
A Heuristic Strategy for Learning in Partially Observable
and Non-Markovian Domains

Matteo Leonetti 1 and Subramanian Ramamoorthy 2

Abstract. Robotic applications are characterized by highly dy-
namic domains, where the agent has neither full control of the en-
vironment nor full observability. In those cases a Markovian model
of the domain, able to capture all the aspects that the agent might
need to predict, is generally not available or excessively complex.
Moreover, robots pose relevant constraints on the amount of expe-
rience they can afford, moving the focus of learning their behavior
from reaching optimality in the limit, to making the best use of the
little information available. We consider the problem of finding the
best deterministic policy in a Non-Markovian Decision Process, with
a special attention to the sample complexity and the transitional be-
havior before such a policy is reached. We would like robotic agents
to learn in real time while being deployed in the environment, and
their behavior to be acceptable even while learning.

1 Introduction

Robotic applications are characterized by highly dynamic domains,
where the agent has neither full control of the environment nor full
observability. In those cases a Markovian model of the domain, able
to capture all the aspects that the agent might need to predict, is gen-
erally not available or excessively complex. A very general frame-
work to face such problems is the one of Partially Observable MDP
(POMDP) [2].

While most of the methods to solve POMDPs attempt some state
estimation, we follow the previous work in the literature about
learning with hidden states [6, 5, 4] (which make the system Non-
Markovian in general), and focus on a different aspect of the learning
process. In Reinforcement Learning (RL) optimality is usually the
main target, but robotic applications pose relevant constraints on the
number of experiments that the agent can afford (in terms of time,
or other resources). We, therefore, believe that the focus should be
moved from proving optimality in the limit, to obtaining the best
possible behavior with the little information available, and gathering
this information carefully.

We consider the problem of finding the best deterministic policy
in a Non-Markovian Decision Process, with a special attention to
the sample complexity and the transitional behavior before such a
policy is reached. We would like robotic agents to learn in real time
while being deployed in the environment, and their behavior to be
acceptable even while learning. To this aim, we propose an algorithm
structured in two phases: the first one, as short as possible unless
simulated, provides an exploratory behavior that gathers information
on the effect of actions.The second phase starts exploiting the data

1 Department of Computer and System Sciences, Sapienza University of
Rome

2 School of Informatics, The University of Edinburgh

collected during the first phase making small exploratory steps and
traversing the policies that look more promising on the basis of the
collected data.

As an example, consider the domain of robotic soccer, in which
multiple agents interact in both a cooperative and a competitive way,
making the environment extremely dynamic and unpredictable from
a single-agent perspective. Moreover, in applications such as the one
just mentioned, the number of actions available at any time is consid-
erable, making the branching factor of the policies an issue. Nonethe-
less, the actions actually meaningful in most of the situations are few.
A robot should ideally be able to realize quickly that, for instance,
just staring at the ball is not going to take it in any farther, no mat-
ter what other actions he could do later, and independently from all
the other many aspects of the world. The method we propose aims at
identifying those “wrong” actions and avoiding them unless proved
necessary.

We provide a preliminary evaluation on a common test-bed in the
literature of NMDP that allows us to easily compare our algorithm
with the best results obtained so far.

2 Problem formulation

We consider NMDPs with a finite set of states S and a finite set
of actions A, with similar assumptions regarding observations as in
POMDPs. A deterministic policy π on the NMDP maps each state
s ∈ S to an action a ∈ A(s) among those available in s. In the fol-
lowing, we borrow the notation from Perkins [5] indicating with τ =
{s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT } a trajectory in the NMDP. A
policy determines a well defined probability measure, µ(π), over the
set of all possible trajectories. The reward corresponding to each tra-
jectory is a random variable defined as R(τ) =

∑T

t=0
γtrt where

γ ∈ [0, 1] is the discount factor. We define the value of a policy as
the expected discounted reward:

V π = Eτ∼µ(π){R(τ)} = Eπ{R(τ)}

The tasks are episodic, which means that they terminate under any
policy with probability one. We limit ourselves to the search for
the best deterministic policy, although in NMDPs the optimal pol-
icy might be stochastic [6]. We also adopt Perkins’s [5] definition
of the action-value function that we report in the following. Given
a trajectory τ , the portion of R(τ) preceding a state s is denoted as
Rpre−s(τ). Similarly, the portion of R(τ) following a state s is de-
noted as Rpost−s(τ). For any state s the value of a policy can be
rewritten as

V π = Eπ[R(τ)]
= Eπ[Rpre−s(τ)] + Eπ[Rpost−s(τ)]



Let π ← (s, a) represent the policy that is identical to π except for
the state s that is mapped to the action a. We define the action-value
function for a pair 〈s, a〉 as:

Qπ(s, a) = Eπ←(s,a)[Rpost−s(τ)] (1)

We refer to the original paper for an explanation of the differences
with the traditional definition. We only point out that if an action a is
chosen for a state s, then every time s is encountered the agent will
execute a, according to π ← (s, a).

