A CHARACTERIZATION OF THE RECONFIGURATION SPACE
OF SELF-RECONFIGURING ROBOTIC SYSTEMS

ABsTRACT. Motion planning for self-reconfiguring robots can be made effi-
cient by exploiting potential reductions to suitably large subspaces. However,
there are no general techniques for identifying suitable restrictions that have
a positive effect on planning efficiency. We present two approaches to un-
derstanding the structure that is required of the subspaces, which leads to
improvement in efficiency of motion planning. This work is presented in the
context of a specific motion planning procedure for a hexagonal metamorphic
robot. Firstly, we use ideas from spectral graph theory - empirically estimating
the algebraic connectivity of the state space - to show that the HMR model
is better structured than many alternative motion catalogs. Secondly, using
ideas from graph minor theory, we show that the infinite sequence of subspaces
generated by configurations containing increasing numbers of sub-units is well
ordered, indicative of regularity of the space as complexity increases. We hope
that these principles could inform future algorithm design for many different

types of self-reconfiguring robotics problems.

1. INTRODUCTION

Self-reconfiguring systems (SRSs) are robots comprised of a collection of robotic
sub-units that can physically connect and disconnect from one another. Through
collaboration, the aggregate is capable of changing its morphology on demand. Such
systems offer versatility unparalleled by monolithic robot solutions. However, one
can only exploit the flexibility offered by SRSs if algorithms exist that can efficiently
synthesize plans to change from one configuration to another. So far, developing
efficient algorithms has proved difficult, particularly when there are many sub-units
to coordinate, and intricate local constraints to consider.

In this paper we consider a specific reconfiguration architecture, the hexagonal

metamorphic robot (HMR). This architecture is simple to describe, yet captures
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many of the difficulties in planning for an SRS. We present an algorithm that, for a
specific subspace of the Claytronics HMR state space (to be explained later) called
the Surface space, is capable of solving tasks in near linear time on average. A
goal is to synthesize plans for the difficult Claytronics HMR, state space. In prior
work, the planner presented here was combined with an additional planner, the
combination of which solved up to 95% of shape reconfiguration tasks in linear
time, on average, for tasks involving up to 20,000 units [12].

This paper aims to explore why some some reconfiguration state spaces are eas-
ier to plan within, and in particular, how these easy planning spaces can be found
contained within harder state spaces. We will use the Surface space as an exam-
ple of an ‘easy’ state space that can be found within a number of possible ‘hard’
state spaces of the HMR. We demonstrate that the subspace is well connected (in
a sense to be made precise), which is why planning tasks can be solved efficiently
using greedy methods with a low probability of failure. We test this hypothesis
by utilizing a sampling-based method to estimate quantitative descriptors of the
algebraic connectivity of the state space. We compare the results from this special-
ized subspace against a more general model of HMR reconfiguration, and discover
a striking qualitative difference in the behavior of the algebraic connectivity as the
number of sub-units in the configuration grows. The implication is that the Surface
space contains few bottlenecks, even when there are high numbers of sub-units.

A second desirable property of the Surface space is that the different instances
of the reconfiguration space, corresponding to incremental addition of a module,
are well ordered in a specific sense. Specifically, we prove that the reconfiguration
graphs at increasing levels of complexity are ordered by the graph minor relation, in
a way that seems to extend the notion of meta-modularization. Ordering by graph
minors explains why certain SRS models can be solved recursively in a particularly
simple and efficient way. We hope that these ideas might inspire further analysis

of the global structure of reconfiguration spaces and algorithm designs.
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While the specific results of this paper are phrased in the context of the study of a
specific algorithm for a specific model of a SRS, the quantitative and analytical tools
can be applied to any SRS, to explain when and why a subspace of a reconfiguration
space for an SRS may be good to plan within, providing tools for characterizing and
evaluating a subspace’s suitability for efficient planning. In future work, we hope
that these tools can be utilized to develop automated methods for identification of
useful subspaces and other abstractions, to seed the development of SRS planning

algorithms for different SRS architectures.

2. PRELIM.

Let IP denote the set of points on a hexagonal lattice, £. The metricd : PxP+— Z
is defined as the Manhattan hex distance (see [3] for details). We say two locations,
z1 € P and x5 € P are adjacent as isAdj(z1,22) < d(z1,22) = 1. The undirected
connectivity graph, Geonn, of a set of locations, V' € P(P) (P denotes the power set
function) is the graph constructed from Geonn (V) = G(V, {(e1, e2)|isAdj(e1,e2)}).

In all models of the HMR described here, a configuration, ¢, is a connected
set of robotic sub-unit locations, ¢ C P(P) where Vz,y € c there exists a path in
Geonn(Y). There are often further constraints to the admissible set of configurations
depending on the HMR model.

A move, m, is an ordered pair of positions, m € M = P x P. A single-move plan,
is an ordered sequence of moves. Whether a move is admissible depends on the
motion catalog, which is different for different models of the HMR.

