.64)

If we substitute the Spin control law,

ṡ = −φ̇(f + fs)(φ̇) + φ̇fc(ẋ) + φ̇gc(x) (3.65)

In order to have ṡ ≤ 0

[(f + fs)(φ̇)− fc(ẋ)− gc(x)]0 = [φ̇]0 (3.66)

We know that [(fs−f)(φ̇)]0 = [φ̇]0 and [(f +fd)(φ̇)]0 = [φ̇]0. From equation 3.64

and equation 3.66, we see that fc(ẋ) + gc(x) needs to be sufficiently small with respect

to (fp − f)(φ̇), (f + fs)(φ̇) for the sign equality to be preserved (even if these terms are

opposed to each other). It is conceivable that for small values φ̇ → 0, these constraints may

be violated for fc(ẋ) + gc(x) 6= 0. Fortunately, the sliding mode constrains the trajectory
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to be on the separatrix where it is bounded away from φ̇ = 0 by the width of the Balance

region. Therefore, it is possible to select fc and gc to be sufficiently small to satisfy equation

3.64 and equation 3.66. This amounts to requiring a sufficient separation between the time-

scales of the pole and the cart controllers in order to ensure that the separatrix continues to

act as a sliding mode even for this augmented system.

The parametrization in equation 3.60 uses an unbounded control action (due to the
1

cos φ term) that is then bounded by a nonlinearity. This enables us to present the connection

between the cart-pole controller and the pendulum controller in a straight forward way, in

terms of the above constraints that ensure appropriate [ṡ]0.

One could also adopt a smoother control strategy as shown below.

Define the cart-pole controller as,

ẍ(φ, φ̇, x, ẋ) = −fc(ẋ)− gc(x) +
u(φ, φ̇)
cos φ

(3.67)

The term u(φ, φ̇) is for pole control, fc(ẋ) and gc(x) are reasonable functions in

M+
0 .

The Balance control component of u(φ, φ̇) is defined exactly as before, equation

3.41. Given a maximum cart acceleration of amax, the maximum pole angle in Balance is

defined as,

amax = k tan(φmax) (3.68)

from which the maximum φ̇ can be computed as before, following equation 3.46.

The Spin controller is modified to take the following form,

us(φ, φ̇) = fs(φ̇)hs(φ), where |hs(φ)
cos φ

| ≤ 1 (3.69)

for a hs(φ) ≥ 0 with only isolated zeros, and hs(0) > 0. One such function is hs(φ) =
cos2 φ.

Similarly, for Pump,

up(θ, θ̇) = −fp(θ̇)hp(θ), where |hp(θ)
cos θ

| ≤ 1 (3.70)

where hp(θ) ≥ 0 with only isolated zeros, and hp(0) > 0.

With these choices, the pendulum sliding mode is also preserved by the controller
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in equation 3.67 as shown below. Begin with the expression,

ṡ(φ, φ̇) = −φ̇f(φ̇) + φ̇fc(ẋ) cos φ + φ̇gc(x) cos φ− φ̇u(φ, φ̇) (3.71)

With the Pump control law as in equation 3.70,

ṡ(φ, φ̇) = φ̇(fp(φ̇)hp(φ)− f(φ̇)) + φ̇(fc(ẋ) + gc(x)) cos φ (3.72)

Over a single cycle [t1, t2], the change in energy is in the desired direction:

0 ≤ s (t2)− s (t1)

=
t2∫
t1

ṡdt =
t2∫
t1

φ̇
(
fp

(
φ̇
)

hp (φ)− f
(
φ̇
))

dt+
t2∫
t1

φ̇ (fc (ẋ) + gc (x)) cos φdt
(3.73)

Over a single cycle, due to symmetry of the oscillation,

t2∫
t1

φ̇ (fc (ẋ) + gc (x)) cos φdt ≈ 0 (3.74)

We then derive the constraint,

t2∫
t1

φ̇
(
fp

(
φ̇
)

hp (φ)− f
(
φ̇
))

dt > 0 (3.75)

Similarly, with the Spin control law as in equation 3.69,

ṡ(φ, φ̇) = φ̇(fp(φ̇)hp(φ)− f(φ̇)) + φ̇(fc(ẋ) + gc(x)) cos φ (3.76)

Over a cycle, the change in the energy is negative (toward the separatrix) if

0 ≥ s (t2)− s (t1)

=
t2∫
t1

ṡdt =
t2∫
t1

−φ̇
(
fs

(
φ̇
)

hs (φ)− f
(
φ̇
))

dt+
t2∫
t1

φ̇ (fc (ẋ) + gc (x)) cos φdt
(3.77)
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Again, the latter term is negligible and this constraint effectively amounts to,

t2∫
t1

φ̇(fs(φ̇)hs(φ)− f(φ̇))dt ≤ 0 (3.78)

f, fs ∈ P+
0 , hs ≥ 0

The controlled cart system is represented as,

ẍ + fc (ẋ) + gc (x) =
u(φ, φ̇)
cos φ

(3.79)

Our next task is to ensure that the driving term does not disrupt the stability of the

damped spring model for the cart.

In the Balance region, the cart subsystem is described by

ẍ = −gc(x)− fc(ẋ) +
gb (φ) + fb(φ̇)

cos φ
(3.80)

In order to show that the cart system converges to (x, ẋ) = (0, 0) in spite of the

driving influence of the pole system, we appeal to Corollary 3.3.8 of Lemma 3.3.6. Consider

the Poincaré section of the points where the trajectory of the cart intersects the line ẋ = 0.

x2∫
x1

gc(x)dx = −
t2∫

t1

fc(ẋ)ẋdt +

t2∫
t1

gb (φ) + fb

(
φ̇
)

cos φ
ẋdt (3.81)

We will show that successive extremal points xi of the cart’s position approach the

origin. Assuming an unbounded track, and selecting extrema x1, x2 on the same side of

the track’s origin, we wish to show that the left hand side of the above equation is negative,

implying that |x2| < |x1|, since gc ∈ P+
0 .

Since fc ∈ P+
0 , we know that

−
t2∫

t1

fc(ẋ)ẋdt ≤ 0

We can guarantee correct signs of equation 3.81 by requiring that,
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∣∣∣∣∣∣
t2∫

t1

gb (φ) + fb

(
φ̇
)

cos φ
ẋdt

∣∣∣∣∣∣ <
t2∫

t1

fc(ẋ)ẋdt (3.82)

We now consider the cart-pole controller specialized for the case when pole is in

the Spin region:

ẍ = −gc(x)− fc(ẋ) + fs(φ̇)
hs (φ)
cos φ

(3.83)

where [fs(φ̇)]0 =
[
φ̇
]
0
. As before, we consider the Poincaré section consisting of points

where ẋ = 0,
x2∫

x1

gc(x)dx = −
t2∫

t1

fc(ẋ)ẋdt +

t2∫
t1

fs(φ̇)
hs (φ)
cos φ

ẋdt (3.84)

We can show that the left hand side of this equation is negative, implying that suc-

cessive extrema approach the origin by requiring that,∣∣∣∣∣∣
t2∫

t1

fs

(
φ̇
) hs (φ)

cos φ
ẋdt

∣∣∣∣∣∣ <
t2∫

t1

fc(ẋ)ẋdt (3.85)

One way to achieve this is to define hs (φ) to be small over most of the cycle, e.g.,

hs (φ) = |cosn φ| for n ≥ 2.

The cart system under the Pump controller becomes,

ẍ = −gc(x)− fc(ẋ) + fp

(
θ̇
) hp (θ)

cos θ
(3.86)

As before, we derive,

x2∫
x1

gc(x)dx = −
t2∫

t1

fc(ẋ)ẋdt +

t2∫
t1

fp

(
θ̇
) hp (θ)

cos θ
ẋdt (3.87)

∣∣∣∣∣∣
t2∫

t1

fp

(
θ̇
) hp (θ)

cos θ
ẋdt

∣∣∣∣∣∣ <
t2∫

t1

fc(ẋ)ẋdt (3.88)

In the Pump region, we face two competing objectives. Firstly, hp must be restricted

relative to the damping friction term fc, to avoid making the cart unstable. On the other
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hand, making it too restrictive would imply that energy loss may not be overcome, resulting

in an ineffective Pump controller. This is a tradeoff that needs to be considered in the

optimization process.

These arguments may be summarized in the following result.

Theorem 3.5.1 The controlled cart-pole system specified by,

a controller of the form of equation 3.67

with pole controller function u(φ, φ̇) specified by equations 3.41, 3.69, 3.70

subject to the constraints specified in equations 3.68, 3.75, 3.78, 3.82, 3.85, 3.88

is globally asymptotically stable at φ = 0, φ̇ = 0, x = 0, ẋ = 0.

Proof Let us define the set Λ of states X = {φ, φ̇, x, ẋ} (with x ∈ <, φ ∈ S1) as an inner

approximation of the invariant set with equilibrium point (φ = 0, φ̇ = 0, x = 0, ẋ = 0).
Let us define the set Λφ∼0 as the set of X = {φ, φ̇, x, ẋ} which is an invariant

neighborhood of (φ = 0, φ̇ = 0), irrespective of the states (x, ẋ). Similarly, define the set

Λx∼0 as the set of X = {φ, φ̇, x, ẋ} which is an invariant neighborhood of (x = 0, ẋ = 0)
irrespective of the states (φ, φ̇).

The set of all points (φ, φ̇) inside the Balance region for the pole (based on equation

3.68) is a suitable instance of Λφ∼0. However, realize that this is not the same as Λ because

it is possible to design strategies that balance the pole without stabilizing the cart at the

desired equilibrium.

Therefore, we wish to ensure two things:

a. The term u(φ, φ̇) is sufficient to ensure convergence to Λφ∼0, despite the action of

the cart-component (−fc(ẋ)− gc(x)) in the controller 3.67.

b. The cart-component (−fc(ẋ) − gc(x)) is sufficient to ensure convergence to Λx∼0,

despite the action of u(φ, φ̇).

Satisfaction of the constraint inequalities 3.68, 3.75, 3.78 ensures that statement (a)

is true. Similarly, satisfaction of the constraint inequalities 3.82, 3.85, 3.88 ensures that

statement (b) is true.

Therefore, eventually, X ∈ Λφ∼0 ∩ Λx∼0 = Λ. This yields the desired result -

global asymptotic stability at φ = 0, φ̇ = 0, x = 0, ẋ = 0.
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The above result characterizes the condition for global asymptotic stability of the

cart-pole system. A key feature of this approach is that it enables separation between the

two components and allows us to implement a simple and intuitive strategy designed for a

subsystem, the pendulum, using the more complex underactuated system. This represents

a simple example of the use of the template-anchor decomposition.

However, many of the functional inequalities derived above do not support direct

computation of parameter ranges for the controllers. Nonetheless, they do specify a class

of qualitatively constrained functions from which a suitable controller may be synthesized.

Section 3.6 will address this issue further.

3.5.2 Handling Nonsmooth Nonlinearities

Static Friction

Most robotic systems involve joints and drives with static friction. The effect of static

friction is that there is a dead zone where small actuation forces have no effect until some

threshold is crossed and the system jerks into motion. The standard way to deal with such

systems in positioning applications is to estimate the effect of static friction and provide

an extra impulse prior to entering the deadzone. An alternate approach, that we explore

primarily to demonstrate an important behavioral mode, is to implement a periodic orbit

around the dead zone thus avoiding that regime entirely.

Consider the damped oscillator with static, or Coulomb, friction Fc as well as damp-

ing frictionf(ẋ). The resistance of static friction is a constant force Fc = η opposing the

direction of motion, as long as motion is taking place. Once motion stops, a larger frictional

resistance Fc = η + ε must be overcome to get it started again. This transforms the damped

oscillator model from ẍ = −g(x)− f(ẋ)− Fc to

ẍ =

{
ẋ 6= 0 → −g(x)− f(ẋ)− [ẋ]0η
ẋ = 0 → −[x]0 max(|g(x)| − η − ε, 0)

(3.89)

To avoid being captured by static friction, we require that the system obey the con-

straint

ẋ = 0 ⇒ |g(x)| > η + ε (3.90)

This constraint excludes the stable fixed-point, where x = ẋ = ẍ = 0. Therefore,

we will be required to approach a more complex orbit, such as a limit cycle.
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A limit cycle can be enforced by transforming the pendulum system into the form of

a Lienard equation (e.g., the van der Pol oscillator) [85, 86]. This system is defined in terms

of the model ẍ + f(x)ẋ + g(x) = 0 where, broadly speaking, f(x) is positive when |x| is

large and negative when |x| is small, and g is such that, in the absence of the damping term

f(x)ẋ we expect periodic solutions for small x. The property was summarized in Lemma

3.3.5, in section 3.3.

We utilize this lemma and define a switched system inside Balance. Starting with

the system,

φ̈ + cφ̇− k sinφ + ẍ cos φ = 0 (3.91)

In the region, −a < φ < a, we define the controller,

ẍ =
(k + p2)φ− (c + p1 − φ2)φ̇

cos φ
(3.92)

so that the closed loop system takes the form (assume cos φ = 1, sinφ = φ),

φ̈ + (φ2 − p1)φ̇ + p2φ = 0 (3.93)

In the region(−φmax < φ < −a) ∪ (a < φ < φmax), the controlled system is

defined as,
ẍ = (c11+k)φ+(c12+φ2)φ̇

cos φ

φ̈ + (φ2 + p1)φ̇ + p2φ = 0
(3.94)

Setting (c + c12) = p1 > a2; c11 = p2 satisfies the conditions of Lemma 3.3.5.

The effect of including this region is that the cart-pole system executes a limit cycle

as seen in figure 3.6.

Finite Track Length

The analysis in section 3.5.1 utilized a linear spring model for cart control. In a system with

a finite track, it may in fact be preferable to use a nonlinear spring controller that avoids

the limit stops. The nonlinear spring controller provides the advantage that the cart position

can be kept away from the ends of the track, i.e., |x| < xm, by the potential barrier of the
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Figure 3.6: Phase plots for the cart x−ẋ (m,m/s) and pole θ− θ̇ (rad, rad/s) subsystems
- simulation results. These plots illustrate the system executing a limit cycle in both the cart
and pole subsystems.

spring action. Consider an instance of a nonlinear spring defined by,

ẍ = sat

{
− d1

cos φ
tanh−1

(
x

xm

)
− d2

cos φ
ẋ +

u(φ, φ̇)
cos φ

}
(3.95)

The first term provides the potential barrier necessary to prevent the cart from hitting

the ends of the track. Note that tanh−1 (which is in M+
0 ) is very near linear over [−0.5, 0.5]

and diverges to ±∞ at ±1, respectively. As |x| → xm, the nonlinear cart control action

(equation 3.95) asymptotically approaches infinity and theoretically prevents the cart from

reaching the end of the track. In practice, if ẍ saturates, then this potential barrier cannot

always prevent the cart from hitting the end of the track. However, by reducing the size of

the Balance region - by reducing φmax and hence φ̇max, and by bounding the value of fd(φ̇)
in the Spin region, it is possible to constrain the system so that the saturated ẍ is sufficient

to keep the cart from hitting the ends of the track.

3.5.3 Experiments with a Physical Cart-Pole System

The controller designed above was implemented on a physical system, shown in figure

3.7, and the result of its operation is depicted in figure 3.8. This system is a physical

implementation of the model in equation 3.58, with k = 80 and a small amount of friction
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Figure 3.7: Picture of the physical cart-pole system used in the experiments described in
section 3.5.3.

4,

φ̈ + 0.25φ̇− 79.898 sinφ + 8.1446ẍ cos φ = 0 (3.96)

ẍ was of the form of equation 3.95 (with u(φ, φ̇) being the linear control functions

described in section 3.4.4, with d1 = d2 = 0.5, c11 = 1, c12 = 5, c2 = 0.1, c3 = 2.

Figure 3.9 depicts the response of this control strategy to a very hard impact applied

to the pole (instantaneously changing the pole velocity by over 20 rad/s). We see the system

recover naturally.

3.6 Synthesizing Nonlinear Controllers in a Qualitatively
Constrained Space

One benefit of defining weak sufficient conditions, as done above, is to be able to specify

a constrained space within which numerous quantitative controllers may be synthesized,

subject to different cost functions. This is the notion of defining the least restrictive design,
4Note that the value of k is derived from mechanical design considerations whereas the friction term is

estimated by parameter fitting against experimental data.
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Figure 3.8: Operation of the global control strategy in physical experiment - trajectories
in the x − ẋ and θ − θ̇ phase spaces. This corresponds to a single quick swingup - going
through the three modes in a time optimal manner.

Figure 3.9: Recovery from a hard impact applied to the pole (which instantaneously changes
the velocity by over 20 rad/s). The data is taken from physical experiment and trajectories
are plotted in the x − ẋ and θ − θ̇ phase spaces. After the large impact, we see the system
spend several full revolutions of the pole in the Spin mode. This is also seen as somewhat
less symmetric cycles in the cart phase space.
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which is in line with observations of natural tasks where actions are always embedded in

larger behavioral contexts [4].

Here we present an approach to this design, which is based on parameterizing the

qualitative controller functions used in the above arguments and then solving a parameter

optimization problem using standard numerical optimization tools.

The procedure is as follows:

• Define a parametrization for the controller functions. Note that for nonlinear para-

meterizations, region definitions - particularly equations 3.42, 3.43 for the Balance,

may need to be rederived.

• Define an optimization problem in terms of a cost, we adopt a standard linear quadratic

cost
∫ T
0 x(t)′Qx(t)+u(t)′Ru(t)dt, with suitably chosen positive definite weight ma-

trices Q,R.

• Evaluate the cost using a finite horizon (T = 20 seconds) dynamic simulation 5.

• Solve the optimization problem 6 subject to qualitative constraints defined in the pre-

vious sections.

This procedure was used to optimize multiple parameterizations, including:

• Linear local controllers:

– u(φ, φ̇)b = (c11 + k)φ + c12φ̇

– u(φ̇)p = (c + c2)(φ̇)

– u(φ̇)s = (c3)(φ̇)

• Nonlinear (sigmoidal) local controllers: With the sigmoid defined as,

σ(a,m, φ) = a
(

1−e−mφ

1+e−mφ

)
,

– u(φ, φ̇)b = kφ + σ(abp,mbp, φ) + σ(abv,mbv)

– u(φ, φ̇)p = −cφ̇− σ(ap,mp, φ̇)

– u(φ, φ̇)s = σ(as,ms, φ̇)

5Implemented using the RK45 variable step size solver in the LabVIEWTMSimulation Module, ver 8.2.
6Achieved through the use of the Constrained Nonlinear Optimization function in LabVIEWTM, ver 8.2.
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The results of the optimization process are depicted in figure 3.10. In particular,

note the last case where the control action is only applied some of the time, according to the

rule: u′ = uQHC iff r > 0.25, where r is a uniform random variable in (0, 1). The actual

u is saturated at umax. This simulates variance in loop rates, a common problem in many

robotic systems, especially ones with network connections. We see that the energy based

control strategy is insensitive to such variations.

Experiments were also conducted with several other parameterizations, including

a neural network, where instead of σ(a,m, φ), a 2-layer network was used. However, it

turns out that for the cart-pole problem, there is little benefit offered by the extra flexibility

and both the simple sigmoid and the more complex multilayer network achieve very similar

optimal costs.

3.7 Discussion: What is Hard about Task Encoding?

This chapter has involved a detailed study of the solution for a specific design problem - the

global control of pendulum systems. Given the fact that this is a classic benchmark problem,

which has been studied for several decades now, there are numerous prior solutions in the

literature, e.g., [77], [78], [76], [79]. There are many similarities between this prior work

and the work presented in this chapter. For instance, the idea of defining a Balance region

and then defining strategies to deliver the system to this region is common in all attempts

to this solution. However, the way this has been achieved is not always straightforward,

and the strategies presented in works such as [77] are fairly intricate and delicate. Other

strategies such as [78] do not take into account any of the constraints discussed in the present

work. [76] addresses only one of the modes of the hybrid strategy - swingup.

However, quite apart from these specific issues, the primary purpose of the above

exposition has been to develop an approach to thinking about difficult control problems,

taking into account the full range of issues - ranging from smooth nonlinearities to state

and actuation constraints. Through the study of this benchmark design problem, we have

established that it is possible to accommodate a variety of task specifications in a common

framework - involving the definition of target dynamical systems, natural region boundaries

for each of these target dynamical systems, derivation of weak sufficient conditions for the

achievement of these targets and the derivation of specialized constraints that preserve the

above guarantees in the presence of deleterious effects that plague practical robotic systems.