In the following, we present an algorithm for maximizing Qπs,a
making use of a particular initial exploration phase to collect heuris-
tic information on the most promising policies to be subsequently
exploited.

3 Parr and Russell’s Grid World
Before proceeding with the description of the algorithm, we intro-
duce the test domain: Parr and Russell’s Grid World [3]. Grid World
has been used as a test domain in several papers [3, 1, 5] and pro-
vides a simple and structured environment with a reasonable branch-
ing factor. It has 11 states (figure 1) in a 4 by 3 grid with one obstacle.
The agent starts at the bottom left corner. There is a target state and

Figure 1. Grid World

a penalty state whose rewards are +1 and -1 respectively. Both are
absorbing states, that is when the agent enters them the episode ter-
minates. The actions available in every state are move north, move
south, move east, and move west which succeed with probability 0.8.
With probability 0.1 the agent moves in one of the directions orthog-
onal to the desired one. In all of the previous cases if the movement
is prevented by an obstacle the agent stays put. In any state the agent
can only observe the squares east and west of it, having a total of four
possible observations. Those observations are going to form the state
space of an NMDP whose controller we are going to learn.

4 The algorithm: εMaCs
The main idea of the algorithm lies on the intuition that often a few
bad choices disrupt the value of all the policies that include them.
For instance, consider the initial state in Grid World. Any of the 128
policies out of the 256 total ones that map the initial observation to
either move west or move south have no chance to be optimal. Taking
those policies as if they were as valuable as any other, in the search
for the optimal policy, just wastes samples. We would rather like to
realize that those actions are not promising and not consider them
unless we have tried all the other possibilities.

The strategy would ideally consider all the policies from the most
promising to the least ones, which we believe is beneficial in at least
two ways: (1) the algorithm reaches the optimal policy earlier; (2)

during the phase of evaluation of those promising but suboptimal
policies, the behavior is as good as the current information allows.

The algorithm is constituted by two parts: the exploratory phase
and the assessing phase.

Algorithm 1 εMaCs
exp length← number of episodes in the exploratory phase
ε← probability of exploration in the assessing phase
α← learning step parameter
initialize Q(s, a) pessimistically
{Exploratory phase}
for i = 1 to exp length do

generate a trajectory τ according to a policy π extracted uni-
formly at random
for all s ∈ S, a ∈ A s.t.〈s, a〉 is in τ do
Q(s, a) = max(Q(s, a), Rpost−s(τ))

end for
end for
{Assessing phase}
for all other episodes do
v ← a value in [0, 1] uniformly at random
if v ≥ ε then
π′ ← the policy that greedily maximizes Q

else
π′ ← a policy chosen uniformly at random

end if
generate a trajectory τ from π′

if v ≥ ε then
for all s ∈ S, a ∈ A s.t.〈s, a〉 is in τ do
Q(s, a) = (1− α)Q(s, a) + αRpost−s(τ)

end for
else

for all s ∈ S, a ∈ A s.t.〈s, a〉 is in τ do
q = (1− α)Q(s, a) + αRpost−s(τ)
Q(s, a) = max(Q(s, a), q)

end for
end if

end for

4.1 Exploration: gathering information
The exploration initializes the Q-function to drive the execution in
the subsequent phase. For a number of episodes exp length the
agent chooses a policy at random, and in each pair 〈s, a〉 stores the
highest value that any policy, going through 〈s, a〉, has obtained until
then. Consider the simple example of the NMDP in figure 2(a). This
NMDP has three states and four actions with a total of four poli-
cies. Let the reward returned by each of those policies be normally
distributed, with means and standard deviations represented in figure
2(b). Figure 2(c) and 2(d) show the value of the Q-function for each
action during a particular run. The first 100 episodes belong to the
exploratory phase, in which A1 and A2 obtain the highest reward,
making the policy A1-A2 look particularly promising. An action is
considered as promising as the highest value of the reward that choos-
ing that action has ever given. In the case of A1-A2, its good result
is due to the high variance, rather than the highest mean. This aspect
is going to be addressed by the second phase of the algorithm.