We specialize the general definition of a metamorphic system by Ghrist et al.
[1, 6] for describing HMR motion catalogs here. Ghrist et al. permitted an arbitrary
alphabet of symbols to label an arbitrary embedding space to describe a specific
state of the system. A ’state’ in Ghrist et al. work is a configuration of sub-
units for our purposes. Our alphabet for labelling the hexagonal lattice, then, is
simply A = {OCCUPIED,EMPTY}. By the Ghrist et al. definition, a local

metamorphic system’s permissible state transitions are completely described by
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a motion catalog, C, which is a collection of generators. A generator describes
which labels may change (the trace) when a given context is present (the support).
Specifically, a generator, ¢ € C consists of a support, SUP(¢) C P(P), a trace,
TR(¢) C SUP(¢) and an unordered pair of labeled local states, Uy 1 : SUP(¢) — A

satisfying:

Uolsupie)-Tre) = Utlsupe)-Tr(e)

In other words the labeling of Uy and U; are equal over the support locations,
but may differ in the trace. For the HMR motion catalogs describe here, the trace
consists of two adjacent locations, and the local states are labeled to reflect that a
single unit moves from an OCCU PIED location to an EM PTY location.

Generators describe move classes, but an actual movement is carried out at
a specific location in the embedding space. Ghrist et al. define an action of a
generator ¢ € C as a rigid body translation, ® : SUP(¢) — L, thus providing
information as to where the generator was applied and in what direction. Given a
state U : £ — A, the action is admissible if Va.Uy(x) = U(®(x)). The result of the

action on the state is

U :onL — ®(TR(9))
DU =

Uy (@ 1) : on®(TR(¢))

In all the specific catalogs used here, the trace consists of two adjacent locations
labeled EM PTY and OCCUPIED in Uy which are swapped for Ul, representing
a sub-unit moving to an adjacent location. So we can work out the rigid transform
® from m € M. The Ghrist et al. notation is very general, and in the algorithms
presented in this paper we only need to know whether a move is admissible or not,
so for convenience we define the function matchec : M, — boolean to return true if

the move is admissible for the given catalog, C.
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A B C1 C.2

FiGURE 3.1. Previous motion catalogs modulo isomorphisms.
Green denotes the trace, where a sub-unit can move between. Blue
and white respectively denote where sub-units must be/must not
be in the local context for the move to be admissible. A: The
original motion catalog for the hexagonal metamorphic robot by
Chirikjian [3]. B: The motion catalog for the Claytronics proto-
type [9]. C: The three generators comprising of Ghrist’s example
motion catalog [1]. D: A move permitted by the Claytronics model
but not Ghrist’s as it changes the gross topology of the aggregate.

C3

D

3. BACKGROUND

Chirikjian originally proposed the HMR [3]. This robot was one of the earliest
proposed SRSs and remains a prototypical example of a lattice-based SRS. The
state of the SRS is entirely specified by the locations of all sub-units on the lattice.
This is in contrast to chain type SRSs and unit compressible SRSs where sub-units
may have further internal states, such as joint angles.

In the HMR model of motion, a sub-unit may move each time iteration. In
single-move planning only one sub-unit is permitted to change lattice location per
time step, and in multi-move planning several may change position per time step.
Whether a sub-unit can move or not is dependent on its local context, as well as
the global requirement that all units remain connected. A number of different local
motion catalogs have been developed, giving rise to several different versions of
the HMR model. Chrikjian’s original definition was the least restrictive, locally
requiring only that a robotic neighbor was present for the moving sub-unit to pivot
around (figure 3.1 A). However, the additional global requirement that the sub-
units of the configuration remain connected requires explicit checking before any

move can be considered admissible. This global check requires O(n) time to run.
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Pamecha et al. were able to develop an algorithm capable of solving Chirikjian
reconfiguration tasks using a greedy simulated annealing procedure [16]. Since sim-
ilar approaches fail for other similar models [11], we conclude that their success was
perhaps due to the relatively unrestricted motion catalog. In general, for simulated
annealing (and other randomized approaches) to be successful on a problem, the
planning space must not contain deep local minima or related constraints [13].

A mechanical prototype of the HMR has been developed, capable of moving
according to the Chirikjian motion catalog [15]. This motion catalog implies that
a moving sub-unit could be potentially completely enveloped by robotic neighbors,
save for the empty space it is moving into. This puts strong requirements on
the geometry of the sub-unit. If we denote the hexagonal space as six equilateral
triangles with sides of length r, then a stationary unit must span a distance of 2r in
order to physically connect to its six neighbors. However, when the sub-unit moves,
it must squeeze through a space as little as r, or alternatively, its neighbors must
be compliant in some way. In order to meet these strict requirements the prototype
was constructed from six rotary actuators in a six-bar linkage mechanism. Thus,
each sub-unit was quite complex, making it a rather undesirable platform for many
practical applications.