This notion of incrementally accumulating constraints is useful because it enables the user
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Figure 3.10: Results of dynamic simulation of the pivot-torque pendulum global con-
trol system, synthesized using numerical parameter optimization for selected architectures.
Plots (a - d): Linear local controllers. The system stabilizes within the Balance region in
just under 10 seconds. Plots (e - h): Nonlinear (sigmoidal) local controllers. The system
has stabilized within 6 seconds. Plots (i - l): Nonlinear local controllers, with random vari-
ation in the time base for u(θ, θ̇). i.e., random sampling time. This takes longer to settle, 8
seconds, but this is still faster than the linear case. This illustrates tolerance of the energy
control strategy to imperfect implementation.
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to stop the analysis at any point, when the available information is insufficient, and solve the

rest of the problem using optimization or learning algorithms. This is an important benefit

in the face of imprecise knowledge.

Most robotic tasks of practical interest are more complex than the cart-pole system,

due to higher dimensionality, tighter coupling with an environment that could act adver-

sarially and more imprecision regarding the dynamics. Nonetheless, many of the insights

gained from the analysis in this chapter continue to be relevant. Importantly, this chapter

lays the foundation for and argues in favor of a three step methodology involving prob-

lem decomposition into low/high-dimensional versions, reasoning about the task in a low-

dimensional system and embedding the solution in the high-dimensional system through

optimization or machine learning.

The simplicity of the pendulum and cart-pole problems in this chapter allowed us

to solve two distinct problems at the same time, but the more difficult tasks treated in the

rest of this dissertation will require us to distinguish between:

1. Motion planning: the definition of the global behavior in terms of a hybrid system

that uses phase space geometrical structures (manifolds such as homoclinic orbits,

energy level sets, etc.).

2. Local controller design for following the planned trajectories.

The latter problem, of local design, can be solved in a variety of different ways.

When a dynamical model is available, one could draw on several advances in model

based design techniques. The approach to local design in this chapter is loosely related to

the model reference control [59, 60] technique. Geometric control theory, e.g., see the book

[89], further extends this in the form of energy shaping. Both of these would be excellent

ways to (locally) stabilize the system around a dynamically realizable trajectory.

In future chapters, we will begin to focus our attention on the lack of detailed in-

formation about high-dimensional dynamics. In such scenarios, a preferred approach is

predictive control (also known as receding horizon control), augmented by function ap-

proximation schemes such as neural networks 7, see, e.g., [90, 91].

So, once a dynamically realizable trajectory has been computed, existing methods

are sufficient to ensure that they are followed. Even in the absence of system models,

techniques such as in [90, 91] can be used to arrive at stabilizing and tracking control laws.
7In fact, such a design can be carried out with the aid of software toolboxes, e.g., using the neural network

predictive controller implemented in the Matlab R© Neural Network Toolbox.

57



However, the global problem of generating trajectories to achieve a complex task, despite

the absence of good high-dimensional dynamics models or perfect observations of a pre-

existing solution, is relatively unexplored although it is crucial. This will form the focus of

later chapters.
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Chapter 4

Bipedal Walking: Motion Planning
for a Template Model

4.1 Introduction to the Dynamic Bipedal Walking Problem

Legged robots represent great promise for transport in unstructured environments. Particu-

larly, in environments such as swamps and rocky landscapes, and in applications requiring

low impedance controlled behaviors - e.g., rescue or exploration, legged locomotion may

be the only feasible modality. For this reason, they have captured the imagination of the

researcher and the lay-person alike, and resulted in several decades of intense research ac-

tivity. Over the years, several legged robots, often bipeds, have been constructed - to walk

[73], hop [2], run [69, 92] and even perform gymnastic maneuvers [93]. Yet, we are far

from having motion planning algorithms that allow us to replicate the efficiency and flexi-

bility of human walking over natural irregular terrains, e.g., while stepping over a sequence

of rocks on a pond.

While robotics researchers struggle to achieve these ambitious goals, we see that

a majority of land animals travel on legs [4] and they do so in a very efficient, reliable

and graceful manner, with minimal cognitive effort and attention. How can we replicate

this success? In the spirit of functional biomimesis, can we design motion planning and

task level control algorithms that can achieve this elusive combination of efficiency and

flexibility? This is the primary focus of this chapter, and the next.

As such, there are only a few hard requirements that specify the task of walking.

The legs of the bipedal walker must swing to intermittently make contact with the ground
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at a sequence of progressively spaced footholds, and this must be achieved while the torso

is being help upright, i.e., without falling down on the ground or adopting other modalities

such as crawling. At this level of generality, the task is ill-posed. It is this ill-posedness that

permits the incredible flexibility that is seen in animal locomotion 1. So, the algorithmic

challenge is twofold - (a) to develop least restrictive ways to regularize the motion planning

problem, without completely losing the inherent flexibility afforded by the task and (b) to

ensure that the resulting strategies are well behaved, e.g., stable on regular terrain.

To make the problem concrete, consider the terrain depicted in figure 4.1. In order

for a bipedal walker to safely cross the river, it would be desirable to step precisely on the red

dots which are good footholds. This is the only real constraint arising from the environment.

Typically, the walker has a finite sequence of such footholds corresponding to a horizon

within which sensing is reliable. The goal of motion planning is to generate trajectories

in the phase space of the walker that can achieve this external goal, in the incremental or

on-line fashion that these goals become known to the walker, and in an energy efficient

and safe way. By safe, we mean that the dynamical properties of the algorithm should be

amenable to analysis and should support some measure of reliability.

Moreover, as stated in section 1.1, this problem needs to be solved in the absence

of analytical models of the high-dimensional nonlinear dynamics. This is coupled with the

fact that even simple walking machines are capable of surprising complexity [94].

4.2 Some Important Ideas in Dynamic Bipedal Walking

The bipedal walking problem has been studied for several decades and the complete list of

different techniques used to address this problem is too long to be cited here. References

that serve as landmarks in this field include [95, 2].

Early work in bipedal walking treated the walker as being similar to any other ma-

nipulator, the only differences being in the way the payload, i.e., the torso, was being trans-

ferred between manipulators that maintained contact with the ground. However, this re-

quired the robot to act as a statically stable system so that traditional trajectory generation

strategies could be adopted without having to account for the intermittent nature of leg con-

tacts. The necessary condition for static stability is that the center of mass must lie within
1For a light hearted, but insightful, look at the possible variety of walking gaits, the reader is invited to

watch the television show, Monty Python’s Ministry of Silly Walks. Many of the gaits described there would be
very hard to achieve with state of the art planning and control techniques.
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Figure 4.1: A typical terrain requiring the ability to deal with intermittent footholds. The
sequence of good footholds (red dots) represents the primary constraint placed on the walker
by the environment.

the support polygon which is defined as the convex hull of the feet that are supported by

the ground. For a bipedal robot, with only one small foot on the ground, the set of stati-

cally stable poses is very small and so gaits based on this requirement are inefficient and

unnatural.

In an attempt to bring in the notion of dynamic stability, which allows for a larger

set of configurations to be utilized by a trajectory generator, several measures and require-

ments were developed. The most popular ones are the Center of Pressure (CoP) and the

Zero Moment Point (ZMP) [96]. The Center of Pressure is defined as the distance weighted

average of the pressures on the feet, shown in figure 4.2 for an infant’s foot. The Zero Mo-

ment Point is the point on the ground where the tipping moment acting on the biped, due

to gravity and inertia forces, equals zero; the tipping moment being defined as the compo-

nent of the moment that is tangential to the supporting surface. With these concepts, the

stability condition can be specified concisely as - keep the CoP and ZMP within the support

polygon. This is a necessary condition for dynamic stability but not sufficient. So, these

principles are often combined with motion planning algorithms, e.g., to drive a constrained

search process in the pose space [97]. Many modern robots utilize this approach, the most

famous example being the Honda Asimo robot.
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(a) (b)

Figure 4.2: (a) Picture illustrating the Center of Pressure. The red arrows denote the mag-
nitude of the pressure at a few discrete points and their distance weighted average is the
blue dot, the CoP. (Photograph courtesy of Dr. Jerry Pratt, Florida Institute of Human and
Machine Cognition). (b) Illustration of the Zero Moment Point - the point about which the
net gravitational and inertial torques are zero.

There remains the need for a more comprehensive set of principles to encode the

task of walking, that enable more dynamically dexterous behaviors than the above men-

tioned heuristic approaches. In recent years, this problem has been addressed by several

teams of researchers, resulting in admirable successes [73, 48, 32, 72, 98]. One common

theme on which each of these techniques represents a variation is the definition and use of

low-dimensional task descriptions in terms of different physical and mathematical princi-

ples.

The earliest work in this series, by Pratt et al. [73], was based on the notion of

Virtual Model Control wherein a set of “intuitive” heuristics were used to formulate a hybrid

control strategy of the following form.

• Local Control Laws: Proportional-Derivative controllers (i.e., enforcing spring-damper

dynamics) for each of the following,

– Height: maintain constant height above the ground, which amounts to control-

ling a more directly measurable quantity - leg length.

– Pitch: maintain a level pitch or follow some predefined trajectory.

– Forward speed: change stride length and or transition time between modes

– Swing leg placement: Either let the swing leg move passively, after an initial

push, or control its trajectory as a function of time or state
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• Mode Transition Rules: Transition between double support (i.e., both legs on the

ground) and single support (only one leg supporting the torso) according to the fol-

lowing rules,

– Go from double to single support if the body is within certain distance of next

support leg

– Go to single support if the body is more than a certain distance away from

previous support leg

– Go to double support if a certain threshold time, for single support phase, is

exceeded

– Lift the swing leg if the force on the leg falls below a threshold

The primary benefits of this approach is that each rule is a direct, and simple, im-

plementation of a local behavior. The desired global behavior can then be synthesized by

empirical tuning.

Tedrake [48] took this further by realizing that if one were to begin with a passive

dynamic robot, that is inherently stable albeit for some narrow range of down-slope condi-

tions, then the use of these local control principles enables a concise encoding of the task

of actuated-passive walking on suitably regular and smooth slopes. Moreover, the process

of empirical tuning may be replaced by machine learning (policy gradient reinforcement

learning) such that the robot can improve its performance and adapt to changes in the envi-

ronment.

The difficulty with the virtual model control approach, however, is that it is hard to

establish properties of the global behaviors. How do the rules interact? What are the limits

of applicability of each local mode? When does the overall strategy lead to walking? As

discussed in chapter 3, these global issues are crucial for task achievement. One way to

overcome these difficulties is through the use of nonlinear control design techniques.

In the work of Hofmann et al. [32], the starting point is a feedback linearization

controller [60], based on a detailed analytical model of a simulated robot’s dynamics, that

reduces the control target to a decoupled linear system. From the point of view of task

encoding, this model based control design process has the same effect as the use of the

passive dynamic walker in the work of Tedrake [48], in that it eliminates the complexity

of nonlinear dynamics and reduces the higher level planning/learning problem to one of

tuning with a much more benign system. [32] includes a detailed discussion of the use
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Figure 4.3: Block diagram of the controller used to perform walking using virtual con-
straints, adapted from [98]. p represents degrees of freedom of the low-dimensional system
after the virtual constraints have been actively enforced.

of temporally flexible planning algorithms to synthesize trajectories that can be executed

within architecture to achieve walking on regular and irregular terrains.

Westervelt et al. [72, 71] formalize this intuitive notion of virtual model control

in mathematically rigorous terms. They utilize the notion of virtual constraints [98] to

specify an encoding of the desired outputs of a high-dimensional nonlinear system. Virtual

constraints are relations among the links of the mechanism that are dynamically imposed

through feedback control. Their function is to coordinate the evolution of the various links

throughout a step which is another way of saying that they reduce the degrees of freedom

with the goal of achieving a closed-loop mechanism that naturally gives rise to a desired

periodic motion. As long as suitable virtual constraints, limit cycle periodic trajectories

in [72], are being actively enforced, the control problem reduces to that of ensuring the

stability of the zero dynamics [60]. The resulting procedure is diagrammed in figure 4.3. It

is even possible to modify the virtual constraints over time, e.g., to switch between walking

speeds. However, the resulting mathematical analysis still requires sufficient regularities.

So, for instance, the switch may correspond to sufficiently slow transitions between stable

limit cycles but not to an irregular foot placement sequence such as in figure 4.1.

The above mentioned approaches, all of which were proposed only within the last

decade and are still under active development, provide very valuable insights and guidance

for the way forward. However, they do not address the requirements stated in section 1.1.
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The rigorous techniques based on nonlinear control theoretic approaches [32, 72, 98] are

critically dependent on having precise and detailed analytical models. Moreover, adapting

them to scenarios involving imprecise models is an entirely nontrivial undertaking [99]. On

the other hand, machine learning based approaches [48], that are geared to handle model

imprecision, are not yet capable of dealing with the instabilities and dynamical complexity

of realistic robots. They depend on having a preexisting solution that reduces the learning

problem to one of performance improvement.

Lastly, as stated in the introduction to Raibert’s influential book [2], one of the

major driving forces behind the study of legged robots is the possibility that it may yield

insights about similar controlled processes in nature. However, many existing approaches

based on engineering control theory do not strive for this connection to biological reality -

instead, assumptions and simplifications are driven primarily by mathematical and analyti-

cal convenience. The work of Pratt et al. [73] is an important exception to this rule in that

they strive to utilize and embody aspects of natural walking, e.g., passive dynamics, in their

designs - with admirable success.

The goal of this chapter, and the next, is to present a novel approach to movement

generation for bipedal robots. This approach will draw essential insights from the previous

works mentioned above - the use of low-dimensional virtual models to encode the task,

the use of passive dynamics to simultaneously address the goals of underactuation and

low-attention, the use of learning to adapt to an unknown environment, etc. - but each of

the constituent algorithmic components will be structured differently, allowing us to more

directly addresses the goals stated in section 1.1.

4.3 Observations Regarding Biological and Biomimetic Robotic
Walking

Depending on one’s perspective, bipedal locomotion seems surprisingly difficult or trivially

easy. Locomotion results from complex dynamical interactions between the walker and its

environment. The walker, whether natural or artificial, is a complex multi-link mechanism.

The environment is also complex and constantly changing. Yet, legged animals do not seem

to be bogged down by this complexity.

Nature penetrates the wall of complexity through the clever use of synergies and

symmetries. In [6], Full and Koditschek present a strong argument that animals handle

65



complexity by devising control strategies based on dynamically simple template models

and then embedding them into the higher dimensional physical system, the anchor. There

is reason to believe that this is a generally applicable law of nature. Even animals with

an essentially infinite-dimensional actuator, e.g., the octopus, synergize the motion down

to low-dimensional stereotyped movements [100] that act as templates. Observations of

infants [101] during their first walking months demonstrate that the process of learning to

walk includes, as a critical step, the process of learning to reliably synergize their muscles

to make each leg behave like a rigid pendulum.

With these observations in mind, the discussion of virtual models and constraints

in the previous section should seem entirely natural. However, the templates observed in

nature are often different from the choices made in earlier engineering designs - where

decisions were driven primarily by considerations of analytical convenience.

The dominant hypothesis regarding templates for bipedal walking is that each leg

acts as a pendulum, executing a compass gait [11], [5] - walking consists of a synchronized

sequence of vaulting over an inverted pendulum and swinging a suspended pendulum, in a

suitably synchronized fashion. Roboticists have constructed systems that are direct physi-

cal embodiments of this model, e.g., [102, 9]. In [8], we find mechanical embodiments of

actuated versions of simple compass gait robots and an empirical demonstration that they

are capable of walking on flat ground. While these machines are elegantly simple, they are

also fragile and unsuitable for rugged environments. In [9, 94], we find mathematical analy-

sis of the dynamics of this class of simple walkers. The walker is analyzed as a nonlinear

system, to locate periodic orbits whose stability is understood in terms of convergence in a

Poincare map [86]. This analysis provides insight but it does not make it possible for the

walker to navigate rugged terrain. Nonetheless, the work on passive walking highlights an

organizing principle in nature - the dynamics of the interaction with the environment can be

gainfully utilized to implement energy storage and exchange mechanisms, bringing down

total energy consumption [4]. Even in situations where energy storage mechanisms, e.g.,

springs, are not physically available in the robot, it is often more energy efficient to simulate

the passive component than it is to pursue alternate active strategies.

Concretely, the compass gait model for walking is depicted in figure 4.4. This

model focusses attention on the torso, which is the heavy payload and whose movement is

the primary reason for application of forces. The torso is vaulted over the support leg which

is alternately the right and left leg. Forces need to be applied in each double support phase,

to redirect the torso as shown. Also, the swing leg needs to move forward to become the
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Figure 4.4: Conceptual schematic of the compass gait model of human walking (Repro-
duced, with permission, from [103]).

next stance leg - which can be achieved passively or ballistically in this model - also the

case in human walking [10].

An additional piece of evidence that supports this choice of abstraction is based on

a recent analysis by Srinivasan and Ruina [104]. They used a minimal model that describes

some key aspects of walking, running and a variety of other gaits - a point mass on telescop-

ing massless legs. This was used with numerical optimization to find energetically optimal

gaits (see figure 4.5). At low speeds, this process “discovers” the compass gait and at high

speeds it discovers running. So, it is not just an accident that humans walk this way but in

fact there is a basis for this abstraction in the energetics of the task.

The point of the above discussion is to motivate the design decisions made in the

current work. Based on the biological and biomechanical evidence supporting the compass

gait, we choose to use it as the template model for task encoding. Loosely speaking, it

plays the role of a virtual constraint as discussed in section 4.2 or the structural aspect of

the qualitative models in chapter 3. However, all of these biological studies are descriptive

in nature, i.e., their goal is to build models that describe what happens in nature. Our goal,

as roboticists, is to go in the other direction - to design strategies that will compel the robot
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Figure 4.5: Some sample paths from the space of possible trajectories that may be achieved
by the simple walker abstraction and the energetically optimal compass gait (Reproduced,
with permission, from [104]).

to behave in suitable ways.

Moreover, walking in the real world requires tradeoffs [4]. In animals, we see

tradeoffs between energy efficiency and the need for rapid reliable maneuvers, e.g., while

escaping from a predator. In robotics, we seek machines that can perform useful tasks as

they walk, e.g., carry a rescue victim while avoiding stepping on debris along the path.

This suggests that gaits ought to be designed to be capable of rapid adaptation to a chang-

ing environment. It has been challenging to implement such adaptation while maintaining

safety. Robots that are designed according to the passive/simple walking paradigm and are

amenable to principled analysis are not well suited to unstructured environments. Corre-

spondingly, several empirically successful adaptive machines have no clear basis for stabil-

ity or correctness arguments.

With all of the above considerations in mind, some concrete technical questions

arise:

1. Can we actuate the compass gait model such that it can be made to walk on irreg-

ular terrain, such as in figure 4.1? In other words - given an underactuated hybrid

dynamical system that behaves as an unactuated inverted double pendulum in single

support and is briefly actuated in double support, can we design a motion plan that

enables the system to safely and reliably achieve a precise sequence of irregularly

spaced footfalls?

68



Figure 4.6: Block diagram schematic representing the approach followed in chapters 4
and 5. A low-dimensional template model is used to synthesize a plan that addresses the
variations in terrain. The choice of the template model ensures dynamical equivalence to the
higher-dimensional robot. This implies that once the dynamical properties of the template
plan are verified, its embedding in the phase space of the higher-dimensional robot can
be treated independent of task and terrain variations - achieved in chapter 5 via a novel
manifold approximation algorithm.

2. Can we do something similar with a higher dimensional robot - with multi-link legs?

Question 1 will be answered in this chapter. This will then serve as the basis for

answering question 2 in chapter 5.

4.4 Outline of a Strategy for Dynamic Bipedal Walking

The high level structure of our approach to dynamic bipedal walking is diagrammed in

figure 4.6.

The overall goal is to generate a trajectory in the phase space of a simulated multi-

link legged robot to traverse a sequence of irregularly spaced footholds. This robot is mod-

eled after the physical robot described in [73] and is implemented in a physically realistic

simulator developed by the same team - the Yobotics Simulation Construction Set. The

structure of this robot is depicted in figure 4.7.

In this chapter, we will design a motion planning algorithm for a template model

based on the compass gait walker. The quantitative parameters of this model will be chosen

such that it will be dynamically equivalent to the multi-link legged robot, i.e., the anchor.
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Figure 4.7: The simulated robot used in our experiments.

Once a low-dimensional trajectory is generated for the template model, it can be embedded

in the phase space of the multi-link legged robot.

This yields a separation between different concerns in the following sense:

• Imprecision in the high-dimensional nonlinear dynamics is handled by data-driven

approximation of the relationship between the template model and the anchor model.

As such, this relationship is not affected by the task and is only dependent on drift in

the system dynamics.

• Terrain variations are addressed by the motion planning algorithm for the template,

and to the extent that the constraints of the anchor model can be translated to corre-

sponding constraints in the template model (e.g., maximum pushoff force, maximum

ankle torque or joint rotation limits), the low-dimensional plan is dynamically realiz-

able.