Several other choices are possible both for the exploration (uni-
formly at random) and for the value stored (the maximum); for in-
stance, making use of SoftMax we might give a higher priority to the



(a) (b) (c) (d)

Figure 2. A simple example of an NMDP (a). The four policies return a reward normally distributed whose means and standard deviations are shown in (b).
The evolution of the Q-function for the first state (actions A1 and B1) is represented in figure (c), while for the second state (actions A2 and B2) is represented

in figure (d).

policies that returned a higher reward. In future work, we will con-
sider relying on further statistics about the policies traversing a given
choice point.

4.2 Assessment
We want to maximize the expected cumulative discounted reward,
rather than the maximum obtainable one, therefore an evaluation of
the promising policies is needed.

In the second phase the agent acts greedily according to the Q-
function previously constructed. It starts from the policy that has
given the highest reward and, taking subsequent samples from it,
lowers its value until it reaches the expected value. The value of the
current policy, in this process, could get lower than the maximum
value obtained by some other policy, and stored in one of its actions.
In this case, the two policies would be alternately chosen and would
race each other down toward their respective expected values, stop-
ping at the highest one. An example of this behavior is shown in
figure 2(d). Starting from the episode 101, the policy A1-A2 is greed-
ily executed. Since its mean is considerably lower than the value
stored, the estimate keeps dropping until it reaches the value pre-
viously stored for B2. At this point, A1-A2 and A1-B2 are executed
almost alternately, each one pushing down its estimate toward their
respective mean. The learning rate parameter determines the speed
with witch the estimates tend to the means. The higher the learning
rate, the faster the estimate will reach the mean, but also, the more
it oscillates confusing policies close to each other. At some point,
A1-B2 reaches its mean and stabilizes, so that the value of A1 is the
same for both the policies, but B2 is definitely higher than A2, mak-
ing A1-B2 the learned policy which is also the optimal one. Notice
how in this process B1 has never been executed. This is because the
highest value it had given in the first phase has always been lower
than the current estimates of the policies taken into account during
the assessing phase.

If the maximum value obtained by the optimal policy has been
stored in one of the state-action pairs, this algorithm quickly con-
verges to the optimal policy. Unfortunately, this might not happen
for two reasons: (1) the optimal policy might have, in all of its states,
another policy (not the same for every state) that shares the same
action in that state and differs elsewhere, but gives a higher maxi-
mum reward. In this case the maximum reward obtained by the op-
timal policy in the first phase would be hidden by those policies. (2)
The optimal policy has never been sampled above the expected re-
ward, and no optimistic estimate of it has had a chance to be stored.
Ideally, in the first phase, every policy should be sampled above its
expected value at least once. The number of episodes necessary to

meet this condition would probably be impractically high for most
domains. For this reason, and since the first point wouldn’t be avoid-
able anyway, we add a step of exploration in the second phase too,
that guarantees that each policy is continually sampled on the long
term. When the agent takes an exploratory step (with probability ε)
the Q-function is updated only in those state-action pairs that gave a
value higher than the current one.

Clearly taking an exploratory step could disrupt the optimal policy
if this had already been found. The racing among the two policies
would have to happen again until the optimal policy is established
once more. This cannot be prevented if we want to make sure that
the optimal policy has always a chance to be sampled.

5 Experimental evaluation
We conducted a preliminary evaluation of our algorithm on Grid
World, in order to show how the different parameters impact the be-
havior of the agent. Every 20 episodes for the short term experiments,
and every 100 episodes for the long term ones, we pause the learn-
ing and evaluate the current controller for 20 episodes. The results
are averaged over 200 runs. By “evaluating the controller” we mean
that, during the evaluation, the behavior of the agent is the same as
if it were learning, but the Q-function is left unchanged. Thus, if at
a specific point the agent would choose a policy at random, the re-
ward obtained will be the average of the reward returned following
20 policies picked uniformly at random. Notice that choosing a pol-
icy at random, in this context, is different from following the random
policy. In the former case the same decision is always made in the
same state, while in the latter case each time a state is hit a random
choice is made.