A mechanically simpler physical realization of a hexagonal metamorphic robot
was developed by the Claytronics team [9]. This motion catalog was more restric-
tive, requiring empty space to be present opposite the sub-unit around which the
moving sub-unit was pivoting (figure 3.1 B). The extra pivoting space permitted
the physical units to be circles and no deformation of geometry was necessary in
the physical realization, making it desirable from the pragmatic viewpoint of manu-
facture. Unfortunately, the requirement of extra space in the motion catalog makes
planning much harder. The simulated annealing technique successfully used by
Pamecha et al. for the Chirikjian catalog requires exponential time as the number

of modules increases [11]. As was the case for the Chirikjian motion catalog, the
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Claytronics motion catalog requires an explicit connectivity check to ensure the
aggregate remains connected during moves, at linear cost.

In an attempt to develop a cross-model theory of self-reconfiguration, Ghrist et
al. developed a general definition of a local metamorphic system [1, 6]. Ghrist
required, for all local metamorphic systems, that the motion catalog should com-
pletely describe the local and global motion constraints. Neither of the above men-
tioned catalogs satisfy this definition, as the requirement that the configurations
do not become disconnected must, be enforced explicitly, and separately, from the
local motion catalog. Ghrist suggested a new motion catalog for the HMR (figure
3.1) as an example of a local version of a similar metamorphic system. Ghrist’s
new HMR motion catalog prevents gross topological changes to occur during mo-
tion, such as introduction of enclosed space into the configuration, or disconnection
between sub-groups of sub-units.

The theoretical analysis by Ghrist et al. yields useful implications for all HMR
reconfiguration state spaces. Ghrist represented the reconfiguration state space as
a cubical complex. Each cube grouped moves that were commutative. That is, a
sequence of moves drawn from a cube could be admissibly applied in any temporal
permutation, i.e. the local contexts defining the applicability of the moves were
not overlapping. Further, this state complex was of non-positive curvature, with
the immediate result that any multi-move plan (including single-move plans) could
be deformed locally into an optimal version of the same homotopy class in O(n?)
[1]. !

The state description of a configuration for a HMR, is the same for all models
discussed. It is only the admissible motions that are different. One can see im-
mediately from the motion catalogs (figure 3.1), that Ghrist’s motion constraints

are more restrictive than the Claytronics motion catalog which is more restrictive

]Non—positive curvature in simple terms means that there are “no fat triangles” in the space. So,
the optimal shortest path can be found with a series of local improvements from any starting path
within the same homotopy class.
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than the Chirikjian motion catalog. Clearly, all less constrained models can execute
plans applicable for more constrained models.

Determining admissibility of moves in Ghrist’s HMR model can be done in O(1),
or in O(log(n)) persistently [11]. In general, local metamorphic systems are com-
putationally attractive because only local contexts need to be considered. However,
in practice, even with the additional cost of a linear cost connectivity check, the
Claytronics model is quicker to plan for than Ghrist’s HMR motion constraints.
This has been found to be true on a broad range of general planning strategies
[11]: simulated annealing [10], greedy search [20], rapidly-exploring random trees
[13] and probabilistic roadmap planning [8].

A different form of HMR is presented in [18] with O(y/n) movement time per-
formance. We consider this to be different from the other HMRs discussed so far in
two respects. Firstly, it uses an additional empty third dimension for units to move
into during planning, which simplifies planning considerably by providing a large
empty space for units to utilize. Secondly, each unit is given a momentum, which
allows a single unit to move faster than one lattice location per time unit. The
computation effort required to form plans is still O(n), but for a less constrained
model than the original Chirikjian HMR.

In this paper, we present another subspace, called the Surface space, that can be
viewed as a further constrained version of Ghrist’s HMR motion catalog. It inherits
Ghrist’s locality and admits a simple planning algorithm to solve Surface-to-Surface
reconfiguration tasks efficiently. This Surface state space has been used in other
related work to form long distance plans within the Claytronics HMR reconfigura-
tion state space, which allowed Claytronics-to-Claytronics reconfiguration tasks to
be solved, empirically, on average, in linear time [12] for 97% of the state space.
An arbitrary Claytronics HMR configuration, on average, is only a few moves away
from a nearby Surface adhering configuration using the Claytronics motion catalog.
It is thus tractable to compute a motion trajectory in the more general, and com-

putationally less efficient, Claytronics space only a small distance to find a nearby
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A B C

FicUreE 3.2. A: A potential meta-modularization of the HMR

that permits mobility of the sub-units found in the center of each

hexagon edge using the Claytronics motion catalog, in particular,

providing empty space opposite the pivot locations. B: A configu-

ration built out of 12 such meta-modules, and an example of how

local meta-module motion primitives can be daisy-chained together

to the effect of moving one meta-module to an empty location ad-

jacent to the perimeter. C: Expressing the local support required

for a sub-unit to enter or leave a location.
Surface configuration. The previous work [12] found a pair of nearby Surface con-
figurations corresponding to the Claytronics start and end configurations in the
reconfiguration task, and found a trajectory between them using a more efficient
version of the Surface-to-Surface planner presented here. While the algorithm was
highly efficient and operated on a large fraction of the Claytronics state space, the
Claytronics-to-Surface planning step was essentially a heuristic method that had a
failure rate proportional to problem complexity. In the interest of clarity, all the
analysis in the following sections is restricted to the properties of the Surface state
space, for which a well-behaved motion planner is presented.