• By its very nature, the template model is an abstraction of the anchor dynamics and

there may be some constraints or un-modeled dynamics that are not captured by the

template plan, e.g., singularities due to additional degrees of freedom. However,

we generate the high-dimensional trajectory using an approximation algorithm based

on observed high-dimensional dynamics - using the template trajectory primarily to

regularize this approximation. So, to the extent that the template and anchor differ,
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the resulting trajectory will be altered to follow the true dynamics of the anchor -

whose subtleties are, in fact, captured by the data.

Note that all planning and approximation will be done in the phase space - represent-

ing the full dynamics, although results will often be depicted only in terms of configurations

over time.

Posing the problem of dynamic bipedal walking in this manner yields some unique

advantages over the prior work surveyed in section 4.2, as described below.

A walking robot traces out a trajectory in its phase space. Such trajectories can be

described by a low-dimensional mapping,ML : SL 7→ SL, for the template model with the

state space SL ⊂ <M and a high-dimensional mapping, MH : SH 7→ SH , for the anchor

model with the state space SH ⊂ <N . For many locomotion and manipulation tasks, these

curves are in fact restricted to evolve on specific submanifolds 2 in the phase space [53]. To

aid concrete visualization, note that the separatrix trajectory of the pendulum, described in

chapter 3, is a 1-dimensional submanifold corresponding to a particular level of energy. In

fact, each periodic orbit of the undamped pendulum is a 1-dimensional manifold.

For the task of bipedal walking, the global structure of the manifold can be quite

complex. Firstly, there is a stratified structure to the configuration manifold (only some

combinations of joint angles are possible for a given robot geometry and the evolution

is structured according to the current support leg). Even just at this level, involving no

dynamics, the robot’s movement traces trajectories along a stratified manifold, see figure

4.8 for a conceptual illustration. In fact, there are multiple trajectories that can execute any

kinematic trajectory on this configuration manifold. When the dynamics are considered as

well, i.e., in the phase space (generalized positions vs. corresponding derivatives), there

is further structure imposed on the trajectories. The end result is that the task is achieved

using a family of manifolds, each with special structure such as stratification.

When the bipedal walker traverses an irregularly spaced sequence of footholds, it

must make several choices on each step. It must alter its gait continuously - in effect,

jumping between different families of trajectories in phase space (which is analogous to

selection of the appropriate periodic trajectory in a pendulum - a 1-dim manifold). The

selection of trajectories lying on this manifold must be synchronized with the requirements

of the external world - in space and time.
2The reader is referred to [14] for an excellent exposition of differential geometric concepts such as mani-

folds, and their relevance to dynamical systems.
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Figure 4.8: Conceptual illustration of the stratification of the configuration manifold of a
bipedal walker, adapted from [105]. The axes in this figure are the configuration variables,
i.e., joint angles. The manifold structure encodes the fact that - when walking, only some
configurations are feasible. If we were to also include the dynamics, which manifests it-
self as further restrictions on the shape of curves on this configuration manifold, then the
resulting phase space manifold will be even more complex.

The problem of kinematic planning in stratified configuration spaces (i.e., without

considering dynamics or explicit foot placement goals) has been addressed before in works

such as [105], given suitable geometric models of the robot and the environment. When

dynamics are included, the problem has typically been studied as an area within nonlinear

control theory (e.g., as described in section 4.2). Typically, the process involves two stages.

Firstly, the plan is restricted to regular subsets and a preferred trajectory on the manifold - as

opposed to switching between parameterized manifolds and synchronizing to the irregular

terrain. This allows the use of linearization and related techniques, in conjunction with

analytical models, to enforce the preferred periodic gait. However, in a sense, this is side-

stepping the primary motion planning issues that are crucial to the task of irregular terrain

walking.

Correspondingly, the fact that successful achievement requires such topological

structure to be enforced is one of the major reasons why machine learning has been dif-

ficult in this domain. Machine learning algorithms that address this problem in a generic

function approximation setting are confounded by these topological issues. Local function

approximation techniques that have the expressive power to avoid this issue can require an
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impracticably high data density along the manifold. So, in general, it has been hard to use

data-driven approaches to induce behaviors over a reasonably large operating range. Even

more sophisticated algorithms, such as the recent advances in manifold learning, run into

difficulties due to the inherently ill-posed nature of this problem - see [34] for a discussion

on the difficulty of using manifold learning algorithms to infer the existence of parameter-

ized, high-curvature manifolds, etc.

In contrast, we separate the concerns of complexity and uncertainty. The template

model captures the essential structure of the task and enables a much simpler encoding of

the task. The problem of uncertainty is handled by data-driven manifold approximation,

which is made tractable by using the template model to regularize an inherently ill-posed

approximation problem. So, the essence of our approach to computing high-dimensional

trajectories is to establish an equivalence between the maps MH and ML. Due to the fact

that MH is capable of more complex higher-dimensional dynamics, we take this equiva-

lence to be in the nature of an approximation.

Specifically, a good template model mirrors the anchor in two ways:

• It mimics the stratified topology of the anchor phase space.

• On each smooth open subset of the manifold, its trajectories can be described as a pro-

jection (computable from variables that can be readily observed) of the corresponding

anchor trajectories.

So, we will require that the following diagram must commute:

SH
MH−−−−→ SHyπ

yπ

SL
ML−−−−→ SL

The use of this relationship to structure the manifold approximation problem will

be addressed in chapter 5. The rest of this chapter will be dedicated to the design of the

mapping ML to encode the task of irregular terrain walking.
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4.5 Motion Planning with the Template Model

4.5.1 Template Model for Dynamic Bipedal Walking

The template model we use is a variant of the one shown in figure 4.4. Figure 4.9 depicts

the pendulum systems involved in the compass gait abstraction. It consists of three point

masses, one corresponding to the torso and two corresponding to the legs and feet. In

the swing phase, one foot is on the ground and the system has only two moving masses,

the torso and the swinging foot. Viewed from the vantage point of the stationary foot,

the system looks like a double pendulum (when not actuated) and like the acrobot (when

actuated). However, there is one difference in that each leg/link is modeled as being capable

of achieving any desired length quickly, to overcome the terrain. A retraction in this model

would correspond to a movement of the foot and bending of the knee in a multi-link robot.

In numerical experiments, we will use a noticeable retraction (leg length at 80% of full

extension, i.e., ρ = 0.8). However, this variable may be tuned to the terrain conditions.

(a) (b)

Figure 4.9: Schematic of the dynamic model of the template walking machine along with
the relevant variables. Parts a and b correspond to the single support and double support
phases, respectively. Note that the single support phase is un-actuated, i.e., ballistic.

For the single support phase, the equations of motion for this system can be derived

using the Euler-Lagrange equations that encode the physical principle of least action [38].
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The Lagrangian is the difference between kinetic and potential energies of the system,

L =
1
2
(m1 + m2)l12φ̇2 +

1
2
m2l2

2θ̇2 + m2l1l2φ̇θ̇ cos(φ + θ)

− (m1 + m2)gl1 cos φ + m2gl2 cos θ (4.1)

where θ is the angle made by the swing leg with the vertical axis and φ is the angle made

by the stance leg with the vertical axis.

From L, we can derive the equations of motion as two coupled nonlinear ordinary

differential equations. The equations of motion are,

φ̈− k1 sinφ = ∆1 (4.2)

θ̈ +
k1

ρ
sin θ = ∆2 (4.3)

∆1 = −µρ cos(φ + θ)θ̈ + µρ sin(φ + θ)θ̇2 + α1τφ (4.4)

∆2 = −1
ρ

cos(φ + θ)φ̈ +
1
ρ

sin(φ + θ)φ̇2 +
α2

ρ2
τθ (4.5)

where,

µ =
m2

m1 + m2
(4.6)

ρ =
l2
l1

(4.7)

k1 =
g

l1
(4.8)

α1 =
1

(m1 + m2)l12 (4.9)

α2 =
1

m2l1
2 (4.10)

and τθ and τφ are hip and ankle torques. The ankle is not actuated, i.e., τφ = 0, for

the purposes of handling terrain uncertainty, although it remains available for lower level

controllers to compensate noise, etc.

These equations describe two pendulum subsystems, one inverted and one sus-

pended, each perturbed by the other. In most realistic walking systems, µρ ∼ 0, so that

∆1 ∼ 0 when τφ = 0. However, the effect of the stance leg on the swing leg, ∆2, need not

be negligible. In fact, this coupling term continues to influence the motion once the system
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is in single support.

In the double support phase, both legs are on the ground and the system dynamics is

much more constrained. For our purposes, the most relevant dynamics is that of the torso,

which has four forces and torques acting on it to redirect its motion. The system comes

into double support with a state, (φ−, θ−, φ̇−, θ̇−). Following [65] and [66], the double

support phase is treated as being short enough that the configuration of legs is roughly

unchanged (hence, after swapping roles, φ+ = −θ−, θ+ = −φ−) but long enough that

feasibly bounded forces can be applied to influence the velocity variables.

The primary mode of actuation in our strategy is to apply F1, F2, τ1, τ2 during dou-

ble support, which takes a nonzero time, δtDSP
3. These quantities may be computed to

achieve a desired φ̇+. Equating the applied forces to the rate of change of momentum during

double support, and rearranging terms, we get,

[
cos φ− cos θ− − sin φ−

l1
− sin θ−

l1

sin φ− − sin θ− − cos φ−

l1
− cos θ−

l1

]
F1

F2

τ1

τ2


=

m1l1
δtDSP

[
sin θ− sinφ−

cos θ− − cos φ−

][
φ̇+

φ̇−

]
+

[
m1g

0

]
(4.11)

A similar analysis yields the torque τθ to achieve desired θ̇+. With the exception of

these short pulses during double support, the system dynamics will be permitted to evolve

naturally without actuation. This is consistent with empirical observations of human walk-

ing, where muscles are silent during most of the swing phase and all activity is restricted

to short intervals at the beginning and end of the swing. Similarly, for the use of toe-off

forces, biologically implemented via plantarflexion.

The equations of motion define a nonlinear map, in terms of the state space, S1 ≡
{φ, θ, φ̇, θ̇}, a subspace, S2 = {φ̇, θ̇} and the action space, A = {F1, F2, τ1, τ2, τθ}. The

dynamic evolution of the system yields mappings between these spaces. In particular, the

single support phase represents the uncontrolled map, MSSP : S1 7→ S1 and the double

support phase represents a map, MDSP : S2 × A 7→ S2 which does not influence the
3This is a design decision. We make this choice of actuation schemes to mirror the capabilities of the robot

that will eventually be the anchor for this template model. However, one is free to dictate other choices of
double support actuation schemes and the rest of the argument would still go through.
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kinematic variables, θ and φ. At the algorithmic level and for planning purposes, it is

assumed that these maps admit functional evaluation, either through a dynamic simulation

or by experiments on a physical robot.

Note that the system is underactuated (in fact, unactuated) in the single support

phase. So, the problem of motion planning is one of designing an appropriate strategy such

that, given a sequence of irregularly spaced footholds, a corresponding sequence of double

support forces can be generated, or the problem can be declared infeasible, a priori. The

latter statement is essential to safety.

4.5.2 A ballistic parametrization for irregular terrain gaits

Motion capture traces of human walking reveals that gait is almost never as regular as a

simple limit cycle [106]. This is even more true when we consider walking on natural

terrains which might involve irregular sequences of footholds. However, people do walk

for long periods of time, without becoming unstable or falling down, and without really

thinking about this process of walking. In fact, the key feature of walking is that one could

continuously switch between different forms of gaits, in principle - drawn from an infinite

family of such gaits - and still be “stably walking”. What this means is that the essential

requirement is not that of convergence to a preferred periodic orbit but in fact a form of

weak invariance [81] that ensures containment within a set of suitable behaviors. This is

what imparts the flexibility required over irregular terrain. We will now describe a scheme

that will allow us to construct a family of trajectories with this property.

The behavior of the stance leg of the compass gait biped is represented by the family

of rotation orbits, and the swing leg behavior is represented by libration orbits. A compos-

ite orbit obtained by switching between representative trajectories from these qualitatively

defined families of orbits is capable of describing the walking behavior. Of course, not all

compositions will be admissible and further conditions will be necessary to achieve foot

placement goals and satisfy constraints.

This process of composition is depicted in figure 4.10. The swing leg and stance leg

trajectories will have to synchronize for the robot to successfully walk. Further constraints,

e.g., desired step length, will enter this picture indirectly, as constraints on the sets from

which trajectory segments may be chosen. This composition results in mappings of the

form, MDSP ◦MSSP : S1 × A 7→ S1. Steady walking consists of a suitable composite

sequence,MDSP ◦ . . . ◦MSSP ◦MDSP : S1×A 7→ S1. The goal of planning is to select
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Figure 4.10: Synthesizing composite trajectories based on selections from families of qual-
itatively similar orbits. This figure depicts only a few representative rotation and libration
trajectories. In fact, these are dense families and there are infinitely many such curves to
choose from. Note that, for clarity of exposition, the trajectory segments have been aligned
and transition is a simple vertical line. In general, these trajectories could be asymmetri-
cal and aligned differently along the velocity axis, depending on kinematic conditions and
terrain.
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a policy of forces and torques that will impart certain properties to this map.

The basic property we wish to ensure in these maps is that the swing leg and stance

leg trajectory segments are synchronized, i.e., they take the same amount of time to reach

the planned footfall position. For a pendulum, the swing time may be determined analyti-

cally [107]. In terms of a parameter describing energy, κ =
√

1
2(1 + E

mgl ) (where m and l

stand for m1/m2 and l1/l2, as appropriate), we have for small angles,

τ(κ) =
{ 2π

√
l
g κ < 1

π
κ

√
l
g κ > 1

(4.12)

and for larger angles,

T (κ, τ) =
{ τ K(κ)

K(0) κ < 1

τ K(κ−1)
K(0) κ > 1

(4.13)

where K(κ) =
∫ π

2
0

dθ√
1−κ2sin θ2

.

Making sure that the swing and stance leg have similar periods is then a matter of

choosing an appropriate κ for each leg, which amounts to a choice of θ̇, φ̇ at the beginning

of each step.

With this, we may directly ensure synchronization by a condition such as the fol-

lowing, ∫ φdes

0

dφ√
φ̇+2 + 2 g

l1
(1− cos φ)

=
∫ θdes

0

dθ√
θ̇+2 − 2 g

l2
cos θ

(4.14)

This assumes that the stance and swing legs are decoupled. Strictly speaking, the

swing leg is driven at the pivot by the movement of the torso. This complicates the dynamics

of the swing leg and raises interesting questions about what sorts of footholds are in fact

achievable. In fact, dynamic analyses of passive dynamic walkers, e.g., [94], bring up this

very issue in the form of emergence of chaotic gaits.

It is well known that the driven simple pendulum is chaotic [107]. The primary

implication of this fact is that the 1-dim manifolds in figure 4.10 are going to be distorted

such that closed form equations such as 4.12 and 4.13 no longer hold exactly, and this brings

up the question of how trajectories can be selected according to the scheme proposed in

figure 4.10.

The source of this chaos is a resonance between the natural periodic dynamics of

one leg (swing) and the periodic components of the external driving force due to the other

79



(torso on top of stance leg). A key feature of the transition to chaos is that it is gradual. As

the driving amplitude is smoothly varied from a small value, only a few trajectories near

critical points and the separatrix are affected. This means that only a few critically slow

gaits are invalidated. Chaos begins here and slowly affects the rest of phase space. For

our purposes, this implies that families of topologically equivalent orbits do not suddenly

disappear. Instead, these regions gradually shrink. Eventually, as the driving amplitude

increases, no meaningful qualitative statements can be made - global unpredictability sets

in. If we can identify operating regimes and phase space regions where regular trajectories

persist then we can still implement the strategy discussed so far, safely ignoring the more

complex dynamics in other regions of phase space.

So, at moderate walking speeds, these nonlinear dynamic effects are not significant.

More importantly, for moderate levels of driving forces, the primary effect is that the peri-

odic orbits are distorted and equations such as 4.12, 4.13 become approximations. To the

extent that the primary role of the template model is to provide guidance on the topology, in

order to regularize the approximation problem outlined in figure 4.6, these distortions are

not significant.

However, in order to demonstrate that the template model can be used without such

approximations, we will present a numerical search algorithm that can effect the desired

synchronization. The properties of the resulting scheme can be analyzed and used to infer

safety on specific terrains.

Prior to that, we describe the results of a numerical experiment intended to estimate

the regimes where the dynamics are regular. Our method is to observe the phase space

behaviors through the evolution of randomly distributed points in phase space. By allow-

ing an ensemble of points to evolve for a short period of time, we are able to visualize the

deformation of the phase portrait. Figure 4.11 depicts a representative result of these exper-

iments. We have overlaid the original trajectory shapes from figure 4.10 over our random

dots results to aid visualization.

Regular regimes correspond to bounded φ̇, θ̇, i.e., bounded subsets of S1. In partic-

ular, the following constraints will yield an operating region in state space where the chaotic

effects will not be significant:

1. Swing and stance leg angles, φ, θ, are restricted to a magnitude of 45o, from basic

mechanical considerations.

2. The stance leg trajectories are restricted to “separatrix-like” trajectories, i.e., to a
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Stance leg Swing leg Swing leg constr.

(a) (b) (c)

Figure 4.11: Random dots based phase portraits for the nonlinear system of equations 4.2
and 4.3. Phase space trajectories representing the unperturbed pendulum have been overlaid
on the results to enable visualization of the deformation due to chaos. Note that these phase
portraits correspond to the full 4-dim system. Each plot represents a projection onto a 2-dim
phase plane, with angular position as the x-axis and angular velocity as the y-axis. As seen
in part b, the swing leg phase space has been significantly perturbed. However, by placing
the constraints outlined in the prose, we are able to extract a family of regular trajectories,
as shown for the swing leg in part c.

1-dim manifold defined by φ̇ = β
√

2g
l1

(1− cos φ), where β = 1 describes the sepa-

ratrix. This equation defines the chosen value of φ̇+ in the double support phase.

3. The magnitude of swing leg velocity, θ̇, is bounded above in our experiments [0,8]

rad/s.

4.5.3 An algorithm for intermittently actuated passive walking

We are now able to describe the motion planning algorithm 1. The concrete problem we

solve is that of walking on a series of footholds, presented sequentially - one step at a time,

in terms of a desired displacement (xd, yd) measured from the current stance leg foothold.

There are several ways to select footholds, based on a variety of considerations that are

commonly used in deliberative planning. However, footholds selected by any technique

can be translated to a requirement in (xd, yd).
The only step involving active control with energy injection/dissipation is double

support, representing the application of constant forces and torques for a small period of

time, δtDSP . In our experiments, we fix this time period in order to compute forces and
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torques. However, this value is a variable that can be changed for other experiments, perhaps

based on empirical data.

Algorithm 1 Intermittently actuated passive walking algorithm

INPUT: Initial state, φ−, θ−, φ̇−, θ̇−, and an assignment of swing and stance legs (e.g.,
stance = right, swing = left)
OUTPUT: Intermittently-actuated ballistic trajectories

while (xd, yd) is ahead of (x, y) do
• (Double Support) Apply F1, F2, τ1, τ2 to implement desired value of φ̇+. The stance

leg velocity is given by φ̇+ = β
√

2g
l1

(1− cos φ+). The desired swing leg velocity, θ̇+,
will be computed by numerical optimization (described in the prose). This value can
be achieved using τθ. This represents the execution of the map,MDSP : S2×A 7→ S2.
• (Transition) Retract the swing leg to length l2.
• (Single Support) Allow the dynamics to evolve passively, according to the map
MSSP : S1 7→ S1, until a stopping condition is reached (described in the prose).
• (Transition) When this stopping condition is reached, assign new values to
φ−, θ−, φ̇−, θ̇− and extend the swing leg from length l2 to l1.
• (Transition) Swap the roles of legs (e.g., for the first step, we will have stance = left
and swing = right) and assign φ+ = −θ−, θ+ = −φ−.

end while

The desired amount of energy injection is computed by numerical optimization. In

effect, this computes the inverse mapping MSSP
−1. The dynamic simulation for MSSP

is executed until a stopping condition is reached, specified by geometrical considerations.

The requirement is that φ(t) = φdes and θ(t) = θdes for some value of t. If A(x1, y1),
B(x2, y2) and C(xd, yd) are the coordinates of the torso COM, swinging foot and desired

foothold respectively, then φdes and θdes result from the consideration that AB and BC lie

on the same line and AC has length l1. We will use the former requirement and terminate

the simulation when the following quantity crosses zero:
[
xd − x1 + (yd−y1)(x2−x1)

(y2−y1)

]
. The

constraint that l1 = |AC| is handled in the optimization. This condition is illustrated in

figure 4.12.