We compare our results with two control strategies: Sarsa(λ) with
ε-greedy exploration, and Sarsa(λ) with optimistic initialization. The
latter strategy consists in initializing the Q-function at an optimistic
value for each state-action pair, and exploiting the current estimate at
any time. We borrowed a few parameters from the literature [1, 5] and
spent some time optimizing others. When not differently specified
the Q-function has been initialized at -4. The best behavior we could
achieve for ε-greedy was with ε starting at 0.2 and linearly decaying
to 0 in 80000 actions. For the optimistic initialization, the Q-function
has been initialized at 1. In both cases α = 0.01 and λ = 0.9

Figure 3 shows the cumulative rewards obtained by different con-
trollers. εMaCs here has been evaluated without any exploration in its
second phase. Sarsa(0.9) with optimistic initialization reliably con-
verges to the optimal policy a lot faster than ε-greedy. It is this be-
havior that we want to improve, pruning some of the exploration by
getting a more realistic initialization. With an initial phase of 100



Figure 3. Cumulative reward on the short term for different controllers.
εMaCs is evaluated without any exploration in the second phase.

episodes and α = 0.01, εMaCs always converges to the optimal
policy shortly after the initial exploration. We also evaluated the be-
havior of the agent with 50 episodes, in order to understand the con-
sequences of little initial sampling. In case the agent could not afford
a longer initial phase, we would like that it still quickly converged to
a “good” policy, if not the optimal one. Indeed, after 50 episodes the
average reward stabilizes at around 0.1, while the optimum is around
0.25. Considering that most of the policies give a reward of -4 and
that the average reward obtained is non-decreasing, this can be prob-
ably considered a good result.

Figure 4. Cumulative reward on the long term allowing exploration in the
second phase of εMaCs

In the second set of experiments we tried to establish whether, by
allowing some exploration also on the second phase, it is eventually
possible to reach the optimal policy even from a short initial phase.
Clearly exploration is a double-edged sword: on the one hand it al-
lows to discover the optimal policy, on the other hand it worsen the
average behavior of the agent that leaves its current “good” policy.
Figure 4 shows the results for two different settings, compared with
Sarsa(λ) and εMaCs after 100 initial episodes as already described.
In one setting we let ε start at 0.2 and reach 0.01 in 5000 episodes, re-
maining constant afterwords. In the other setting ε started at 0.1. The
two results fall in between Sarsa and the optimum obtained with 100
initial episodes. Moreover, the increase in the performance is linear
and follows perfectly the decay of ε. This probably means that the
optimal policy is identified early and, from that point on, the explo-
ration is the only responsible for the sub-optimal behavior. We have
not performed an extensive evaluation over the possible values for
the initial ε and its decaying rate, therefore we cannot state exactly

how close the behavior can be pushed towards the optimal line above
by varying these two values. It seems reasonable though, that the lin-
ear dependence allows for a faster convergence up to a point when
the exploration becomes too short, and we fall into the initial case of
figure 3 with no exploration at all.

6 Conclusion
We devised an algorithm to learn the best deterministic policy in an
NMDP searching the policy space in a favorable order. The algorithm
first attempts to collect information about the actions’ values and then
exploits it preventing the agent from behaving arbitrarily bad, possi-
bly allowing its early deployment in the environment. Several future
directions can be followed in making this simple algorithm more ef-
ficient in the exploration, directing the search even in the first phase
rather than acting randomly. We believe that novel and more efficient
techniques on NMDPs can help to the simplifications of robots’ con-
trollers and the scalability of RL in practical applications.

REFERENCES
[1] J. Loch and S. Singh, ‘Using eligibility traces to find the best memoryless

policy in partially observable Markov decision processes’, in Proceed-
ings of the Fifteenth International Conference on Machine Learning, pp.
323–331. Citeseer, (1998).

[2] G.E. Monahan, ‘A survey of partially observable Markov decision pro-
cesses: Theory, models, and algorithms’, Management Science, 28(1),
1–16, (1982).

[3] R. Parr and S. Russell, ‘Approximating optimal policies for partially ob-
servable stochastic domains’, in Ineternational Joint Conference on Ar-
tificial Intelligence, volume 14, pp. 1088–1095. Citeseer, (1995).

[4] Mark D. Pendrith and Michael McGarity, ‘An analysis of direct rein-
forcement learning in non-markovian domains.’, in ICML, ed., Jude W.
Shavlik, pp. 421–429. Morgan Kaufmann, (1998).

[5] T.J. Perkins, ‘Reinforcement learning for POMDPs based on action val-
ues and stochastic optimization’, in Proceeding of the national con-
ference on artificial intelligence, pp. 199–204. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999, (2002).

[6] S.P. Singh, T. Jaakkola, and M.I. Jordan, ‘Learning without state-
estimation in partially observable Markovian decision processes’, in Pro-
ceedings of the eleventh international conference on machine learning,
pp. 284–292. Citeseer, (1994).