So it is the nature of the reconfiguration state space of the Surface HMR motion
model we wish to understand further. It is worth noting that the motivation for
the Surface state space definition is removal of the planning difficulties associated
with the Claytronics motion catalog requiring empty space opposite the pivot loca-
tion. Previous attempts at abstracting away troublesome constraints in other SRS

models have centered around meta-modularization of the state space [19]. In meta-

modularization the atomic planning unit is actually a collection of SRS sub-units
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(figure 3.2 A) with predefined sequences of moves that permit the meta-modules to
move with fewer motion constraints than the underlying sub-units (figure 3.2 B).
The planning task is thus simplified, but at the cost of coarsening the embedding
lattice significantly. The drawback of the methodology becomes apparent when one
considers the proportion of configurations in the underlying SRS state space that
have a representation in the meta-module state-space. Meta-module conforming
configurations occupy an almost negligible proportion of the overall general state
space. Meta-modularization, then, does not lend itself well to being used as an
intermediate path through a more general configuration space (for example, there
are no meta-module configurations for 13 sub-units for the example in figure 3.2).
Both a meta-modularization subspace and the Surface subspace achieve similar
qualitative behavior, simplifying planning, by adding additional motion constraints
to an underlying motion model. The Surface space achieves a similar result to
meta-modularization, but by sacrificing fewer configurations.

So the motivation for this work is to shed light on the question: why is it
that adding extra constraints can sometimes make planning harder, as in adding
constraints to the Chirikjian catalog to create the Claytronics catalog, and yet
sometimes easier, as in adding constraints to the Ghrist catalog to create the Surface
catalog, or by applying a meta-modularization strategy? By identifying general
principles that describe when and how adding constraints can simplify planning,
we expect advances in reconfiguration algorithms for much harder models of SRS
whose motion state space is difficult to mentally visualize e.g. M-TRAN [14].
Furthermore, adding artificial constraints to a model reduces the number of states
the augmented system can express, so our work will aid in constructing constrained
motion catalogs that sacrifice the minimum state space volume for a gain in planning

efficiency.
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FIGURE 4.1. Wrapping a tour around a configuration. This con-
figuration is not a valid Surface configuration because it contains
a kink violation (K) and a dual path violation (Dp).

4. A SURFACE-TO-SURFACE PLANNER

A Surface adhering configuration, ¢ € S, is defined as a configuration that permits
a Hamiltonian path to be wrapped around the adjacent external locations (adj(c)).
This requirement is compromised by two classes of violation. A kink violation is
present when the peripheral tour leaves through the same edge it enters from (figure
4.1), and a dual path violation is where the tour traverses through the same location
more than once (figure 4.1).

A valid Hamiltonian path implies several properties relevant to motion under the
Claytronics and Ghrist motion catalogs. If an extra sub-unit is added, the sub-unit
can move in a complete loop around the entire perimeter of the configuration. The
lack of dual path violations implies there is always open space above the additional
sub-unit for pivotal space. Absence of kink violations implies there cannot be a
change of gross topology, specifically an introduction of enclosed space, caused by
a sub-unit bridging the empty space adjacent to the kink (figure 3.1 D).

Note however that while the added sub-unit is able to move around the configu-
ration freely using Ghrist’s motion catalog, it may not be able to stop anywhere on
this path and still result in a valid Surface configuration. The moving sub-unit may

itself cause kink or dual path violations. The Surface model’s constraints merely



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS

R

FI1GURE 4.2. Examples of a valid Ghrist configuration and a valid
Surface configuration. Ghrist configurations may contain narrow
intrusions of space, which prevent sub-units on the perimeter from
crossing. Surface configurations, by construction, do not.

imply that if a unit can be removed from one perimeter location and placed at an-
other valid location, then a sequence of Ghrist motion moves will exist to link them
(although violations may transiently be generated when executing the underlying
Ghrist sequence).