The computation of γ = {θ̇+, β} needs to be a constrained minimization. The

constraints involved are listed below:

1. φ ∈ [−45o, 45o], θ ∈ [−45o, 45o]

2. θ̇ ∈ [0, 8] rad/s
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Algorithm 2 Computation of γ = {θ̇+, β} in the Double Support phase
INPUT: Procedures implementing (via a Runge-Kutta solver) the nonlinear map,
MSSP : S1 7→ S1, based on equations 4.2 and 4.3. This defines φγ(t) and θγ(t).
INPUT: Procedure for the solver termination event - geometric stopping condition (de-
scribed in the prose)
OUTPUT γ = {θ̇+, β}
• Generate a set G of N well-distributed (within specified finite intervals) values for
γ = {θ̇+, β}

for each element in G do
- Evaluate J = |w1(xd − [x3(t2)]γ)2 + w2(yd − [y3(t2)]γ)2 + w3(φ̇+

γ )2|
- With J1 = |w1(xd−[x3(t2)]γ)2+w2(yd−[y3(t2)]γ)2| and J2 = |w3(φ̇+

γ )2|, compute
the best multiobjective optimum from the above set (subject to constraints mentioned
above) using a vector distance from the origin,

√
J2

1 + J2
2 .

end for
• Solve a sequential quadratic program for the γ = {θ̇+, β} from the previous step to
refine the solution.

Figure 4.12: Illustration of the zero-crossing event that terminates the dynamic simulation
used to optimize for γ = {θ̇+, β}.
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3. 0 < F1 < Fmax, 0 < F2 < Fmax, |τ1| < τmax, |τ2| < τmax

The last constraint, for finite actuation, is handled as follows:

With, A,B defined as (from equation 4.11),

A =

[
cos φ− cos θ− − sin φ−

l1
− sin θ−

l1

sinφ− − sin θ− − cos φ−

l1
− cos θ−

l1

]
(4.15)

B =

[
sin θ− sinφ−

cos θ− − cos φ−

]
(4.16)

Solve the quadratic program,

x = arg minx′Ix

such that, Ax = B

where x = {F1, F2, τ1, τ2}′. This yields a minimum norm solution to the force assignment

problem. Additional requirements could be incorporated into the above step, through the

use of the more general quadratic cost, 1
2x′Qx + cx.

Solving the above optimization problem amounts to achieving the kinematic spec-

ification (xd, yd) through the use of a low energy, rotation trajectory for the stance leg.

The kinematic specifications specify a curve in the 2-dimensional space (see figure 4.13)

of γ, not a unique point. An optimization problem that is based on just this requirement

(with w3 = 0) would be underspecified and the solution would oscillate along this feasible

curve. This is undesirable because it implies significant unnecessary force expenditure to

switch between orbits. The term, w3(φ̇+)2, is intended to encourage convergence towards

a low energy gait, in keeping with our goal of energy efficiency. In a multi-objective and

multi-task environment, the above cost functions may be augmented without impacting the

structure of the algorithm.

Note that, unlike with purely passive walkers, e.g., [94], we are actuating the system

in double support to achieve desired footfall goals, (xd, yd). This changes the emphasis of

the analysis - in particular, the effects of impacts and other minor errors accumulated along

the step can be compensated directly, in a deadbeat fashion, during double support. More-

over, the constrained optimization framework allows us to ensure that the trajectories that

are being chosen are actually realizable given the limited authority of the robot’s actuators.
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(a) (b)

Figure 4.13: Illustration of the feasible surface from which optimization selects a single
value of γ. This plot is generated by running the dynamic simulation (until the stopping
event is reached, and from a fixed initial configuration) for various values of γ spanning a
finite interval. The meshed planes represent xd, yd. We can see that there are multiple values
of γ that will minimize the kinematic cost alone (along the intersection between the curved
surface and the plane), and this is why the problem should be treated in a multiobjective
fashion.

The procedure described in this section is a regularized global optimization algo-

rithm. As such, this requires more computation than one might wish to invest in an on-line

scenario. However, to the extent that it is completely specified analytically, one could use

the above procedure off-line to acquire a more direct mapping between α = (xd, yd) and

γ = {θ̇+, β}. A candidate representation for such a mapping would be radial basis func-

tions of the form,

γj =
∑

i wi(α)γji∑
i wi(α)

(4.17)

wi(α) =
1

2πΣ
1
2

exp
{
−1

2
(α− αi)′Σ−1(α− αi)

}
(4.18)

This approach of approximating a computation-intensive solution for the purposes

of on-line operation is a common tactic in many modern predictive control works such as

[90, 91]. In fact, the procedure described in this section is also a model-predictive algorithm.

The resulting map is a simple, explicit representation of the strategy, allowing the

above algorithm to be used online in realistic robots. In biology, such a map may be ac-
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quired developmentally, through continuous learning. The point of the design in this chapter

is to constructively arrive at a similar result.

4.5.4 Energy control within the template model

One of the benefits of parameterizing the families of feasible trajectories that are used in the

search process of section 4.5.3 according to energy levels is that it leads to a fairly natural

definition of the objectives of disturbance rejection algorithms. Specifically, to the extent

that synchronization of the stance and swing legs is an important requirement, we can utilize

the smooth relationship between energy and swing time to correct for disturbances.

Consider the following simple experiment. Define a rule for energy control of the

swing leg as, τθ = −ε(E − E∗). The effect of this control strategy in the face of a typical

disturbance - one that changes the value of θ̇ instantaneously, is shown in the phase space

in figure 4.14. We see that both the ideal and controlled trajectories quickly converge to the

same region of phase space, without compromising global requirements of synchrony, etc.

The small residual error seen in the figure is due to the simple nature of the proportional

control law. A more sophisticated controller would yield significantly improved perfor-

mance. The reader is referred to books such as [89] for an in depth discussion on these

local control issues. For our current purposes, the point of this simple illustration is merely

to note that the trajectories that are being generated by this algorithm can, in fact, be locally

stabilized against disturbances.

4.5.5 Simulation results

We evaluate this algorithm by simulating dynamic walking under progressively more irreg-

ular terrain conditions - going from flat ground, to climbing a set of regularly spaced stairs

to walking on random terrain. In each of these simulations, the robot begins at rest. In every

case, the maximum x-error is within 0.9 mm and the maximum y-error is within 0.3 mm.

These are tight error bounds (for a robot with l1 = 0.84m) and suggest that this algorithm

can be safely used in situations where only small discontinuous footholds are available.

The base case experiment 4 is to make the robot walk along equally spaced footholds

on flat ground. For this case, figure 4.15 depicts the phase space behavior (corresponding
4All experiments in this section were carried out using a simulated robot, based on a dynamic model

whose parameters (mass, leg length) are chosen to the equivalent to the high-dimensional robot model
that will be discussed in chapter 5. The simulation was implemented using a Runge-Kutta solver in the
LabVIEWTMSimulation Module 8.2.
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Figure 4.14: Effect of the simple energy control strategy on the phase space trajectory of
the swing leg.

to the conceptual schematic of figure 4.10).

This corresponds to a steady gait at a forward velocity of approximately 1.1 m/s.

Note that the resulting periodic orbit is not explicitly specified but results naturally from the

nature of the algorithm. Further, we wish to verify whether the periodic trajectory chosen

for this model has any bearing on trajectories that might be selected by more complex

multi-link legged walkers. One way to answer this question is by comparing the speed

versus step-length, for the stable periodic orbit that the algorithm has converged on, against

humans. It is known [65] that humans adopt a preferred speed for each step length. This

relationship is depicted in figure 4.16. The operating point of our algorithm is also depicted

on this plot, and it shows that the chosen operating regime is only slightly away from the

preferred speed curve for humans, at the 110% metabolic cost level. This implies that not

only is the algorithm capable of recovering the stable limit cycle behavior of other walking

control strategies, but also, it naturally results in realistic velocity behavior.

Moreover, figure 4.17 depicts the change in momentum between steps in this base

case experiment. It is clear that within a couple of steps, the algorithm has converged to a

stable behavior.

Next, we wish to demonstrate that not only does this strategy recover periodic gaits

but is also has the flexibility to traverse irregular terrain. For this, we make the robot climb a

flight of stairs, with results depicted in figures 4.18 and 4.19. From figure 4.16, we note the

empirical observation that humans walk faster when step lengths increase. This is indeed
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Stance leg Swing leg

(a) (b)

Figure 4.15: Hybrid phase space trajectories for simple flat ground walking. Notice that,
barring transients, the trajectories settle into a stable limit cycle comparable to that resulting
from traditional techniques.

Figure 4.16: Relationship between preferred forward speed and step length in human walk-
ing. The blue line depicts empirical data that also minimizes metabolic cost. The absolute
minimum and the operating point of our algorithm are depicted by black dots.
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Figure 4.17: Change in momentum (depicted in terms of the difference, φ̇+− φ̇−) between
steps for the base case experiment. Notice that the algorithm leads to a stable choice of
a periodic trajectory. This means that there is no change in momentum due to switches
between energy level, although there is some baseline energy that must be pumped in to
redirect the torso on level ground.

our observation as well and the trajectories cluster around two different orbits according to

this change in speed.

Lastly, figures 4.20 and 4.21 depict results for irregular footholds in two dimensions.

Due to the wide variations in footholds, each step requires a different trajectory. We believe

this to be the first demonstration of actuated passive walking on an irregular sequence of

footholds.

The stability or correctness of gaits resulting from the proposed strategy may be

characterized by the availability of a nonempty family of feasible trajectories, given a real-

ization of the foothold sequence. The primary constraint that dictates what is achievable is

that of energy injection or dissipation. It follows from equation 4.11 that there is a bound

on the maximum change in momentum that can be achieved within a single step,∣∣∣∣12ml21

(
φ̇+2 − φ̇−

2
)∣∣∣∣ ≤ δE (4.19)

Given specific limits on δE, we have a limit on δφ̇2 which can then be translated

into maximum x and y variations in step length.
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Figure 4.18: Configuration, over time, of 12 steps of the simulated robot climbing a flight
of stairs.

Stance leg Swing leg

(a) (b)

Figure 4.19: Hybrid phase space trajectories for stair climbing. Notice that trajectories
separate into two categories, for flat ground and ramp respectively. Also, notice that the tra-
jectory segments corresponding to the ramp are asymmetrical, in terms of the angle (φ, θ).
This is a natural consequence of the geometric configuration of the robot as it transitions
between steps.

90



Figure 4.20: Configuration, over time, of 10 irregularly spaced steps. The step length is a
Gaussian random variable, N(0.75, 0.1) resulting here in an interval [0.494, 0.799] m and
step height is N(0.0, 0.025) resulting here in the interval [−0.037, 0.045] m.

Stance leg Swing leg

(a) (b)

Figure 4.21: Hybrid phase space trajectories for irregularly spaced footholds with variations
in 2-dimensions.
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Chapter 5

Bipedal Walking: Learning the
Template-Anchor Embedding

5.1 Relationship between Template and Anchor Models

The primary objective of a good trajectory generation algorithm is to efficiently, and to the

extent possible - constructively, generate trajectories that satisfy the constraints of the task.

When a robot agent begins with little knowledge of system and environmental dynamics, a

period of exploratory data gathering is unavoidable. In this setting, the goal is an efficient

representation and an algorithm that allows the agent to organize and use the data it has

collected such that, eventually, it reaches the point where it can safely and constructively

generate trajectories that satisfy all task constraints. This is the primary benefit of learn-

ing - the ability to acquire reliable strategies using data gathered directly from imperfect

experience.

With dynamical tasks such as bipedal walking, it has been difficult to learn planning

and control strategies directly from data, as already described in chapter 2. One of the main

reasons for this difficulty is the topological structure of the task. Even for a simple compass

gait walker, the discussion in chapter 4 showed that the structure of the strategy is nontrivial

- involving coordinated switching between families of trajectories. By the time we address

the more complex robot that is really of interest, the stratified structure of phase space

trajectories makes learning hard.

When one begins with a relatively clean trace of a single clearly defined behav-

ior, e.g., a periodic gait, it has been possible to extract corresponding low-dimensional

92



manifolds [53]. There have also been some other attempts to utilize subspaces extracted

from Principal Components Analysis to define control laws to enforce periodic trajectories

[55, 56]. However, in these works, the learning algorithm essentially mimics a known good

solution and the resulting strategies do not support trajectory generation with novel goals.

A similar difficulty is faced by many other machine learning approaches. For instance, the

success of the Toddler robot [48], which used a version of policy gradient reinforcement

learning to quickly adapt to smooth slope changes, was crucially dependent on the fact that

the robot was mechanically designed to be stable even when unactuated.

In contrast, we are explicitly interested in beginning with imperfect data, gathered

from a system that can explore interesting parts of the phase space but not reliably perform

the task (e.g., imagine an infant who is still only able to stumble along a few steps at a

time, before learning to walk reliably), and finding algorithmic ways to utilize this data to

generate trajectories. This chapter outlines such an algorithmic approach.

The key idea behind the approach of this chapter is the use of the template model to

shape learning of the dynamics. The main problem faced by a research program that tries

to learn from a tabula rasa is that the problem is highly ill-posed. For instance, learning

is ineffective without some a priori guidance regarding essential phase-space geometrical

and topological issues such as points of high-curvature, intersections, etc. [108, 34]. For

our purposes, the template model - which concisely encodes the task without reliance on

explicit models of the high-dimensional system, provides this information and efficiently

regularizes the ill-posed problem.

The essential relationship between the template and the anchor is defined by the

commutativity relationship between the dynamics. In order to explain the significance of

this, consider the caricature of the high-dimensional dynamics in figure 5.1.

Beginning with no knowledge of the actual structure of the anchor dynamics - i.e.,

not knowing the true shape of the manifold, we are still able to collect observational data

as the robot performs some imperfect actions. This data is in the nature of sample points

or very small trajectory segments - some that will be on the desired manifold and some that

will be away from it (i.e., not corresponding to the task at all). Moreover, in the anchor

phase space, we will have a parameterized manifold structure.

If the robot were executing the task as desired, then the following diagram must
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Template Phase Space Anchor Configuration Space

(a) (b)

Figure 5.1: A conceptual illustration of the relationship between the template and the an-
chor. Part (a) depicts a typical template trajectory for a single leg, switching between single
and double support phases. Part (b) depicts a caricature of how this might map onto the
stratified configuration space of the multi-link legged robot. This is just a caricature in
that the “sheets” in the configuration manifold are really in much higher dimensions and
so the true trajectory is much more complex. However, features such as a switch between
trajectory segments and the topology of the curve are shared by both models, due to their
dynamical equivalence.

commute:
SH

MH−−−−→ SHyπ

yπ

SL
ML−−−−→ SL

What this really means is that any candidate trajectory in the anchor space, when

projected to the template space, must be very close to the trajectories generated by the algo-

rithms in chapter 4. So, even though we do not know the structure of the anchor manifold,

given a specific trajectory - we can verify whether it is a geodesic on this manifold (if it is, its

projection must be the template trajectory between the projected start and end points). So,

the trajectory generation problem reduces to that of regularized trajectory approximation.

The task manifold is the set of all geodesics that satisfy the commutativity relationship.

Before describing the concrete algorithm, we make the following remark about the
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high level methodology. In this chapter, we will describe an algorithmic procedure that

makes use of the template model designed in chapter 4. For the task of bipedal walking,

and given the specific needs of the experiment described in section 5.3, this is a desirable

approach. However, the algorithm that achieves this template-anchor embedding is agnostic

towards the details of the template model, except for the requirement that there must be

dynamical equivalence in the sense of topology of phase space trajectories. So, ML may

be based on any vector field whose effect on the states can be evaluated in the form x+ =
fδt(x−) (i.e., a short trajectory segment of duration δt). In particular, if one were to create

different template models - via nonlinear control design, via learning, etc. then it is still

possible to follow the methodology of this chapter to embed the resulting gait in the higher

dimensional system. Correspondingly, the primary requirement regarding MH is that we

have a sufficiently dense set of observations 〈x−, τ, x+〉i. By continually updating the set

of observations, this procedure can naturally handle variations in system and environmental

dynamics.

5.2 Algorithm for Data-driven Approximation of Task
Manifolds

Based on the above argument, we can state the essential idea behind the algorithm con-

cisely: Given a start and end pose (corresponding to a single step), synthesize a trajectory

in anchor phase space, using suitable segments drawn from the observed data, such that the

template and anchor trajectories are equivalent under projection.

At any given point along the step, it is possible to define an error,

ecomm = f(π(x)− y), x ∈ SH , y ∈ SL (5.1)

The projection π(x) can be computed from geometric/kinematic considerations 1,

so this error can be evaluated both point-wise and path-wise. In particular, it is clear that

this error can be defined for arbitrary trajectory segments lying anywhere in phase space.

If one were to fix a template phase space trajectory (i.e., plan what needs to be done to

achieve the upcoming foothold) in SL, then it is possible to associate an error with every

possible anchor trajectory segment lying in SH . This induces a vector field in SH in terms of
1Interestingly, some neurophysiological experiments show that such projections are directly coded for in

vertebrate nervous systems [109].
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geodesic paths that satisfy the commutativity requirement stated above. Task level control

amounts to following this vector field.

Now, ML is explicitly defined in chapter 4 but MH is not known explicitly. We

have access to a set of observations of the form 〈x−, τ, x+〉i acquired over very small time

intervals (e.g., δt = 10 ms), as the robot performs some random sequence of actions in

order to explore the phase space. MH is some submanifold in this space - i.e., a subset of

our complete set of observations defines the anchor task manifold.

So, the trajectory generation problem is to compute the sequence {xj}, given the

start and end poses for a foot step, such that ecomm is minimized. From kinematic con-

siderations, a foot placement goal corresponds to an end pose. By continuously solving

this trajectory generation problem at each foot step (e.g., in the Double Support phase), the

robot is able to achieve a sequence of foot placement goals and navigate irregular terrain.

Note that the core calculation involves a trajectory from a start to end pose, selecting from a

family of possible trajectories. External effects such as impact and dissipation are naturally

handled - as perturbations to the start pose from which the computation for the current foot

step is performed.

The procedure we adopt is:

1. Allow the robot to perform a sequence of random actions and acquire a collection of

points 〈x−, τ, x+〉i. In practice, it is often quicker to begin with some ad hoc strategy

that serves as a seed for reasonable behaviors. However, the procedure will work

even for random babbling.

2. Organize observations in the form of a graph. Weight each edge of the graph in terms

of the error ecomm.

3. Compute shortest paths in this graph, i.e., geodesics on the manifold, to obtain a

sequence of xj .

The primary role of ecomm is to filter out spurious paths that do not result in stable

walking. If the observations were obtained exclusively from an already experienced stable

walker capable of performing all behaviors of interest, then this weight may not be neces-

sary. However, observations are necessarily imperfect and the set of observations includes

numerous trajectory segments that may not lead to task achievement.

Also, the graph/manifold may be endowed with the property of convergence to a

desired trajectory in the sense that disturbances away from the desired trajectory (a sequence
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{xj}), that moving it to a disturbed state x̂, can be naturally corrected by following the

shortest path from this new state to the goal, via a modified sequence {x̂j}. This is the

notion of (global) task-level control.

The nature of the nonparametric approximation problem being solved by the mani-

fold learning algorithm may be understood in terms of the simple conceptual picture in fig-

ure 5.2. In this figure, the planned template trajectory, i.e., the sequence {yj} (yj ∈ML),
is the circular arc. Given an imperfect set of observed behaviors, many sequences {yi} =
{π(xi)} would not be in included in the set in their entirety. These imperfect observations

are depicted in the figure as dashed lines. However, suitable portions of these observed

trajectories may be synthesized into a trajectory that approximates the desired plan. As

the density of these observations goes up, quality of approximation improves. Spurious

trajectories in the set of observations - some realization of the dynamics of the robot that

is incompatible with the specifications of the task - will be penalized (i.e., higher ecomm)

more than any of the other observations and will not feature in the computed geodesic. In

effect, these spurious observations will be filtered out using the properties of the template

model (which is one of the benefits of the proposed scheme over a naive approximation of

geodesics).

The problem boils down to that of finding the sequence {xj}, given a template plan

sequence {yj}:

{xj} = arg min
N∑

j=1

f(π(xj)− yj), xj ∈ SH , yj ∈ SL (5.2)

The concrete algorithm is described below in Algorithm 3. The most demanding

steps in this algorithm are construction of the nearest neighbor graph and the shortest path

algorithm. As stated earlier, this can be achieved for any ML that is compatible with

the anchor dynamics. One could use such a weighted graph in two ways. Firstly, one

could generate segments of trajectories (such as between start points of the Double Support

phase). This becomes a single point-to-point shortest path computation. Alternatively,

one could generate trajectories “on-line” - by continuously looking up the shortest path

from the current state to the desired state. This enables continuous handling of errors and

disturbances as the robot executes the plan.

Figure 5.3 visually depicts the key steps in algorithm 3. Note that this depiction is

really a caricature in that the dimensionality of the problem being solved in section 5.3 is

much higher.
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Figure 5.2: Conceptual structure of the approximation problem. The observations are de-
picted as thin dashed lines - each dash representing a segment of experience. The desired
trajectory is the circular arc. In order to achieve the desired trajectory, the system makes use
to observed trajectories along the heavy line. Also, note the presence of spurious observed
trajectories that could connect start and end points, but do not follow the curve.

Algorithm 3 Nonparametric approximation of MH

INPUT: Observations of {x−, τ, x+}i, i = 1, . . . , N , Specific realization of ML

OUTPUT: Weighted graph representing MH

Project the observed points (y = π(x)) to obtain {y−, y+}i

Compute inverse covariance matrix, Σ−1
H using the set {x−i }

Define connectivity graph, G = (V,E).

for all i do
Add vertex Vi ≡ x−i

end for

for all Vi do
Determine k-nearest neighbors Vj

using the Mahalanobis distance
(
D =

√
(x+

i − x−j )′Σ−1
H (x+

i − x−j )
)

for all Vj do
Add edge Ek(Vi, Vj)

end for
end for

for all Ek do
Determine ecomm =‖ ydes − π(x+)j ‖
where ydes is computed using ML

Set the weight of edge Ek to ecomm

end for
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Algorithm 4 Generate geodesic sequence {xj}
INPUT: Initial and final poses, xini, xfin; Weighted connectivity graph G = (V,E) (i.e.,
approximation to the manifold MH ), where E is an edge-list, with N nodes
OUTPUT: Sequence of state-space points, {xj}
Compute Inter-node distance matrix D[i][j] using Floyd Warshall algorithm:
for k = 1 : N do

for i = 1 : N do
for j = 1 : N do

D[i][j] = min(D[i][j], D[i][k] + D[k][j])
end for

end for
end for
Initialize x0 = xini

while xcurrent 6= xfin do
xj = arg minD[current][j]

end while

Algorithm 5 Determination of k-Nearest Neighbors
INPUT: Given a state x# and a set of observations X = {xi}, i = 1, ..., N
OUTPUT: Set of observations XNN = {x̂k}
• (Off-line) Perform k-Means clustering on the set X , choosing the number of clusters
to be comparable to the cardinality of each cluster. Denote by cj , the point in X that is
closest to the center of the corresponding cluster, Cj , where j = 1, ...,M .
• (On-line, step 1) Find the closest cluster point for x#, c# = arg min ‖ x# − cj ‖, j =
1, ...,M , where ‖ . ‖ denotes Mahalanobis distance.
• (On-line, step 2) Find the k - nearest points in Ck, to x#:
for all elements cl ∈ Ck do

Dist[l] =‖ x# − cl ‖
Sort Dist and select first-k elements

end for
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The anchor trajectory is being composed from observed segments. Asymptotically,

given sufficiently dense data distribution along the desired subsets on the task manifold, the

resulting trajectory will be similar to the true geodesic that might result from computations

based on an analytical description of the task manifold. However, in realistic scenarios, this

is not going to be the case. The generated paths will be approximations to the true geodesic.

As with all planning algorithms, this generated trajectory can be smoothed in various ways,

including through the use of nonparametric techniques such as multivariate splines.

A more pressing issue is that of efficiently computing nearest neighbors and shortest

paths. The multi-link legged robot used in our experiment involves 8 generalized position

variables and corresponding derivatives, so the task manifold is a subset of <16. A typical

experiment utilizes observations from 15-30 minutes of exploration, yielding 1500-3000

trajectory segments. More data yields better coverage of the space and improved quality

of approximation. However, this comes at a computational cost and care is required when

working with larger sets of data. Such algorithmic efficiency issues have been extensively

studied in the computational geometry literature and dealing with large data sets is a very

active research area, see, e.g., [35].

In the following experiments, nearest neighbors are computed hierarchically using

an intermediate clustering step, and shortest paths are computed using a Floyd-Warshall

type algorithm based on a subsampled version of the complete set of observations (corre-

sponding to 10 minutes of observed data). The structure of these algorithms permit numer-

ous optimizations that we have not explored. For instance, instead of invoking a relatively

expensive algorithm such as shortest path distance matrix computation at double support,

one could pre-compute several manifolds and their distance matrices as an off-line oper-

ation. This would then enable real-time trajectory generation in a very tractable way -

involving nothing more than matrix lookup and other elementary operations.

5.3 Experiments with a Simulated Multi-link Legged Robot

The experiments described here are based on a physically realistic simulated robot modeled

after the Spring Flamingo robot, constructed by Dr. Jerry Pratt while at the MIT Leg Lab-

oratory [73]. In these experiments, we collect data from this simulated robot, implemented

in the YoboticsTMSimulation Construction Toolset. Before describing the structure of the

robot and the experiments, we would like to make the following remark. Although this

work is done using a simulator, special care was taken to restrict interactions between the
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Figure 5.3: Top: The nature of the approximation problem. The surface on the left depicts
the manifold that needs to be approximated. What we actually have are short trajectory
segments, some of which lie on the task manifold (shown in blue) and some that do not
(shown in magenta). Bottom: The approximate geodesics generated using algorithm 3. The
observed trajectory segments are organized into a nearest-neighbors graph (depicted here
using only a few edges). By weighting these edges with ecomm and computing weighted
shortest paths, we are able to restrict shortest paths to the desired geodesics (shown in green)
as opposed to spurious paths (shown in red).
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learning program and the simulator to those that would be possible with a real robot. So,

the experiment could be repeated - without modifications - on a physical robot, if one were

accessible.

The structure of the robot is depicted in figure 4.7. We model this robot in terms of

eight configuration variables: torso pitch, qpitch, torso height from the ground, qz , right leg

joint angles at hip, knee and ankle - qrh, qrk, qra and similarly for the left leg, qlh, qlk, qla.

Correspondingly, there are eight state derivatives, q̇pitch, q̇z, q̇rh, q̇rk, q̇ra, q̇lh, q̇lk, q̇la. Let

us denote the space of these variables as Q ⊂ <16.

The Simulation Construction Toolset provides abstractions for constructing a robot

dynamic simulation, including physical effects such as ground contact models. This enables

the simulated robot to be used by a learning/control algorithm in exactly the same way that

a real robot might be used.

Some key features of the simulation are summarized below:

• The dynamic model is simulated using an O(N) algorithm by Featherstone [110].

• Contacts between the robot foot and the ground are treated as a linear spring-mass

type interaction.

• Joints between links (e.g., knee) are modeled as Pin Joints, with few exceptions to

incorporate “natural elements” such as knee caps (see [73] for more details).

• The physical parameters of the robot are summarized in the table below:

Element Mass(kg) Length(m)
Torso 12 0.385

Leg - upper 0.4598 0.42

Leg - lower 0.306 0.42

Leg - foot 0.3466 0.04

Using this simulator, the first step in the experiment is to collect data, as follows:

1. Define a bounding box in phase space that includes the desired task manifold, e.g.,

[0.5 < qz < 0.9]× [−0.35 < qpitch < 0.35]. This is a very coarse specification of a

region that includes the operating region of interest.

2. Define a procedure that calls the simulation from a typical initial condition and runs

until the trajectory exits the defined bounding box. This simulation includes an ad
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hoc, randomized, control strategy that is sufficient to enable the robot to take a few

unstable steps although not sufficient to enable it to reliably walk (and certainly not

enough to enable it to walk reliably on a sequence of stepping stones).

3. Collect all trajectories that begin and end inside the bounding box, in terms of 10 ms

segments. This trajectory includes many state space points that will eventually enable

the robot to reliably walk. But, it also includes many that are spurious - these bad

points are shown in figure 5.4.

4. Subsample the set of observations for the purposes of shortest path computations.

This is done by low-discrepancy sampling. this results in a smaller data set that

still provides sufficient coverage. Figure 5.5 depicts the resulting data in terms of

projections to the stance leg angle and swing leg angle phase spaces.

With this set of data, we are in a position to apply the approximation algorithms

from section 5.2. In order to do this, the robot is given a sequence of state space points

corresponding to the double support phases. These poses can be computed by first convert-

ing the foot placement goal to a configuration space point (from geometric considerations)

and then finding the nearest point in the set of observed state space points to the desired

configuration space point.

The result of a typical run of this algorithm is depicted in figure 5.6. This figure

depicts the configurations over time (sampled at a few points along the trajectory). Again,

note that the generated trajectory is a path in SH ⊂ <16 but the depiction here only shows

the configurations. These three steps correspond to three different step lengths and the al-

gorithm can generate any commanded length from a suitable interval around which it has

observations. This is an improvement over many existing machine learning based results

that are limited to mimicry of specific temporally ordered observed trajectories, or to local

smoothing and improvements. Instead, we are able to utilize a wide variety of noisy tra-

jectories, representing many different gaits, to synthesize a parameterized family of gaits.

Figure 5.6 depicts three specific instances from this family.

Due to technical reasons, the trajectories in figure 5.6 are depicted in a different

environment from the ones used for figure 4.7, but both are equivalent.

These generated trajectories are dynamically realizable in the following sense.

• They are generated using experimentally observed trajectory segments, so that con-

straints such as actuator and joint limits, etc. are naturally satisfied (modulo small
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Figure 5.4: A small sampling of configurations (many of them, spurious) that are included
in the observed data. Although these depictions are only in terms of the configuration space,
the data set actually includes the corresponding velocities for each configuration - to enable
planning in phase space.
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Stance Leg Phase Space Swing Leg Phase Space

Figure 5.5: Depiction of the subsampled data in the stance leg angle and swing leg angle
phase spaces. The start point of each 10 ms trajectory segment is depicted in these phase
spaces. Also, a typical compass gait trajectory is overlaid to provide context. Note the
many “off-pendular-trajectory” points. These are required in order to ensure dynamically
realizable transitions at double support (and correspond to the dotted lines in figure 4.10).

errors dependent on the quality of approximation).

• They are regularized by a template model whose trajectories are known to satisfy all

constraints expressible in that abstraction, so the high-dimensional trajectory embod-

ies assumptions such as mostly passive/ballistic swing phases.

In order to illustrate this last point, we compute the “open-loop” torques that would

be necessary to achieve trajectories of the form shown in figure 5.6. Then, we compare

the result against similar torque profiles from other mostly-passive walkers (designed by

Dr. Jerry Pratt, Florida Institute for Human and Machine Cognition). This will demonstrate

that not only do the trajectories we generate achieve the result of intersecting desired footfall

goals, but in fact this is done without expending much more energy than other minimally

actuated gaits that utilize passive dynamic principles.

The resulting torque profile for 5 steps is shown in figure 5.7. Similar torque profiles

were generated for three different gaits used for comparison:

• Passive - An intuitive gait, using ballistic swing and other principles, that is designed

for flat, level ground walking [73].
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Figure 5.6: Trajectories generated using our algorithm. We have depicted captures from
three different trajectories corresponding to different foot placement, and hence end pose,
goals.
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Algorithm 6 Generate Open-Loop Torque Profile (for each joint)
INPUT: Trajectory sequence {zj}, j = 1, ..., N, zj ∈ SH and a set of observations
O = {x−i , Ti, x

+
i }, xi ∈ SH , Ti ∈ AH ⊂ <6, i = 1, ...,M (where T is a 6-dim vector of

torques and x is a 16-dim vector of states)
OUTPUT: Sequence of torques {τj}, time-integrated torque Tint and energy, E
for j = 1 : N − 1 do

Find K (e.g., = 20) points from the setO defined by the distance ‖ zj−x−i ‖, including
a set of K torques for the chosen joint, {τ̂k}
for k = 1 to K do

With d− =‖ zi − x−k ‖ and d− =‖ zi+1 − x+
k ‖, define the average distance,

dM k = d−+d+

2 (where ‖ . ‖ is the Mahalanobis distance)
end for
τj =

PK
1 exp(−dM k)τ̂kPK
1 exp(−dM k)

end for
To compute time-integrated torque:
Tint =

∑N−1
1 τj .δt

To compute energy:
Apply Savitzky-Golay filter to de-noise velocity profile
Compute E =

∫
τj .żj (implemented here using Simpson’s 3/8 rule).

• Passive 2 - A perturbed version of the above gait, that executes a period-2 chaotic

orbit, and in the process achieves an irregular sequence of foot placements.

• Fast - A modification of the basic passive gait that includes some active elements

such as a minimum-jerk trajectory tracking scheme for the swing leg. Despite these

modifications, it is still a highly efficient gait when compared against many other

alternatives in the literature.

In tables 5.1 and 5.2, we present several aggregated measures computed from these

trajectories.

Firstly, we list the time-integrated torques for the trajectory generated using each al-

gorithm, over a similar period of time. Note that the trajectory generation scheme described

in this chapter is the only one among the four that is capable of planned foot placements.

So, passive gaits used in this comparison were only capable of smooth and level-ground

walking.

A more physically meaningful metric is based on energy. We report the energy

expenditure normalized by robot mass and distance traveled - a non-dimensional quantity

known as cost of transport.

107



Table 5.1: Comparison of time-integrated torques, Tint (reported in Nms) over a typical
sequence of 5 steps.

Manifold Approx. Passive Passive Period-2 Fast
Tintrh

16.7627 11.5357 13.3543 16.1479
Tintrk

7.3352 2.6817 6.19715 9.2198
Tintra

18.1009 13.9009 15.0199 9.9699
Tintlh 14.9915 11.0399 17.0174 15.7704
Tintlk 6.00374 2.83644 5.9533 9.42043
Tintla 10.6606 13.6244 16.4178 15.8559
TintTotal 73.85464 55.61904 73.9598 76.3843

Table 5.2: Comparison of cost of transport - computed as total expended energy, E , nor-
malized by robot mass, m, and distance traveled, x.

Manifold Approx. Passive Passive Period-2 Fast
cot =

( E
mx

)
1.63588 1.3672 1.68228 1.65216

As seen from these comparisons of energetics, the trajectories generated by the

manifold approximation procedure of this chapter are on par with modulated versions of

passive gaits.

This shows that we have been able to generate trajectories, beginning from im-

perfect knowledge of the system dynamics and a template model for trajectories, that can

reliably achieve a sequence of planned footholds drawn from an interval - and this is being

done in an energy efficient manner.
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Right Leg Left Leg

Figure 5.7: Open-loop torques for a sequence of five steps over an irregularly spaces se-
quence of footholds. From top to bottom, the profiles correspond to hip, knee and ankle
torques.
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Chapter 6

Task Encoding in Abstract Spaces

6.1 Introduction

6.1.1 Abstractions and the process of functional biomimesis

In the empirical sciences, a model is an encapsulation of some slice of the real world within

the confines of the relationships constituting a formal system. According to the eminent

physicist James C. Maxwell, “the success of any physical investigation depends upon the

judicious selection of what is to be observed as of primary importance.” To the extent

that the systems of interest act in a physical world, the success of the modeling venture is

tightly coupled with the specification of the observables and a characterization of the way in

which they are linked. For our purposes as roboticists, focusing on systems with inputs and

outputs, we would augment the set of observables to include variables that can be explicitly

affected, i.e., actuated.

Consider a system, N , consisting of an abstract state-space Ω, together with a set

of observables fi : Ω 7→ <, i = 1, 2, ..., n.

N ≡ {Ω, f1, f2, ..., fn} (6.1)

We would like to have a complete characterization of the evolution of states, Ω.

However, this is almost never completely accessible. The next best thing is a characteriza-

tion of the evolution of observables, perhaps in the form of equations whose solutions are
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the state-space trajectories,

Φi(f1, f2, ..., fn) = 0, i = 1, 2, ...m (6.2)

In cases where the observables, {fi}, are sufficient to reconstruct Ω, and when the

system of equations 6.2 admits explicit solutions, the resulting scientific theory is essen-

tially equivalent to the physical system being studied. In fact, for most systems of practical

interest, the observables are not sufficient to unambiguously reconstruct the true state Ω
and the equations, Φ(f) = 0, involve parameters and effects that cannot be explicitly char-

acterized so that the theory is only valid under specific assumptions. The corresponding

process of restricting the domain of applicability of models is one of defining abstractions.

This is at the core of the scientific method. The relationship between reality and a model is

summarized in the following diagram,

Ω ΦN−−−−→ Ωyπ

yπ

{f1, f2, ..., fn}
Φ(f)−−−−→ {f1, f2, ..., fn}

Not knowing ΦN and π explicitly, scientific theories attempt to construct approxi-

mations to reality, Φ̂(f), according to several criteria. In the descriptive sciences, the typical

goal has been to achieve exact prediction under a very wide set of conditions: Φ̂(f) ≡ Φ(f).
We have used several abstractions in this dissertation as well. However, our goal

has been quite different - for the following reasons:

• Our primary interest is in constructing autonomous agents that can operate in an

unstructured environment, with limited knowledge of system and environmental dy-

namics. So, the observables {fi} are necessarily incomplete and incapable of com-

pletely characterizing the system and its environment.

• The tasks that need to be performed by these autonomous agents are ill-posed (e.g.,

consider the numerous ways to walk, run or swim). This brings into question the need

for quantitatively exact equivalence Φ̂(f) ≡ Φ(f). Instead, what is often required is a

qualitative (e.g., topological) equivalence over a very large region of the state spaces.

• The success of the agent is not defined by any single well defined cost function, but

instead by a multi-objective notion of safety and reliability.

111



The essential distinction is that although the robot is a physical entity, operating in

a physical world and subject to all the laws that are the focus of the natural sciences, the

task assigned to this physical entity and the corresponding strategies it adopts are artificial

[19]. Physical laws do not sufficiently constrain the space of such tasks to make the task

encoding problem well posed.

In many engineering systems, particularly in structured environments, this has not

been an issue because there are numerous additional requirements - time/speed, energy

consumption, etc. that can be optimized to yield concrete solutions to specific design prob-

lems. On the other hand, in unstructured environments and with ill-posed tasks (such as the

bipedal walking problem considered earlier) there is a need for alternative paradigms that

yield least restrictive encodings of the task. With the emergence of autonomy and robust

intelligence as important driving forces in the long-term research agenda for robotics, the

problem of task encoding takes on greater importance than in the past.

The approach of this dissertation has been that of functional biomimesis, i.e., we

borrow concepts from biology at the qualitative level - in terms of low-dimensional template

models - which has the effect of regularizing computations involving the more complex

robotic system. To the extent that the biological systems we mimic are much more capable

than any robot we have been able to build, this provides a much better basis for encoding

than traditional cost functions.

The way we have implemented this scheme in the design of the bipedal walking

algorithm can still be understood in terms of the above commutative diagram. However,

• The choices of {f1, f2, ..., fn} and Φ̂(f) are driven by descriptive biological theories

that are based on a family of equivalent biological systems (i.e., animals) that perform

the behavior of interest.

• The equivalence Φ̂(f) ≡ Φ(f) is treated in the sense of an approximation that pre-

serves certain phase-space geometrical structures, crucial for task achievement. In

particular, we are less interested in quantitatively exact mimicry, and far more in-

terested in qualitative similarity over a broad operating regime. This is the most

important contribution of the biologically inspired “template” model.

• The task specification is naturally achieved in a phase space that is well studied in

dynamical systems theory. This then enables the use of conservation laws and invari-

ance properties, e.g., of total system energy, to be the basis for simplification yielding

concise representations.
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In general, one may not be so fortunate. Many tasks, even when they involve phys-

ical robotic systems, are described in terms of requirements that do not have such a direct

mapping to dynamical principles. However, it may still possible to impose a natural dy-

namical structure by describing the task in terms of manifolds on which trajectories may

be constructed. The fact that we do not have readily available parameterizations, e.g., by

energy invariance, necessitates tractable algorithmic techniques for trajectory generation

on the manifold. In general, this may be nontrivial even for a low-dimensional template.

In this chapter, we present approximation algorithms that solve this problem in two stages

- (a) cover the manifold with a well-distributed point set or continuous curve that can be

generated incrementally and (b) generate trajectories by approximating geodesic paths in

terms of this finite set of samples on the manifold. This is a simple conceptual scheme and

the latter step was already addressed in chapter 5. However, even when a manifold in con-

figuration or phase-space is specified explicitly, the problem of generating well-distributed

points and curves that are restricted to this manifold can be nontrivial. We present novel

algorithms to solve this problem.