Whilst the Hamiltonian path constraint is a useful description of the Surface
model’s restrictions, both for implementation and visualization of the path around
the configuration sub-units take, we can rewrite this functionality in terms of a
new set of local contexts for the motion catalog. This proves that the Surface HMR
model is also a local metamorphic system by Ghrist’s definition. A major difference
with the motion catalog for the Surface model compared to the other HMR models
is that the start and end locations for a move may not be adjacent. So a Surface
plan is a set of moves that relocate individual sub-units from one location on the
perimeter to another, with the guarantee that a detailed sequence of consecutive
Ghrist moves will exist that pass through the Surface plan way-points.

Figure 4.3 shows the generators where a unit can be added or removed from
a Surface configuration to generate another valid Surface configuration. If local
states at the single trace location, tr, satisfy Up(tr) = EMPTY and U, (tr) =
OCCUPIED then we say the generator is an ADD, otherwise it isa REMOVE.
A move for the Surface model is a REMOVE followed by an ADD elsewhere.

Technically, in Ghrist parlance, the catalog for the Surface model is the (infinite)
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E.1 E.2

E.3 E.4

Ficure 4.3. There are four different generators for
adding/removing a sub-unit from a Surface configuration.

union of all possible relative arrangements of a REMOVE and an ADD whose
labeled local states agree.

Figure 4.3 was not generated by hand. All valid Surface configurations con-
taining eight sub-units were enumerated using the Hamiltonian path constraint
description above. The relative local contexts of adjacent empty space was stored
and annotated with a label describing whether a sub-unit could be added or not.
This set of annotated local contexts was processed by the C4.5 algorithm [17] found
in the Weka[7] data mining library to produce a shallow decision tree. The decision
tree had 100% accuracy at determining what necessary local context was present to
add a sub-unit, and was optimized upon valid configurations only. As a side effect,
the data mining tool identified that a sub-unit could not be added if it created the

patterns shown in figure 4.4.

Lemma 1. For any given Surface adhering configuration, an additional module

can move around the perimeter in a complete loop using the Ghrist motion catalog.

Proof. By construction, discussed above. (]
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FI1GURE 4.4. A Surface configuration never contains the above
patterns of empty space (white) and robotic sub-units (red).

The Surface-to-Surface planning algorithm finds an admissible sequence of Sur-
face moves in order to change one Surface adhering configuration into another.
From lemma 1 the resulting plan can be executed by a HMR constrained by the
Ghrist, Claytronics or Chirikjian motion constraints. Each single move in the Sur-
face HMR, however, is a concatenation of several single moves by the other catalogs
(a so called, long-move) on account of the start and end location decoupling. The
high level algorithm is outlined in algorithm 1. For clarity, the version presented
here does not include a number of additional optimizations (see [12]). So this spe-
cific algorithm does not really run in linear time. However, the salient features
relevant for the present discussion have been preserved.

The algorithm’s main loop incrementally changes the current configuration (which
is initially the start configuration) toward the goal configuration by applying valid
Surface moves determined by improve. The algorithm tracks a set P which rep-
resents placed sub-units. Once a unit is placed, it is no longer considered by the
improve sub-routine to be a possible sub-unit that can be moved. P is updated
incrementally by updateP (algorithm 2); a sub-unit is considered placed if it is ad-
jacent to an already placed unit, and the goal contains a unit at the same location.
It has been empirically determined that, on average, only O(y/n) long-moves are

required to transform a start configuration into the goal configuration[12].
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| Units, n [ fails | trials | 95% C.I. of P(fail) |
250 264 | 10000 | .0233 .0297
500 7 | 10000 | .0003 .0014
TABLE 1. Probability of StoS failing to find an improvement in
random tasks decreases as the number of units in the random con-
figurations increase.

The sub-routine improve finds a valid Surface move that moves a sub-unit not
in P to a location that would lead to an addition to P. The improve sub-routine
is highly optimized elsewhere to maximize the chances that only a few moves need
be considered [12], but these optimizations are not included here. There is a small
chance that no move will improve P in which case the planner fails to find a solution
for the reconfiguration task at hand. Empirically, this seems to happen rarely. In
fact, the probability of failure tends toward zero as n tends to infinity (table 1).

The result of the Surface-to-Surface planner is a sequence of long-moves, rep-
resenting location-to-location traversals round the perimeter of the intermediate
configurations. Unwrapping the long-moves into a sequence of short-moves, com-
patible with other HMR models, can be done in near linear time [12]. This is
possible because, on average, the perimeter distance for each long-move scales as
O(y/n), and the number of long-moves required to reconfigure also scales as O(y/n).
Thus it appears, empirically justified, that the average asymptotic performance of
the Surface-to-Surface planner is nearly linear (subject to how close to constant
time improve can be implemented) with an insignificant failure rate for large n.