6.1.2 Some useful notions from differential geometry

In the foregoing discussion, we have made good use of the fact that the phase-space tra-

jectories of a robot performing specific dynamical tasks, e.g., stable walking, lie on a man-

ifold. Empirical results with specific robots [53, 54] provide one motivation for utilizing

this structure as the primary representation of the task. In fact, there are deeper reasons

for tasks to be manifold-structured, briefly discussed in the following subsection. Prior to

that, we will quickly summarize some important notions from differential geometry [14]

that will be useful throughout the rest of this chapter. Readers conversant with the language

of manifold theory may skip this subsection, without loss of continuity.

Definition [Topological Space]
A set X is said to be equipped with a topology if there is a family of subsets, specifically -

open sets, satisfying the following requirements:

1. the union of any family of open sets is open,

2. the intersection of finitely many open sets is open,

3. the set X and its empty subset are open.
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Such a set is called a topological space.

A set V ⊂ X is closed if its complement, U = X\V , is open. A topological space

X is said to be compact if each covering {Uα} of it by open sets, X =
⋃

α Uα, contains a

finite subcover, X =
⋃N

i=1 Uαi .

Topological spaces that have the structure of a Euclidean space in the neighborhood

of each point are called manifolds.

Definition [Smooth Manifold]
Let M be a set of points. We say that M carries a smooth atlas if there is a finite or

countable family {Uα} of subsets of M with the following properties:

1. These sets form a covering, i.e., M ⊂
⋃

α Uα.

2. The points of each set Uα are in one-to-one correspondence with the points of a

domain V ⊂ <n. Therefore, one can introduce local coordinates (x1
α, ..., xn

α) in Uα

by assigning to a point x ∈ Uα the coordinates of the corresponding point in Vα.

3. In the intersection Uα
⋂

Uβ , the local coordinates (x1
α, ..., xn

α) and (x1
β, ..., xn

β) are

related to each other by mutually inverse smooth changes of coordinates,

xi
α = xi

α(x1
β , ..., xn

β), xj
β = xj

β(x1
α, ..., xn

α), i, j = 1, ..., n (6.3)

with nonzero Jacobians,

det

(
∂xi

α

∂xj
β

)
6= 0,det

(
∂xi

β

∂xj
α

)
6= 0, (6.4)

Figure 6.1 depicts a typical manifold and two overlapping charts.

One of the most useful manifolds in robotics is that of tangent bundles.

Definition [Tangent Bundles]
Let Mn be a smooth manifold. Then, the pairs (x, v), where x ∈ Mn and v is a tangent

vector at the point x, form a smooth manifold TMn of dimension 2n. This manifold is

called the tangent bundle to Mn.
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Figure 6.1: Overlapping charts on a nonlinear manifold.

Figure 6.2: Tangent bundle for the sphere, S2.
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The concept of the tangent bundle, using the example of the sphere, i.e., the mani-

fold S2, is depicted in figure 6.2.

One of the major benefits of the definition of constructions such as the tangent

bundle is that it enables the definition of intrinsic properties of systems, without regard to

the particular parametrization using which it is being describes in any given context.

For instance, the Lagrangian of a physical system (e.g., equation 4.1 that describes

the double pendulum) can be written as a function L : TM 7→ <, that holds true for all

parameterizations of the configuration space of the system. In this sense, such maps encode

the behavior of the system in a way that is not subject to change with implementation details

such as sensor coordinate frames or calibration.

Definition [Riemannian Manifold]
If M is a smooth manifold then by a Riemannian metric g on M we mean a smooth

assignment of an inner-product to each tangent space of M . This means that, for each

p ∈ M, gp : TpM × TpM 7→ R is a symmetric, positive definite, bilinear map, and further-

more the assignment p 7→ gp is smooth, i.e., for any smooth vector fields X and Y on M ,

p 7→ gp(Xp, Yp) is a smooth function.

The pair (M, g) then will be called a Riemannian manifold.

We say that a diffeomorphism f : M 7→ N between a pair of Riemannian manifolds

(M, g) and (N,h) is an isometry provided that gp(X, Y ) = hf(p)(df(p)(X), df(p)(Y )) for

all p ∈ M and X, Y ∈ TpM .

Definition [Manifold with Boundary]
A manifold with boundary is a space containing both interior points and boundary points.

Every interior point has a neighborhood homeomorphic to the open n-ball

{(x1, x2, ..., xn)|
∑

x2
i < 1}.

Every boundary point has a neighborhood homeomorphic to the “half” n-ball

{(x1, x2, ..., xn)|
∑

x2
i < 1, x1 ≥ 0}.

The homeomorphism must send the boundary point to a point with x1 = 0.

An important feature of manifolds defined as arbitrary abstract surfaces is that they

can be realized as surfaces in a corresponding Euclidean space, stated formally as follows

(the proofs may be found in [14]).
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Theorem 6.1.1 Let Mn be a compact smooth manifold without boundary. Then there ex-

ists an imbedding

f : Mn 7→ <N

into a Euclidean space of sufficiently large dimension

Theorem 6.1.2 Any compact smooth n-dimensional manifold Mn can be immersed into

<2n and imbedded (realized as an n-dimensional surface) in <2n+1.

In the rest of this section, we will outline some further properties of manifolds -

using the case of surfaces in 3-dim. There exist natural generalizations of all these concepts

in higher dimensions. For a concrete example of a Riemannian metric, consider a curve

lying on a surface in the 3-dim Euclidean space <3. We might represent the curve in terms

of the simple coordinate system (x, y, z). The length of this curve (u(t), v(t)) on a surface

r(u, v) may be defined to be equivalent to its length in <3. So, the metric on this surface is

induced by the metric of the space <3 containing the surface. The velocity vector for this

curve may we written as,

(ẋ, ẏ, ż) = ruu̇ + rvv̇ (6.5)

where ẋ = xuu̇ + xvv̇, and similarly for y, z.

We can write this length as,

l =
∫ √

ẋ2 + ẏ2 + ż2dt (6.6)

Substituting the expressions for ẋ, ẏ, ż,

ẋ2 + ẏ2 + ż2 = Eu̇2 + 2Fu̇v̇ + Gv̇2 (6.7)

E = 〈ru, ru〉 = xu
2 + yu

2 + zu
2

F = 〈ru, rv〉 = xuxv + yuyv + zuzv

G = 〈rv, rv〉 = xv
2 + yv

2 + zv
2

These equations can be concisely written in tensor notation as,

gij =
〈

∂r

∂xi
,

∂r

∂xj

〉
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using which the length of the curve can be concisely expressed as,

l =
∫ √

gij ẋiẋjdt (6.8)

The above construction yields the first fundamental form of the Riemannian metric on a

surface.

dl2 = gijdxidxj = Edu2 + 2Fdudv + Gdv2 (6.9)

where E,F and G are functions of the coordinates u, v.

A geodesic on the Riemannian manifold is defined as the curve which minimizes the above

length. From the calculus of variations [38] we know that a geodesic curve γ(t) is the

solution of the Euler-Lagrange equations,

d

dt

(
∂γ

∂ẋj

)
=

∂γ

∂xj

There exist natural generalizations of these concepts to higher dimensions. For instance,

the area of a domain U on a surface r = r(u, v) is defined as,

σ(U) =
∫∫

U

√
gdudv

Similarly, in higher dimensions,

dl2 =
d∑

i,j=1

gij(u1, ..., ud)dui
2duj

2 (6.10)

One of the most important reasons for utilizing this notion of a Riemannian manifold, at

least for our purposes as roboticists, is that we are interested in studying curved surfaces in

the configuration and phase spaces. So, the notion of curvature is of fundamental impor-

tance.

The idea of the curvature of a surface is most transparent when the surface is the

graph of a function and the point where we wish to determine curvature is a critical point of

this function. Consider the Euclidean coordinates in <3 such that the point x = y = z = 0
lies on the surface, the surface is the graph of a function z = f(x, y) in a neighborhood of

this point, and the z-axis is orthogonal to the surface at this point. So, x = y = z = 0 is
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a critical point of f and fx = fy = 0 for x = y = 0. At this point, the first fundamental

form is dx2 + dy2 (i.e., gij = δij), and the second fundamental form is defined to be the

quadratic term of the Taylor expansion of f ,

bijdxidxj = fxxdx2 + 2fxydxdy + fyydy2

Using this, we define two forms of the curvature. The Gaussian curvature is the determi-

nant,

K = fxxfyy − f2
xy (6.11)

and the mean curvature is the half-trace,

H =
1
2
(fxx + fyy) (6.12)

With these definitions, we can characterize various regions on an abstract surface,

• If K > 0, then the point is a local minimum/maximum and in a neighborhood of this

point, the surface lies entirely on one side of the tangent plane. In other words, the

surface is either convex or concave.

• If K < 0, the point is a saddle-point and in any arbitrarily small neighborhood of this

point there are points of the surface lying on either side of the tangent plane.

It is important to realize that the above characterization holds for the particular point where

K is evaluated. So, for a surface with K < 0 everywhere, every point behaves as a saddle

point and the behavior of trajectories may be somewhat non-intuitive to someone used to

thinking in terms of Euclidean geometry.

If one were given two different scalar products G = (gij) and B = (bij), corresponding to

the first and second fundamental forms of the abstract surface at a point r(u0, v0), then the

following result can be established.

Theorem 6.1.3 For any point on a surface there exist coordinates x1 and x2 in a neighbor-

hood of the point such that the first and second fundamental forms become

gijdxidxj = (dx1)2 + (dx2)2

bijdxidxj = k1(dx1)2 + k2(dx2)2
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where k1, k2 are the eigenvalues of the pair of scalar products, obtained from the equation

det(B − λG) = 0, and represent the principal curvatures of the surface at a given point.

Proof See [14].

With this, the Gaussian curvature is the product K = k1k2 and the mean curvature is the

half-sum H = k1+k2
2 .

For any point of the surface r = r(x1, x2), the vectors r1 = ∂r
∂x1 , r2 = ∂r

∂x2 and the

normal n form a basis of the three-dimensional space. The partial derivatives can be written

in terms of this basis as rjk = Γi
jkri + bjkn. Since the basis vectors are orthogonal, we

obtain that bij = 〈rij , n〉 - the coefficients of the second fundamental form.

The quantities Γi
jk = Γi

kj are called the Christoffel symbols (which is an example

of a connection). For this construct, the following equalities hold:

Γk
ij =

1
2
gkl

(
∂gil

∂xj
+

∂gjl

∂xi
− ∂gij

∂xl

)
where (gij) is the inverse of the Gram matrix (gij).

The benefit of defining this construct is that it provides a succinct description of

geodesic trajectories on manifolds.

Lemma 6.1.4 Given a connection Γi
jk, a point x and a vector v at this point there exists a

unique geodesic of this connection starting from x with initial velocity v. The geodesic is

described by the differential equation,

d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= 0, i = 1, ..., n (6.13)

Proof See [14].

Some further properties of geodesics are:

• On a closed Riemannian manifold, each geodesic x(t) can be extended unboundedly

(i.e., defined for all t ∈ <). Manifolds on which all geodesics are extended unbound-

edly are complete.

• On a complete Riemannian manifold, any two points can be connected by a geodesic.
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Figure 6.3: The configuration manifold of a typical two-link manipulator.

• Let x(t) be a geodesic and P a point on it. Then for any point of x(t) sufficiently

close to P , the geodesic between P and this point has the smallest length among all

curves joining these points.

• If a curve x(T ) joining two points P and Q has the shortest length among the curves

joining these points, then this curve is a geodesic.

6.1.3 Why are dynamical tasks manifold structured?

With the background provided by the previous subsection, the question of why tasks are

manifold structured can be answered in terms of the following high level themes.

Structure in the configuration space:

Most robots are composed of translational and rotational elements, and their resultant mo-

tion in the environment can be described in terms of these elements. This implies that the

configuration spaces of most robotic systems are naturally described in terms of products of

spatial motion and rotation groups [14, 13], e.g., the special orthogonal group SO(3) and

the special Euclidean group SE(3). Figure 6.3 depicts a simple configuration space arising

from rotary motions - for a two-link manipulator. In general, the dynamics of most robots

evolve on Lie groups and have the structure of both a group and a differentiable manifold. In

particular, due to limits on the motion of actuators, the true configuration space is invariably

a manifold with boundary.

In addition to this, configuration spaces for systems such as bipedal robots have
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stratified structure. For a typical biped, the fact that one or the other foot is in contact with

the ground splits the manifold into codimension one submanifolds (i.e., contact constraints

eliminate a dimension). When both feet are in contact with the ground, the system is on

a codimension 2 submanifold of the free configuration space formed by the intersection of

the single contact submanifolds. This was abstractly illustrated in Figure 4.8.

Structure derived from conservation principles:

Often, when natural (or ballistic) dynamics are being utilized as an element of the motion

plan - the system behavior is conservative, i.e., there is an invariant of the motion that is

being preserved. When this invariant is the energy, then the system is Hamiltonian and the

possible set of behaviors of such a system is rich.

The fact that geodesics on manifolds have something to do with conservation prin-

ciples can be understood by noting that the quantity E = 〈ẋ, ẋ〉 = gij ẋ
iẋj is preserved

along the geodesic flow of the metric gij . However, there are also deeper reasons for such

invariance in mechanical systems. The following result (stated here without proof, see [14]

for details) is presented to give an idea of how manifolds arise from conservation principles.

Define a Hamiltonian system as a system defined in the position-momentum phase

space (x, p) by the equations,

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
(6.14)

Theorem 6.1.5 (Maupertuis-Fermat-Jacobi principle) If (x(t), p(t)) is a solution to a

Hamiltonian system with the Hamiltonian H = p2

2m + U(x) = E with the fixed energy

E, then the curve x(t) is a geodesic of the new metric gij = 2m(E − U(x))δij , but the

parameter t on this curve is not natural relative to this metric.

Much of the work described in chapters 4 and 5 utilized manifolds deriving from

this principle. However, realistic tasks require jumps between elements of a parameterized

family of such manifolds and the resulting trajectory tends to be complex. Moreover, not

having an explicit analytical characterization of these manifolds, e.g., functional forms of

gij , we developed an indirect approach to constructing geodesics on these manifolds.

Abstract surfaces:

While the existence of manifold structures corresponding to mechanical systems enjoys the

basis of a very deep physical theory, there are numerous other abstract manifolds that are
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nonetheless relevant to applications in robotics. To pick an example abstract manifold that

is entirely removed from the world of classical mechanics, consider the space of probability

distributions [16].

Specifically, consider a submanifold P of the space of all probability measures on

some probability space Ω, parameterized by coordinates θ, i.e., {p(., θ)µ | θ ∈ U ⊂ <n},

where µ is a measure on Ω and p(, .θ) is a probability density function on Ω for all θ ∈ U .

Then, the Fisher information metric is a natural Riemannian metric on this space:

gij =
∫

Ω

1
p

∂p

∂θi

∂p

∂θj
µ

Such a metric is useful in the definition of estimation and stochastic control strategies. For

instance, this enables efficient updates to a policy or a model in an unknown environment.

In fact, as we alluded to in subsection 6.1.2, many algebraic surfaces defined by

equality constraints are manifolds. The simplest example is that of linear manifolds and

equality constraints. Let X = <n and M ⊂ X ,

M =

{
y ∈ <n |

∑
i

αiyi = 0

}

M is an n − 1 dimensional manifold. Often, the effect of kinematic constraints results in

nonlinear versions of such algebraic surfaces.

The objective of the foregoing discussion is to make the following points:

• The geometric structure of a manifold provides an expressive representation for en-

coding tasks in robots and autonomous agents - not just for applications that directly

involve mechanics, but also for abstract/artificial applications.

• With this expressive language, it becomes possible to develop common algorithmic

techniques that can be used in a variety of different domains.

In this scheme, once the task has been specified as a manifold, such that all trajecto-

ries on this differentiable structure are sufficient for achieving the task at hand - it becomes

possible to define algorithms that search for trajectories satisfying various other criteria

arising from run-time issues. In the next section, we will present a concrete, illustrative

example of an artificial task specification and its encoding as a manifold.

123



Given a manifold that encodes the task and its constraints, generation of feasible

trajectories becomes a two step process:

1. Manifold sampling: Cover the manifold with a well-distributed point set or curve,

that can be generated incrementally according to a parameter, such that the task spec-

ification is captured in a finite set of representative elements.

2. Manifold approximation: Using the finite set generated above, approximate geodesic

paths using shortest path and other graph algorithms, akin to the procedures described

in chapter 5.

It turns out that the manifold approximation step is relatively well understood. In

small dimensions, the trajectories can be obtained by solving the differential equations 6.13.

In general, this may become cumbersome and approximation algorithms such as those for

high-dimensional computational geometry [35] prove to be more tractable. However, these

techniques first require the manifold sampling problem to be solved. In incremental settings

and for general manifolds, this problem is relatively open and there are few good algorith-

mic solutions available. In section 6.3.1, we will cite recent results regarding the generation

of well-distributed point sets. Then, in section 6.4 we will present a novel generalization to

the incremental generation of continuous curves, which can be used - among other things,

to generate segments such as the experimental observations in figure 5.3.

6.2 Encoding the Constrained Evolution of a Polygonal Shape

Consider the problem of motion planning for metamorphic robots, i.e., robots that can

change their shape during the performance of a task. Often, such robots involve a large

number of individual units that work together and the problem is really that of decentral-

ized control of the shape of a robot collective. Some typical examples of where this problem

arises include formation control [111] and locomotion in fluids, e.g., the geometric swim-

ming problem [112], [113] and its robotic analog [114], [115].

Often, motion planning with such collectives is achieved in one of two ways - (a)

design of a set of local rules whose global evolution is expected to achieve a desired result

and (b) optimization-based methods working in the high-dimensional configuration space.

The former suffers from the disadvantage of lacking explicit control and expressive power

to enable use in a precisely programmable (i.e., parameterizable) manner. The latter can

often lead to excessive computational complexity.
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As with all of the applications described in this dissertation, often the essential task-

level goal can be described in a significantly lower dimensional setting and the additional

degrees of freedom handled appropriately. Works such as [116] demonstrate the utility of

this decomposition - where the large number of units in the collective is not a computational

cost but, in fact, a desirable way to drive down an approximation error.

The goal of this section is to provide a simple but nontrivial demonstration of how

the task of controlled evolution of shape can be broken down in terms of a template-anchor

decomposition, with the template task definition being encoded as a manifold. Then, in sec-

tion 6.3.2, we will use this parametrization to generate geodesics that represent the template

plan for this task.

Shape spaces have been studied extensively in various contexts in the statistics and

applied mathematics literature. One common definition [15] is based on a normalization

that eliminates size, orientation and other effects. While this is useful in recognition and

analysis tasks, this is a very inconvenient definition in applications involving robot motion

planning. Instead, we wish to deal with the space of curves as they relate to the physical lo-

cations of the corresponding modules. In addition, we are interested in constrained shapes,

such as the space of curves defined by a constant length or enclosing a constant area, so that

we can work the task constraints into the manifold structure.

Concretely, we consider the task of coordinating multiple modules to move in a tri-

angle formation. The constraint is that they must preserve the enclosed area or the outside

perimeter. The basic scheme is illustrated in figure 6.4. We have defined the triangle in

terms of a normalized base (the line from (−1, 0) to (1, 0) - whose length acts as the equiv-

alent of energy in that we can define multiple manifolds using this parameter). The free

parameters are (u, v) as shown. This is Bookstein’s parametrization [15] of triangle shapes

(except for the length/energy parameter).

Given two triangles we may represent the parameters as complex numbers of the

form uj + ivj , and there exists a simple Euclidean distance between the triangles (repre-

sented as the complex numbers A and B),

d(A,B) =
√

1− ‖ A∗B ‖2 (6.15)

This distance is a minimizer of the quantity ‖ eiφA−B ‖. Using this, we can write down

a globally defined metric that makes the manifold Riemannian.

If a triangle is perturbed slightly through the movement of u + iv then we may
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Template: Triangle Anchor: Meshed Triangle

Figure 6.4: The template and the anchor in shape spaces. A module may be located at each
vertex in the meshed triangle and the location of each of these vertices may be expressed
entirely in terms of the template parameters (u, v). In this way, given a sequence of points
{ui, vi}, it is possible to induce the corresponding higher-dimensional sequence of spatial
locations of the modules. The task is encoded in terms of a manifold representing this
template parametrization - whose geodesics yield {ui, vi}.

compute the distance between the triangle and its perturbed neighbor using the normed

vector distance. Define the coordinates of a normalized unit-area triangle and a slightly

perturbed version as τ1 and τ2 respectively, where,

τ1 =

[ (1− u
3 )− iv

3

(−1− u
3 )− iv

3
2
3u + i2

3v

]
, τ2 =

[ (1− u+du
3 )− iv+dv

3

(−1− u+du
3 )− iv+dv

3
2
3(u + du) + i2

3(v + dv)

]
(6.16)

These coordinates are normalized by the area, i.e.,
√

v to yield unit-area triangles

(this is where we may introduce the length/energy parameter to define a family of mani-

folds). Using this, the distance may be expressed as a function of (u, v, du, dv) and this

function may be expanded as a Taylor series.
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Figure 6.5: Gauss curvature function for the space of unit area triangles.

This expansion provides the following global metric.

ds2 = E(u, v)du2 + 2F (u, v)dudv + G(u, v)dv2 (6.17)

E(u, v) =
2(3 + u2)

3v(3 + u2 + v2

F (u, v) =
u(−3− u2 + v2)
3v2(3 + u2 + v2)

G(u, v) =
u4 − 2u2(−3 + v2) + (3 + v2)2

6v3(3 + u2 + v2)
(6.18)

To show that even for this simple example, the behavior of geodesics has a nontrivial

structure with respect to the chosen parametrization, we compute the Gaussian curvature

function,

κ =
72v3

(3 + u2 + v2)3
(6.19)

The shape of this function is visualized in figure 6.5.

This shows that the space is distinctly non-Euclidean. So, for instance, the distance

127



Figure 6.6: Parametrization of n-gons within a connected component containing star-
convex polygons - the polygon is defined as a sequence of vertex-angle pairs {(xi, αi)}.

between a triangle and its perturbed neighbor (measured in terms of the metric) varies much

more rapidly near (0, 2) than it does at other far away points. So, the shortest path between

two shapes is not a straight line in the sense of the parametrization of Bookstein’s coor-

dinates. Instead, it is a curved path that minimizes length according on the Riemannian

manifold. Such a path will be computed in subsection 6.3.2.

The above computation may also be repeated for the case of unit-perimeter tri-

angles. For this, the normalization in equation 6.16 would be the the perimeter, 2 +√
(u− 1)2 + v2 +

√
(u + 1)2 + v2. Again, as with the case of unit-area triangles, it be-

comes possible to define a family of constant-perimeter manifolds that may be used in

computations.

An extension to the case of n-gons takes us into a space with more complex topol-

ogy [15]. A parametrization within a single connected connected component of the space

of n-gons is shown in figure 6.6. This connected component consists of star-convex shapes

that can be defined in terms of the vertex-angle pairs (xi, αi). Then, the area of this polygon

can we written as,

A =
1
2

N−2∑
n=0

xnxn+1 sin(αn+1) (6.20)

Using this expression, it becomes possible to repeat the calculations shown above

in order to derive a global metric for a Riemannian manifold.

The broad drift of the above argument is that it is possible to encode tasks, with

no natural definition of dynamics, in terms of a manifold that then imparts useful structure
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Figure 6.7: A finite set of vectors, generated by uniform sampling in the natural parame-
trization, depicted as they are distributed on the surface of a sphere. Notice that despite
the significant number of points sampled, there are still fairly large pockets uncovered, and
correspondingly there are several places where samples are wasted by repetition.

to enable efficient planning and trajectory generation. In the following sections, we will

discuss how to compute trajectories on such manifolds.

6.3 Approximation of Geodesics on Task Manifolds

Given a manifold that encodes the task and corresponding constraints, the main technical

issue is that of generating trajectories on these manifolds. The standard approach repre-

sented by equation 6.13 can be cumbersome in high-dimensions and with a fairly general

class of manifolds. Instead, for the purposes of robotics applications, one could adopt a

numerical approach based on first sampling the manifold - to yield a point set of represen-

tative states, and then approximating geodesics using this finite set. A naive sampling on

such manifolds, in terms of the standard parameterizations used in typical applications, will

yield a point set that is not entirely representative. For instance, figure 6.7 shows a finite

set of vectors that are generated by uniform sampling the parametrization of a sphere. This

is just a simple 2-manifold and the distribution is already far from uniform. In general, in

high dimensions, this problem of non-uniformity becomes much more severe. Often, even

more sophisticated parameterizations (e.g., the Mercator projection for the sphere) may be

conformal but not area-preserving - which is the real requirement for uniformity.

This suggests a need for better methods for sampling on manifolds, to enable subse-
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quent operations such as trajectory generation. In this section, we will present results from

recent work on incremental generation of well-distributed (in the sense of low-discrepancy)

point sets on manifolds [117], which will be used to generate approximate geodesics. In the

next section, we will present a generalization of the results of [117] to the case of continuous

curves.

6.3.1 Well-distributed point sets

The approach we take to defining “well-distributed” point sets is to utilize low discrep-

ancy sequences. Low discrepancy point sets and sequences [118] have a successful history

within robotics. They have been used in sampling based motion planning and area coverage

applications [119]. In recent work [120], techniques have been proposed for generating se-

quences in an incremental fashion, which is often a very important requirement. However,

the generation of these sequences is based on a computationally expensive search for an

optimal ordering.

The essence of the approach of this section is as follows. In order to optimally

sample a manifold, we first define a scheme to optimally sample a much simpler object,

such as a rectangle in Euclidean space, and then we define a diffeomorphism that maps this

onto the manifold. In fact, in order for the resulting scheme to work, the diffeomorphism

will need to be fair according to certain criteria. The procedure for achieving this, and the

definition of fairness are discussed in the following subsections.

On the notion of low-discrepancy point sets and sequences

The definition of discrepancy of a finite set X was introduced to quantify the homogeneity

of finite-dimensional point sets [121]:

D(X) = supR|m(R)− p(R)| (6.21)

In equation (6.21), R runs over all d-dimensional rectangles [0, r]d with 0 ≤ r ≤ 1,

m(R) stands for the Lebesgue measure of R and p(R) is the ratio of the number of points

of X in R and the number of all points of X . The lower the discrepancy the better or more

homogeneous is the distribution of the point set. The discrepancy of an infinite sequence

X = {x1, x2, x3, ..., xn, ...} is a new sequence of positive real numbers D(Xn), where Xn

stands for the first n elements of X .
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There exists a point set of given length that realizes the lowest discrepancy. It is

known (the Roth bound [122]) that the following inequality holds true for all finite se-

quences Xn of length n in the d-dimensional unit cube.

D(Xn) ≥ Bd
(log n)

d−1
2

n
(6.22)

Bd depends only on d. Except for the trivial case d = 1, it is unknown whether the

theoretical lower bound is attainable. Many schemes to build finite sequences Xn of length

n do exist that deliver a slightly worse limit,

D(Xn) ≥ Bd
(log n)d

n
(6.23)

There are also infinite sequences X with the above lower bound, equation (6.23), for

all subsequences consisting of the first n elements. The latter result leads to the definition

of low-discrepancy infinite sequences X . The inequality (6.23) must be valid for all sub-

sequences of the first n elements, where Bd is an appropriate constant.

Many low-discrepancy sequences in d-dimensional unit cubes can be constructed

as combinations of 1-dimensional low-discrepancy sequences. Popular low-discrepancy

sequences are based on schemes introduced by Corput [123], Halton [124], Sobol [125]

and Niederreiter [121].

One of the primary motivations for investigations into these sequences arises from

high-dimensional function approximation and Monte-Carlo integration. In this setting,

there is a well-known [121] relationship between integrals I , approximations In, and an

infinite sequence X = {x1, x2, ..., xn, ...} in d-dimensions, known as the Koksma-Hlawka

inequality:

|I(f)− In(f)| ≤ V (f)D(Xn) (6.24)

I(f) =
∫ 1

0
f(x)dx (6.25)

In(f) =
1
n

n∑
i=1

f(xi) (6.26)

where V (f) is the variation of the function in the sense of Hardy and Krause.
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Mapping low-discrepancy point sets in Euclidean spaces to Riemannian spaces

The question arises as to whether an area-preserving map up to a constant factor from [0, 1]2

onto an abstract surface S can be found. This provides an approach to sampling over S,

using low-discrepancy sequences generated in [0, 1]2.

For sufficiently smooth bijective functions f(u, v) and g(u, v) the determinant of

the Jacobian represents the ratio between the two area elements. Based on such mappings,

a set of points defined in [0, 1]2 could be transformed onto the abstract surface, preserving

low discrepancy in the sense of the metric defined for the surface. The following result from

[117] summarizes this.

Theorem 6.3.1 Let Ψ(u, v) be a nonnegative function on [0, 1]2 where Ψ2 is continuously

differentiable. Let Ψ(u, v) be positive with exception of a set L of points (u, v) of Lebesgue-

measure 0. For (u, v) 6∈ L, let

f(u, v) =
1∫ 1

0 Ψ(u, v)du

∫ u

0
Ψ(u, v)du (6.27)

g(u, v) = g(v) =
1∫ 1

0

∫ 1
0 Ψ(u, v)dudv

∫ 1

0

∫ v

0
Ψ(u, v)dudv (6.28)

Furthermore, let the functions f and g be extendable to continuously differentiable

mappings defined on [0, 1]2. Then the extension functions (f, g) define a diffeomorphism of

[0, 1]2\L where the following equality is valid for a constant c,

∂f(u, v)
∂u

∂g(u, v)
∂v

− ∂f(u, v)
∂v

∂g(u, v)
∂u

= cΨ(u, v) (6.29)

Note that Ψ(u, v) is the volume element.

Proof See [117].

6.3.2 Algorithm for manifold sampling-based approximation of geodesics

Figure 6.8 depicts a geodesic in the space of unit-area triangles computed by directly solving

the differential equations 6.13.

Although in this case we have been able to compute such a geodesic, in general this

can be cumbersome. The alternate numerical approach is to approximate the path from a

sample point set on the manifold. Such an approximate geodesic is depicted in figure 6.9.
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Algorithm 7 Algorithm for sampling on a manifold S

INPUT: Abstract surface S, Ψ(u, v) (satisfying requirements of theorem 6.3.1, x(u, v),
a known embedding of S in <m and D, a well-distributed set in [0, 1]2.
OUTPUT: Well-distributed point set on S.
Construct a diffeomorphism (f(u, v), g(u, v)) of [0, 1]2\L according to the above theo-
rem.
Compute the inverse transform (f−1(u, v), g−1(u, v)).
Output the image of D under the transform x(f−1(u, v), g−1(u, v))

Figure 6.8: A typical geodesic, indicating a path for continuous shape evolution, in the
space of unit-area triangles. The generalized variables are x1 = u, x2 = v.
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Figure 6.9: Approximate geodesics computed as shortest paths using a well-distributed
landmark points in the shape space. Depicted on this figure are low-discrepancy sample
points distributed according to a Riemannian metric, the true geodesic (in blue) and the
approximate geodesic (in green). Also, some points on the true geodesic include the triangle
shape overlaid on the plot.
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For this problem, the inverse transformations (as per the conditions of theorem 6.3.1

are,

f−1(u, v) = u, g−1(u, v) =
v0v1

v0 + v1 − v

where v ∈ [v0, v1].

Algorithm 8 Algorithm for approximating geodesics on a manifold S

INPUT: A finite set X of well-distributed sample points lying on the abstract surface S,
a Riemannian metric on S.
OUTPUT: Sequence of points {xi}, x ∈ X .
Form a nearest-neighbors graph (weighted by distance according to the Riemannian met-
ric) using the same procedure as in algorithm 3.
Compute geodesics using the procedure of algorithm 4.

6.4 Well-distributed Curves on Riemannian Manifolds

The approximation procedure for computing geodesics shown in the previous section is

generic and can be applied to a variety of different manifolds and domains. However, there

are applications where we wish to approximate in terms of curves, or curve segments, rather

than point sets. The procedure outlines in chapter 5 is one example of this. In this section,

the results of [117] are extended to the case of continuous curves. Although the resulting

curves have many similarities to those in figure 5.3, it is important to remember that here

we explicitly know the template manifold we are computing with. We are adopting this

procedure because, in abstract spaces, even this computation may not be feasible analyti-

cally. However, the algorithm is agnostic to whether we are dealing with template or anchor

models in the sense of the earlier discussions.

6.4.1 Low-discrepancy curves in the unit square

One of the earliest known quasi-random sequences is the Richtmyer sequence [126, 127],

which illustrates a simple but general result in ergodic dynamics [128, 129]. Let xn = {nα}
(i.e., [nα] mod 1) and X = {x1, x2, ..., xn, ...}, where α = (α1, ..., αd) is irrational and

α1, ..., αd are linearly independent over the rational numbers. Then for almost all α in <d

and for positive ε, with the exception of a set of points that has zero Lebesgue measure,
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D(Xn) = O
( logd+1+ε n

n

)
(6.30)

The Richtmeyer sequence is probably the only quasi-random sequence based on a

linear congruential algorithm [130]. This is useful because it suggests a natural extension

to the generation of curves. We will now provide such an extension.

Let C be a given piecewise smooth and finite curve in the unit square S. Further-

more, let R be an arbitrary aligned rectangle in S with lower left corner (0, 0). Let L be

the length of the given curve in S and l be the length of the sub-curve of C that lies in

R. In case of well-distributed curves, the ratio l/L should represent the area A(R) of R

reasonably well. This gives rise to the following definition of discrepancy of a given finite

piecewise smooth curve in S:

D(C) = sup
R

∣∣∣ l

L
− A(R)

A(S)

∣∣∣ (6.31)

It would be desirable to construct curves C with the property that the discrepancy

is always small. More precisely, we will call an infinite and piecewise sufficiently smooth

curve C : <+ 7→ S, in natural parametrization, a low-discrepancy curve if for all positive

arc lengths L the curves CL = C/[0, L] satisfy the inequalities (the function F must be

defined appropriately):

D(CL) ≤ F (L) (6.32)

In fact, a piecewise smooth curve in natural parametrization generates sequences

{x1, x2, ..., xn, ...} by setting xn = Cn(n∆) where ∆ is a fixed positive number. The in-

equality 6.32 lets us hope for a similar formula for the derived sequence {x1, x2, ..., xn, ...}.

Because of equation 6.30, a realistic goal is:

F (L) = O
( log3+ε L

L

)
, d = 2 (6.33)

We have to show that this goal is attainable.

To this end, for α = (α1, α2) , let CA(α) be the piecewise linear curve (tα1

mod 1, tα2 mod 1) = ({tα1}, {tα2}) where t is in <+.

In fact, we can define three classes of curves in the unit square, as shown in figure

6.10. For the simplest type of curves, let us call this class CA, the right-left and top-bottom

edges are identified so that the curve jumps from one edge to the other upon hitting it. In
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Figure 6.10: Various low-discrepancy curves for the unit square: CA, CB, CC from left to
right.

this scheme, all curves are parallel and continue indefinitely when the square tiles the plane.

In the second type of curves, class CB, we introduce reflections at the top and bottom edges

but preserve the same identification between right and left edges. The third type of curves,

class CC , involves reflections on all edges. The latter curve is continuous.

Theorem 6.4.1 For almost all numbers α in <2, CA(α) is a low-discrepancy curve in the

sense of equations 6.32 and 6.33.

Proof In order to prove this statement, we will establish that the ratio of the length of a

curve segment to the total length is commensurate with the corresponding ratio of the area

of an axis-aligned rectangle to the unit square that contains it, as suggested in equation 6.31.

Without loss of generality, we assume α1, α2 > 0. CA(α) intersects the axes at

(x = 0, yn = {nα2
α1
}) and (xn = {nα1

α2
}, y = 0), where n is an arbitrary natural num-

ber. For almost all α1, α2 all three of the quantities (α1, α2), α1
α2

and α2
α1

generate low-

discrepancy sequences in the sense of equation 6.30, in <2, < and < respectively. In other

words, the aforementioned sequences xn, yn form low-discrepancy sequences in [0, 1].
Now, for the class of curves CA, all curve segments between points of intersection

with the edges of the square are parallel to each other. So, by reasoning about the distri-

bution of these points of intersection, we may arrive at conclusions about the distribution

of the curves themselves. With this in mind, we will define the average curve length, i.e.,

A(R), in the form of integrals.

Let tanφ = α2
α1

and [0, a] × [0, b] be a rectangle with 0 < a, b < 1. Depending on

the relative values of (α1, α2), a, b the integrals take on specific forms. We will explain the

case when b
a ≤ tanφ, b < 1− tanφ (see Figure 6.11) in some detail, the other cases being

similar.
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Figure 6.11: Definition of the integrals I1, I2 and I3

We divide the unit square into three parts, as shown in figure 6.11. Then, I1, I2 and

I3 are real numbers that represent the average length that the (α1, α2) lines corresponding

to these regions have in common with the rectangle [0, a] × [0, b]. Asymptotically, with

curve length L → ∞, these quantities may be represented as follows (based on simple

geometric considerations),

I1 =
∫ a− b

tan φ

0

b

sinφ
dx +

∫ a

a− b
tan φ

a− x

cos φ
dx =

ab

sinφ
− b2 cos φ

2 sin2 φ
(6.34)

I2 =
∫ b

0

b− y

sinφ
dy =

b2

2 sinφ
(6.35)

I3 = 0 (6.36)

I1 sinφ + (I2 + I3) cos φ = ab (6.37)

The final term stands for the average length that (α1, α2) lines in [0, 1]× [0, 1] with

slope tanφ have in common with the rectangle [0, a]× [0, b]. As expected, it is exactly the

area of the rectangle.

In practice, with a finite length curve, what is the discrepancy? We can estimate this

using the Koksma-Hlawka inequality 6.24. For instance, I1 is approximated using finite

length curve segments of the form,
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l1(xi) =


b

sinφ
: 0 ≤ xi ≤ a− b

tanφ
a− xi

cos φ
: a− b

tanφ
≤ xi ≤ a

0 : a ≤ xi ≤ 1

Using a finite number, n, of such segments, we have the discrepancy,

∣∣∣I1 −
n∑

i=1

l1(xi)
∣∣∣ = O

( log2+ε n

n

)
(6.38)

where xi = { iα1
α2
}

The sum stands for the length of that part of the given curve that lies in [0, a]× [0, b].
The exact same argument may be made for the integrals I2 and I3. This means that a finitely

generated curve segment of type CA also has a very low discrepancy. Moreover, note that

we are reasoning about a 1-dimensional sequence of points of intersection. So, the constant

3 (for d = 2) in equation 6.33 is now replaced with 2 (d = 1).

We can now develop two variations of Theorem 6.4.1.

Theorem 6.4.2 For almost all numbers α in <2, CB(α) and CC(α) are low-discrepancy

curves in the sense of equations 6.32 and 6.33.

Proof We begin with a remark. One can show that Theorem 6.4.1 is still valid when in

the definition of low-discrepancy curves a broader class of rectangles R is considered, i.e.,

rectangles where we replace [0, a]× [0, b] with the more generic [c, a]× [d, b]. The literature

on geometric discrepancy [118] includes several related proofs and expanded discussion on

such ideas.

Curves of type B:

Such a curve can be translated into an equivalent version acting in [0, 1]× [0, 2], by simply

mirroring the square. To this end, reflections at the upper edge (see Figure 6.10) are ignored.

What results is an equivalent scheme as type A in [0, 1] × [0, 2]. For almost all choices of

α, the resulting curve in [0, 1]× [0, 2] is low-discrepancy. The relation between the original

space and the new one is straightforward. The original curve goes through a rectangle

R = [0, a]× [0, b] if and only if the derived curve in [0, 1]× [0, 2] goes through [0, a]× [0, b]
or through [0, a] × [2 − b, 2] (see the remark at the beginning of this proof). The latter

implies that CB(α) satisfies equations 6.32 and 6.33.
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Curves of type C:

We essentially repeat the arguments from type B. For almost all α, curves of type B in

[0, 2] × [0, 1] are low-discrepancy. Such curves can be generated when reflections at the

right edge are ignored. The mirrored version of this curve goes through a rectangle R =
[0, a] × [0, b] if and only if the original curve in [0, 2] × [0, 1] goes through [0, a] × [0, b]
or [2 − a, 2] × [0, b] (see the remark at the beginning of this proof). The latter implies that

CC(α) satisfies 6.32 and 6.33.

Curves CC(α) can be regarded as first examples of continuous trajectories in a unit

square that offer low-discrepancy behavior. In real area coverage scenarios they are highly

efficient compared to alternate techniques, as we will demonstrate later in this section.

Finally, these results can be generalized to higher dimensions, using the same style

of argument. We state this theorem without proof.

Theorem 6.4.3 For almost all numbers α in<d, CA(α), CB(α) and CC(α) are low-discrepancy

curves in the generalized sense of equations 6.32 and 6.33 in d-dimensional unit cubes.

In practice, the question arises as to how these curves can be realized on digital

computers. For this purpose, it is quite reasonable to assume that we have the ability to

generate rational numbers of user-specified arbitrary precision. In this case, the error due to

the rational approximation of α in theorem 6.4.1, 6.4.2 and 6.4.3 is correspondingly small

so that finite lengths of the resulting curves generate discrepancies that are very low.

Theorem 6.4.4 If {nα} generates a low-discrepancy sequence, for some irrational num-

ber α, then ∃N � 1 such that {np
q}, n = 1, . . . , N , also generates a low-discrepancy

sequence, where p, q ∈ ℵ.