We wish to understand several things about this algorithm. Why does the al-
gorithm asymptotically fail less as n — oo, even though it is essentially a local
heuristic? Why can the task be solved incrementally by growing a placed set, P ?
Also, why can’t the Ghrist HMR reconfiguration tasks be solved in a similar fashion

i.e. what makes this particular HMR motion catalog special?
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Algorithm 1 The Surface-to-Surface finds a set of admissible moves to change a
configuration c into a configuration cgeq. A set of placed sub-units, P, is incremen-
tally grown by calls to improve. improve searches for admissible moves to improve
P.
improve : S x S X P(P) — M
improve(c, cgoat, P) £

for(Vs.s ¢ PAs€c,Ve.e ¢ PAe€ cgoal )

if (match(c, s, REMOVE)))
if (match(c — {s}, e, ADD))
return (s, e)

throw error
StoS: S x S — MF
StoS(c, cgoal) £ Mk
P — updateP(§,ORIGIN, ¢, cgoa1)
while(|P| < |¢|)

m «— improve(c, P, ¢goal)

c—cU{ma} —{mi}

P — update P(P,ma, ¢, Cgoai)

append(m, M)

Algorithm 2 The set of placed units, P, is updated recursively. If a location, x, is
in the current and goal configuration but not in P it is placed in P and updateP is
called on its neighbors.
updateP : P(P) x P x S x S +— P(P)
updateP(Pprev, T, ¢, Cgoal) £ p
P — Pprev
iflx € cAx € cgoar N ¢ P)
P — PuU{zx}
for(Vq.isAdj(q, x))
P «— updateP(P, g, ¢, cgoal)

Cfree

FiGure 5.1. Left, a simple example of a planning space. The
obstacle in the center causes bottlenecks in Cyqc(shown in red).
Right, a graph approximation of the same space.
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5. THE SURFACE SPACE 1S HiIGHLY CONNECTED

In general terms, a planning algorithm’s task is to find paths through some
space, Cfree, for multiple start and end points. The difficulty of the task, and
therefore the minimal complexity of a planning algorithm, is inherently coupled
to the properties of the configuration space. Typically, for computational reasons,
one approximates a continuous or otherwise complex, Cy .., by discretization or
sampling-based methods to yield a graph whose vertices are states in Cy ... For
HMR planning, CY,.. is naturally discrete; vertices of the space represent config-
urations, and edges represent admissible moves (or sets of moves in multi-move
planning, but not considered here).

Bottlenecks in C'free are well known complications for planners [13]. A bottleneck
is a suitably narrow subset within C,.. that constrains different possible solution
paths to go through it in order to traverse between much larger subsets of the
space (figure 5.1, in red). Iterative or sampling-based planning algorithms that
must ‘discover’ such bottlenecks computationally can face serious challenges as they
may be naively expending precious computational time exploring irrelevant areas
of Cree (figure 5.1, in gray).

Well founded graph-theoretic measures can concisely express what we mean by
a bottleneck. Let G = (V, E) be a simple unweighted graph. A cut, W C V,
separates the graph into two sets of vertices, W and V — W. Let deg(z € V) be
the degree of a vertex. Then the volume of a set of vertices W C V is defined
as vol(W) £ Y,y deg(i). The cost of a cut on the graph is cut(W) = [{z =
(u,v)lx € EAu € W Av ¢ W}, in other words, the number of edges crossing the
cut.

The Cheeger constant of a graph, hg, is a measure of “bottleneckedness” which
finds a small cut that separates the graph into two large volumes [4]. It is defined

as:

hg = min cut(S)
¢ min{vol(S),vol(V — S)}



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS

Directly measuring the Cheeger constant for a graph is computationally in-
tractable. Tt is, however, bounded by the 2" smallest eigenvalue of the Laplacian
matrix (which is also known as the algebraic connectivity of the graph [4]).

The Laplacian L matrix of a graph is:

1 ifi=janddeg(v;) #0
[P . 1 s . . . ‘
N it aea e if 1 # jandv; is adjacent to v;
0 otherwise

If L has the eigenvalues \; > Ay > ... > A, then the Cheeger constant h¢g is

bounded by:

\/2/\2>hcz%

A1 is 0 for all Laplacians [4]. A2 is known as the algebraic connectivity of the
graph. If a graph has a low Cheeger constant, this implies there are small cuts that
can separate large volumes of the graph. This captures the essence of bottlenecks;
paths between the two volumes must be routed through a small corridor.

Our hypothesis is that the configuration space of the Surface model has fewer
bottlenecks compared to the Ghrist model of the HMR. We will use algebraic con-
nectivity and its relation to the Cheeger constant to measure the severity of bottle-
necks in C'fy. for the Ghrist model and the Surface model. However, first note that
the atomic moves in the Ghrist motion model represent a single sub-unit moving
an adjacent location, whereas Surface moves represent a single sub-unit moving a
number of lattice locations. To compare the models fairly, we created an analo-
gous definition of a long-move for the Ghrist model to be a sequence of consecutive
admissible moves applied to a single sub-unit i.e. all the locations that a single
sub-unit can reach while the other sub-units remain fixed. In addition, because
both model catalogs don’t permit gross topological changes in the morphology, we

only study configurations that do not contain enclosed space.
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Ghrist, Surface
VI [ Bl | M VI [EL T
6 15 1.2000 6 15 1.2000

33 168 1.1429 33 168 1.1429
176 1431 | 1.1186 176 1431 | 1.1186
930 | 10836 | 1.1033 || 900 | 10332 | 1.1111
4878 | 75945 1.1 4482 | 67725 | 1.0978
7 || 25480 | 506394 | 1.0872 || 21910 | 417042 | 1.0909
TABLE 2. The number of vertices, edges and measure of algebraic
connectivity (Ag) for the Ghrist and Surface model reconfiguration
graphs generated by different numbers of sub-units (n). The states
spaces are identical up to n = 4, and only differ marginally at
n="7

O U | W N[ B

For the configuration graphs containing up to 7 sub-units, it is possible to con-
struct the Laplacian and calculate the algebraic connectivity directly. The results
are shown in table 2. However, the reconfiguration graphs differ very little at such
low numbers of sub-units for the two models. With few sub-units, there are not
enough permutations of possible local contexts to differentiate the models. The
difference between models only becomes apparent at higher complexity levels.

Unfortunately, expanding the configuration graphs containing larger number of
sub-units quickly becomes intractable. So in order to estimate the properties of the
Cheeger constant at higher complexity levels, i.e. sub-unit numbers, we use a sam-
pling methodology. First, we generated a random Surface adhering configuration
containing n units by iteratively uniformly selecting an ADD action to a growing
configuration (starting from the ORIGIN). Second, we applied 1000 random moves
from the respective motion catalog (long-moves for the Ghrist model), so that the
initial Surface configuration diffuses into a model-specific area of the configuration
space. Finally, the model-specific configuration reached is used as a starting loca-
tion for taking a sample. Examples of configurations generated by this procedure
are shown in figure 4.2.

A sample sub-graph is generated by performing a breadth first search to a depth
of two from the sample location (the sample location, its neighbors, and its neigh-

bor’s neighbors). The algebraic connectivity may be computed for this sub-graph,
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Estimated distribution of A,, for Ghrist Model
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FIGURE 5.2. The estimated densities of Ay of the Laplacian after
sampling 100 sub-graphs from the reconfiguration spaces of the
Ghrist model and the Surface model.

and should correlate to the global algebraic connectivity. This procedure was ap-
plied to 100 samples for each complexity level under study. The smoothed results
are shown in 5.2.

For the Ghrist model, figure 5.2 shows that as the number of units in the con-
figuration increases, so the spread of A\ increases, and the mean diminishes. This
suggests that our sampled sub-graphs are increasingly likely to contain bottlenecks.
For higher numbers of sub-units this suggests that the Cheeger constant is tending
toward 0. For the Surface model the reverse seems to be true. The spread of A;
is decreasing, and the mean increasing. Bottlenecks seem to be sparser as we add
more units to the Surface configurations.

Our interpretation for the Surface model is that when there are very large num-
bers of sub-units, the movement of a particular sub-unit is relatively unrestricted;
it is able to move anywhere on the surface. Interaction between sub-units mainly
occurs at the local level, whose importance diminishes as the number of units grows.

Thus local interactions that cause bottlenecks become less likely, and the mobility
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FIGURE 6.1. Graph minor operations, graphs to the right are mi-
nors of those to the left. Red denotes an edge contraction opera-
tion, and green an edge deletion.

of sub-units on the perimeter increases. For the Ghrist model, it only takes two
kinks on the surface to divide the perimeter into two classes that units cannot move
between (see the H configuration in figure 6.9 in next section). As the number of
units grow, so the probability of two or more kinks being found somewhere on the
perimeter tends toward certainty.

The implication of figure 5.2 is that the Surface model has fewer bottlenecks
compared to the Ghrist model. The sparsity of bottlenecks in the Surface model
explains why a greedy planning procedure, such as the one employed in the S-to-S

planner, suffices in an increasing proportion of cases as n grows.

6. GRAPH MINOR SUB-STRUCTURE

The previous section uses Spectral Graph Theory in order to explain when greedy
planning methods suffice in a reconfiguration state space. Within this next section
we introduce the use of the Graph Minor Theory to the analysis of SRS state
spaces, firstly as a compact, precise notation for representing that one state space
is a constrained version of another, and as a tool that reveals startling differences
between the easy and hard planning spaces as sub-units are added. This last point
in particular partially explains why efficient planning methods may only exist for

some planning state spaces.