Proof The Hurwitz theorem in number theory [131] states that there are infinitely many p
q

with the property |α− p
q | <

1√
5q2 .

Given any irrational number, it is possible to find a sufficiently large q ∈ ℵ such that

the error of the rational approximation is small. Let q1 be such a number, with q1 > N � 1.

Then, ∣∣∣n(α− p1

q1

)∣∣∣ < q1.
1
q2
1

=
1
q1

<
1
N

(6.39)

Now, assume that {(nα) mod 1} generates a low-discrepancy point set, of dis-

crepancy D(α) for n = 1, . . . , N . When α is irrational, {(nα) mod 1} does not intersect
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the vertices of the unit square. Then, there always exists a neighborhood where elements of

{(nx) mod 1}, n = 1, . . . , N , are continuous functions of x. This implies that D(x) is a

continuous function of x in this neighborhood.

By selecting suitable p1, q1 that approximate α well, to within ε = 1
q1

, we arrive

at the bound, |D(x) − D(α)| < δ, where δ is a suitably small constant. This implies that

a curve constructed using these sequences, according to the procedure shown in theorem

6.4.1, and using rational approximations to α, is still low-discrepancy.

6.4.2 Fair mappings between Euclidean and Riemannian spaces

The primary objective of the above discussion is to define a scheme for generating well-

distributed continuous curves that may be lifted to abstract surfaces. In general, the para-

metrization of a given surface as it appears in applications will only rarely respect the stated

requirements of fairness and low-discrepancy. In situations where the parametrization does

not preserve low-discrepancy, we may suitably modify it via the use of a diffeomorphism.

Given an abstract surface S with a Riemannian metric defined for (u, v) in [0, 1]2,

ds2 = E(u, v)du2 + F (u, v)dudv + G(u, v)dv2 (6.40)

where E(u, v), F (u, v), G(u, v) are differentiable functions in u and v and EG − F 2 is

positive. The area element dA is defined by,

dA =
√

E(u, v)G(u, v)− F 2(u, v)du ∧ dv (6.41)

The function,

Ψ(u, v) =
√

E(u, v)G(u, v)− F 2(u, v) (6.42)

is nonnegative in [0, 1]2 and Ψ2(u, v) is differentiable.

Let α = (α1, α2) be a given irrational vector (direction) in <2. According to the

definitions 6.40 and 6.41, line and area elements of S for a specific direction (du, dv) =
(α1du, α2du) (i.e., with dv = α2

α1
du) satisfy,
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ds

du
=

√
E(u, v)α2

1 + F (u, v)α1α2 + G(u, v)α2
2 (6.43)

dA

du2
=

√
E(u, v)G(u, v)− F 2(u, v)α1α2 (6.44)

From this, we define the quantity Q which describes our notion of fairness,

Q =
ds
du
dA
du2

=

√
E(u, v)α2

1 + F (u, v)α1α2 + G(u, v)α2
2√

E(u, v)G(u, v)− F 2(u, v)α1α2

(6.45)

Definition: Low-Discrepancy Curve A piecewise smooth curve C : <+ 7→ S lying on an

abstract surface S is called a low-discrepancy curve based on a vector α = (α1, α2), iff

1. C is S-filling, i.e. C comes arbitrarily close to any point of S.

2. There is a parametrization of S where Q in equation 6.45 is constant for all (u, v).

3. In any regular point of C, the tangent vector is parallel to α = (α1, α2).

Algorithm 9 Generation of low-discrepancy curves on a manifold S

INPUT: A finite set X of well-distributed sample points lying on the abstract surface S,
a Riemannian metric on S.
OUTPUT: Sequence of points {xi}, x ∈ X .
Find a parametrization of S that satisfies conditions 2 and 3 in the definition of low-
discrepancy curves. Also see the remark below.
Generate a curve in S based on the image of a low-discrepancy curve in the unit square
according to Theorem 6.4.2.

Remark The parametrization in step 2 is not unique. In all examples an originally given

natural parametrization is modified using replacements u 7→ h(u) or v 7→ h(v) where h is

a smooth diffeomorphism.

An abstract d-dimensional surface is defined by,

ds2 =
d∑

i,j=1

gij(u1, u2, ..., ud)dui
2duj

2 (6.46)
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where the matrix consisting of gij : [0, d]d 7→ < is always symmetric, differentiable,

and positive semi-definite. An embedding of an abstract space as in equation 6.46 in

an m-dimensional Euclidean space is a diffeomorphism f of the hypercube [0, 1]d with

f1(u1, u2, ..., ud), f2(u1, u2, ..., ud), ..., fm(u1, u2, ..., ud) : <d 7→ <m where the Riemannian

metric of this embedding is described by equation 6.46. Usually, this definition is too re-

strictive. Instead, local diffeomorphisms, i.e., coordinate patches, should be used where

these patches cover the whole space under consideration.

Let α = (α1, α2, ..., αd) be a given vector (direction) in <d. According to equation

6.46, the line and volume/content elements for a specific direction (du1, du2, ..., dud) =
(α1du, α2du, ..., αddu) are:

ds

du
=

√√√√ d∑
i,j=1

gij(u1, u2, ..., ud)αiαj (6.47)

dV

dun
=

√
det(gij(u1, u2, ..., ud))α1α2...αd (6.48)

From this,

Q =
ds
du
dV
dun

=

√∑d
i,j=1 gij(u1, u2, ..., ud)αiαj√

det(gij(u1, u2, ..., ud))α1α2...αd

(6.49)

Definition A piecewise smooth curve C : <+ 7→ S in the given Riemannian space S is

called low-discrepancy curve based on a vector direction α = (α1, α2, ..., αd) iff

1. C is S-filling, i.e. C comes arbitrarily close to any point of S.

2. There is a parametrization of S where Q in equation 6.49 is constant for all (u1, u2, ..., ud).

3. In any regular point of C, the tangent vector is parallel to α = (α1, α2, ..., αd).

Remark In higher dimensions, i.e., d ≥ 3, the above definition may yield a very large

class of solutions which may need to be further specialized through the use of additional

requirements, e.g., see section 6.4.4.
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6.4.3 Examples of the coverage of various surfaces

We will demonstrate the use of the proposed technique to cover various surfaces, chosen to

correspond to geometrical shapes and surfaces that are commonly encountered in robotics.

We will present visualizations in the Euclidean space.

Covering the surface of the unit cube

Consider the surface of a unit cube. This is the most natural generalization of the unit square

in section 6.4.1. Figure 6.12 depicts an “opened out” version in the plane of the paper, a

transformed version of the which can be used to tile the plane and a low-discrepancy curve

drawn on this tiling.

a b c

Figure 6.12: Tiling of the plane and relation to the surface of the unit cube. Part a depicts
the faces of an opened out cube (imagine a typical packing box). Part b depicts an equivalent
version, rearranged in such a way that it is easier to tile the plane. Part c shows the low-
discrepancy curve traversing the tiled and flattened cubes. The key point to note is that
whenever two edges of a face in part c touch, they will also touch in the 3-dimensional
cube. The depicted curve is a prescription of the sequence of faces, and points on that face,
to visit.

Covering the annulus

Consider an annulus, i.e., a ring, that has a standard parametrization given by x(u, v) =
(u cos v, u sin v), where 0 ≤ u0 ≤ u ≤ u1 and 0 ≤ v ≤ 2π.

Let us consider a diffeomorphism such that u 7→ g(u) and v 7→ v. Then the ring can

be re-parameterized by x(u, v) = (g(u) cos v, g(u) sin v). Now, we can apply the method

developed earlier. Let g be sufficiently smooth, where g maps [u0, u1] onto [u0, u1]. Then,
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according to our proposed method, g(u) must satisfy an ordinary differential equation (for

α1, α2 > 0 ),

g′(u) =
α2g(u)√

c2g2(u)α2
1α

2
2 − α2

1

(6.50)

where g(u0) = u0 and g(u1) = u1, and,

ds

du
=

√
g′2(u)α2

1 + g2(u)α2
2 (6.51)

dA

du2
= g(u)g′(u)α1α2 (6.52)

Equation 6.50 has the closed form solution,

α1

α2

{√
c2g2(u)α2

2 − 1 + arctan
( 1√

c2g2(u)α2
2 − 1

)}
= u + D (6.53)

where D is the unknown constant of integration. Using boundary conditions that arise from

the domain and image constraints of the mapping, g(u0) = u0 and g(u1) = u1, it follows

that,

α1

α2

{√
c2u2

0α
2
2 − 1 + arctan

( 1√
c2u2

0α
2
2 − 1

)}
= u0 + D (6.54)

α1

α2

{√
c2u2

1α
2
2 − 1 + arctan

( 1√
c2u2

1α
2
2 − 1

)}
= u1 + D (6.55)

We solve for c,D and then use equation 6.53 as an implicit definition of the required

diffeomorphism. In general, obtaining such explicit solutions could become tedious and

difficult. In such cases, one may solve the nonlinear differential equations numerically

using shooting methods [132].

Figure 6.13 shows a resulting low-discrepancy curve filling the given ring for the

specific case where u0 = 1, u1 = 2. The parameters α1, α2 and c were chosen appropriately

by numerical experimentation.
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Figure 6.13: A low-discrepancy curve in the annulus.

Covering the surface of a torus

The torus is one of the most important non-trivial surfaces that appear in robotics, espe-

cially when working with configuration spaces of mechanical systems, e.g., figure 6.3. We

will use our algorithm to generate a low-discrepancy curve for this surface. We use the

diffeomorphism u 7→ u and v 7→ g(v). Given the <3 embedding of a torus (b < a),

x(u, v) = ((a + b cos(2πg(v))) cos(2πu),

(a + b cos(2πg(v))) sin(2πu), b sin(2πg(v))) (6.56)

ds2 = 4π2(a + b cos(2πg(v)))2du2 + 4π2b2g′2(v)dv2 (6.57)

dA2 = 16π4b2(a + b cos(2πg(v)))2g′2(v)du2dv2 (6.58)

The function g maps [0, 1] onto [0, 1] and is sufficiently smooth. Constant ratio

of ds
du and dA

du2 in α-direction can be achieved if the following equation holds true ( c is a

constant, α1 > 0):

(a + b cos(2πg(v)))2α2
1 + b2g′2(v)α2

2

4π2b2g′2(v)(a + b cos(2πg(v)))2α2
1α

2
2

= c ⇒

g′(v) =
(a + b cos(2πg(v)))α1√

4cπ2b2(a + b cos(2πg(v)))2α2
1α

2
2 − b2α2

2

(6.59)

The boundary conditions are g(0) = 0 and g(1) = 1. A solution of equation 6.59
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guarantees g′(0) = g′(1). As before, this equation also admits a closed form solution.

However, the resulting expressions tend to be somewhat involved. For the purposes of this

example, the parameter c is chosen numerically with the aid of a shooting method. Figure

6.14 depicts part of the resulting low-discrepancy curve lying on the surface of a torus.

Because of g′(0) = g′(1), the curve is smooth.

Figure 6.14: Low-discrepancy curve filling the surface of a torus.

Covering the surface of a sphere

A more sophisticated example is a part of a sphere given as an abstract surface by ds2 =
4π2 sin2(πg(v))du2 + π2dv2 where (u, v) is in [0, 1] × [v0, v1] with v0 < v1 in (0, 1). A

Euclidean embedding of this surface is given by,

x(u, v) = (sin(2πu) sin(πg(v)), cos(2πu) sin(πg(v)), cos(πg(v))) (6.60)

The function g(v) is smooth and maps [v0, v1] onto [v0, v1]. According to Definition

1 and equation 6.45, we have,

g′(v) =
2 sin(πg(v))α1√

4c2π2 sin2(πg(v))α2
1α

2
2 − α2

2

(6.61)

The boundary conditions are g(v0) = v0 and g(v1) = v1. Figure 6.15 depicts the

resulting low-discrepancy curve.
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Figure 6.15: A low-discrepancy curve on the surface of a sphere. The figure on the right
shows the three 2-dimensional projections along the axis planes. Contrast this against figure
6.7 which achieves much poorer coverage despite using significantly more curvelength.
Moreover, when both position and orientation are taken into account, it becomes clear that
naive schemes, such as in figure 6.7, are simply not sufficient.

6.4.4 Discussion: On the definition of fair diffeomorphisms

Broadly speaking, there are three major steps in the procedure outlined in the previous

subsections:

1. Define a criterion according to which the curve optimally covers space. This is a

fairness requirement.

2. Define a diffeomorphism that carries the unit square to an abstract surface.

3. Based on the previous two steps, solve a differential equation whose solution yields

the diffeomorphism that respects our stated criterion for fairness.

We defined fairness according to the requirement that any two arbitrary segments

of the curve, if they have the same length, must cover the same amounts of area or volume.

This is an intuitively obvious definition and it is easy to visualize this requirement for a

curve in the plane. However, in higher dimensions, this requirement alone may not be

sufficient in the sense that the resulting family of solutions may be large. One may wish to

utilize additional definitions of fairness.

For instance, with a 3-manifold, in addition to the basic fairness requirement in

equation 6.49, we would require that the volume is not affected,
√

det(g)dx2
1dx2

2dx2
3 =

const. and the curve is fair in the sense of being distributed in accordance with the surface
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element, i.e., dl
L = da

A(S) where da =
√

(g11g22 − g2
12)dx2

1dx2
2+
√

(g11g33 − g2
13)dx2

1dx2
3+√

(g22g33 − g2
23)dx2

2dx2
3 is the area element.

In general, this sort of engineering of fairness requirements would be difficult to

factor into traditional techniques for generating low discrepancy sequences. On the other

hand, due to the geometric nature of our problem formulation, such requirements fit very

naturally into our algorithmic framework.
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Chapter 7

Conclusions and Prospects for the
Future

7.1 Key Ideas

At the highest level, this dissertation represents an attempt to merge the benefits of model-

based control design, which has been used with spectacular success in many structured

engineering applications, with those of machine learning, emphasizing data-driven synthe-

sis and adaptation of strategies. As robots leave the factory floors and move into unstruc-

tured environments, the needs of reliable and efficient operation in the face of imprecise

information makes such a merger of ideas appealing. Correspondingly, the complementary

strengths and weaknesses of these two disciplines makes such a merger necessary, if not

inevitable.

In our approach to this high level problem, three major themes have emerged to

become useful design principles:

1. Functional Biomimesis: Even as engineers struggle to build efficient, reliable and

yet flexible machines, natural counterparts of exactly such machines are all around

us. Even the humble invertebrates that crawl around in the undergrowth represent

marvels of natural engineering that we are yet to replicate. Utilizing principles from

the study of such biological solutions is a promising and fertile direction for robotics

research. While the basic notion of abstraction has a long tradition and defines the

essence of the scientific method, specific approaches to defining useful abstractions

such as the template-anchor decomposition [6, 4, 100] are instructive to the planning
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and control researcher. Our intent in performing such abstractions is not only to

reduce a system to its constituent elements, the standard reductionist paradigm, but

instead to properly delineate functional components so that it becomes possible to

infer concise relationships in an integrative scientific setting.

2. Qualitative Models: Separating the concerns of qualitative correctness from those of

quantitative optimality is an important step towards managing complexity. The use of

qualitative models that support structurally stable phase space orbits makes it possible

to reason about global behaviors without committing to the quantitative details of a

changing task and environment.

3. Using Qualitative Models to Regularize Learning: The need for data-driven adap-

tation has been understood since the inception of planning and control as a domain

of inquiry. However, specifying “prior knowledge” in a learning algorithm, without

unduly constraining the space of possible solutions, has been a difficult task - partic-

ularly when dealing with high-dimensional nonlinear systems. We find that when the

problem is suitably formulated - in terms of a template model that utilizes the natural

dynamics, the task takes on the more organized structure of a manifold which can be

learned in a data-driven manner. Moreover, this paradigm is a fairly general one and

the manifold sampling and approximation algorithms developed in this dissertation

can be gainfully applied in many other domains as well.

7.2 Future Work and Open Questions

7.2.1 Scaling up to physical bipeds

The eventual goal of the work described in chapters 4 and 5 is to endow humanoid robots

with the ability to efficiently and robustly execute spatiotemporally extended tasks. This

needs a few components in addition to the ones addressed in this dissertation. For instance,

one would need to also implement high-level deliberative planning and low-level feedback

control for disturbance rejection to go with the trajectory generation algorithms. Although

these problems have been extensively addressed in the literature, some care and effort is

required to implement them on physical systems.

There is also an algorithmic challenge. The algorithms and experiments described

in chapter 5 were intended to explore and demonstrate a variety of conceptual issues. As
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such, each algorithm can be improved through the incorporation of ideas from current re-

search in computational statistics, high-dimensional computational geometry, etc. The main

issue is that of dealing with large sets of observations which is necessary for at least two

reasons. Firstly, a large well-distributed data set is required to capture all the subtleties in

the dynamics of a physical robot. Secondly, the ideal goal is to have a robot that learns

on-line, continuously adding to the set of observations.

The single improvement that will best address this issue is the incorporation of

multi-resolution algorithms. Many operations in the algorithms developed here were im-

plemented in the most direct way possible, but each of them can be improved in terms of

memory and run-time requirements. For operations such as computation of shortest paths,

one could organize the data in such a way that the problem is solved by iterative improve-

ment - by first computing a coarse path which is then refined by appropriate relaxation

procedures. Some care is required when designing such hierarchical procedures to ensure

that they converges to similar solutions paths as the naive procedure using all the data. Sim-

ilarly, nonparametric statistical approximations can be done in a “multipole” fashion such

that the effect of far away points is clumped together and the effective dimensionality of the

computations is kept manageable. Yet another improvement that is likely to be significant,

especially for computing actions, is to use more sophisticated regression techniques than

the one in algorithm 6.

Unfortunately, we do not own or have easy access to a humanoid robot on which

we can try our ideas, but this area has seen a burst of activity in recent years and we hope

to be able to collaborate with owners of such robots to carry this work forward.

7.2.2 Understanding the proper role of template models

What are the properties of a good template model?

As described in chapters 4 and 5, one of the principal benefits of the use of template models

in our work is that it provides guidance on phase space topology. In general, typical sets

of observations deduced from high-dimensional nonlinear systems may not be sufficient

to deduce, and elucidate to the level required by subsequent algorithmic components, the

existence of structure such as the stratified manifold depicted in figure 4.8. However, know-

ing that the template model possesses these characteristics such as intersections and jumps

makes it possible to disambiguate data coming from adjoining manifolds, and also to dis-

card spurious data. This is a powerful addition to the standard machine learning approach.
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In general, given a collection of simple models, how can we know which ones will

yield similar benefits? In an unknown domain, how are we to rank the power of these

abstractions to shape learning? These are important questions that will need to be answered

as we apply this approach to other novel domains.

Can template models be learned autonomously?

A very related question to the previous one is whether we can induce suitable abstractions

directly from data. This is the current focus of a very vibrant research community interested

in nonlinear dimensionality reduction. However, most current approaches are focused pri-

marily on specific metric structure such as inter-point distances of a cloud. There is a need

for algorithms that can be targeted differently, e.g., to preserve topological structure even at

the cost of some significant local distortions. There have been some attempts in this direc-

tion, e.g., [133, 51], however these works were not concerned with the end goal of planning

and control as we are. We believe that the answer to the question of whether templates

can be learned autonomously is perhaps closely tied to that of information requirements for

various tasks.

7.2.3 Towards scientific discovery

Despite the long history of artificial intelligence research, it is only recently that nontrivial

dynamical systems entered the purview of AI researchers. In some part, this has been

stimulated by increasing interest in embodied cognition and intelligent robotics. However,

although the development of computational tools for discovering dynamics may often be

motivated by robotics, their domain of applicability is much broader. One promising area

that can benefit from such tools is that of scientific discovery.

To understand this connection, consider the simple description of our approach to

solving the dynamic bipedal walking problem, depicted in figure 7.1. If in this data flow

diagram, we were to replace template model with the hypotheses and structural assumptions

being made about a set of experimental data, which takes the place of the robot, then the

output of this process is a predictive model of control and decision making as it occurs in

the natural system being studied.

Several leading scientists and engineers are currently advocating such an approach

to scientific discovery [134, 135]. Particularly in the biological sciences, where spatiotem-

porally extended decision processes play an important role in organizing the operation of
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Figure 7.1: High-level conceptual illustration of the approach taken to solve the dynamic
bipedal walking problem.

Figure 7.2: A possible architecture for organizing the tools developed in this dissertation to
address the needs of scientific discovery - to autonomously discover dynamical structures.

the system, tools such as those developed in this dissertation are likely to be useful. In fact,

in this setting, one may consider a more refined process outlined in figure 7.2. This is an

important direction for future inquiry - one we plan to actively pursue.
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