Definition 2. A graph, H, is said to be a minor of a graph, G, denoted H < G
if there exists a sequence of edge deletions, contractions and vertex deletions to

change G into H .[5]
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Figure 6.1 illustrates the basic graph minor modification operations. The graph
minor relation is a compact notation for describing when one state space can be
executed upon another model; for describing when one SRS motion model is a

constrained version of another. Consider the similar sub-graph relation:

Definition 3. A graph, H, is said to be a sub-graph of a graph, G, if there exists
a sequence of edge deletions and vertex deletions to change G into H .[5]

The sub-graph relation lacks edge contractions. Now consider the meta-module
reconfiguration state space graph containing k meta-modules, M, and the Claytron-
ics state space which contains 12 sub-units for every meta-module, C;9 (figure 6.2).
Meta-module movements are built from sequences of underlying motion primitives,
so although each Ml vertex is present in the Ciox graph, each edge of the My, graph
represents a sequence of underlying Cyop, edges. Thus M, is not a sub-graph of Cyop,
yet it is a graph minor, i.e., M < Cyop. Similarly, we can summarize all the dis-
cussed HMR state spaces using graph minor nomenclature as Ji > Cy, > G > Sy,
where Ji, Cr, G and S stand for the Chirikjian, Claytronics, Ghrist and Surface
model reconfiguration state spaces containing k£ sub-units respectively.

The minor relation is a compact, precise notation for expressing what we mean
by one state space is a constrained version of another. Butler et al.[2] present an
argument that their cubic SRS model is generic because it can be instantiated by
various existing SRS motion catalogs. If we denote their cubic SRS reconfiguration
state space containing k sub-units as By, the meta-modularized M-Tran state space
as T, we can rewrite one of the instantiations described in the work as By < Ty,
as four M-Tran units were required to cooperate in order to achieve the minimum

motion requirements of their model.

While the graph minor relation is a useful notation for describing relationships
between different SRS motion catalogs, we now look at the family of state space
graphs of an individual SRS catalog generated by different numbers of sub-units,
e.g., Sy, for n > 1; to understand how the planning problem changes as more

sub-units are added. Intuitively one might presume that the state space graph for
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FIGURE 6.2. A. A meta-module can tunnel through another, rep-
resented by a single edge in the planning state space. This sin-
gle move in the meta-module state space is implemented using
a sequence of moves from the underlying state space. The tran-
sient moves used in the Claytronics state space have used the edge
contraction operation to form atomic moves in the meta-module
state space (B, red). The edge contractions, plus pruning of non-
conforming meta-module states and moves (green) show that meta-
modularization corresponds to a graph minor of the Claytronics
state space.

NG

a HMR model containing ¢ sub-units will share similarities with the state space
containing ¢ + 1 sub-units. We address this question formally and find a significant
difference between the state spaces generated by models that are hard to plan for,
e.g., the Ghrist catalog, and models that have efficient, solutions in existence, e.g.,
the Surface catalog or a meta-modularized state space.

For the Surface model, the 7 reconfiguration graph is a graph minor of the i +
1 reconfiguration graph, S; < S;<.... This does not appear to be true of the
configuration graphs generated by the Ghrist motion catalog. In fact, the counter-
examples for the Ghrist case are caused by the very cases where bottlenecks are
found. Similar to the S case, the HMR meta-modularization example is also well-
ordered by the minor relation, M; < My < .... As will be discussed further later,
graph minor ordering in the reconfiguration state spaces has significant implications
for the motion planning problem, and is likely to be the mechanism for explaining

why one motion model admits efficient planning and others do not.
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F1cURE 6.3. To globally show X; < X;;; we can define a local
relationship between the graphs, and show that this relationship
locally adheres to the minor relationship. Red denotes edge con-
tractions, and green, edge and vertex deletions. The global minor
can be proved by stitching together the local minors.

To show that a reconfiguration state space, X; is a minor of X; 1, we utilize the
fact that each vertex of the reconfiguration graphs is labeled by the arrangement of
sub-units on a common embedding lattice. This labeling scheme permits a vertex,
v; of the X; graph to be associated with a group of vertices, ¥;41, in the X;
graph that corresponds to possible locations a sub-unit can be added to the wv;
configuration to generate a configuration within X;;;. This observation implies
that a local area of the X; graph has a corresponding local area in the X;; graph.

To show globally that the X; graph is a minor of the X;,1 graph, it is sufficient
to prove that: for every vertex, v;, in the X;, that v;’s local graph neighborhood
is a minor of v;4; graph neighborhood, and that these local neighborhoods are
connected in the same topology. This is summarized diagrammatically in figure
6.3.

The sketch of the proof to show that S; < S;;; is as follows. Any configuration
adhering to the Surface model implies that if a module can move at all, then it
is free to move in a complete loop around the exterior. The S;;; space contains
one extra sub-unit. We show that the sub-unit can always move out of the way,

in order to let any move that existed in the S; graph take place. Prevention of a
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move in the S; state space for the S; 1 state space can only occur if the extra sub-
unit in the S;;; state space interferes with the local support that determined the
move’s admissibility. We argue geometrically that for large configurations, there
always exists a potential location for the added sub-unit that lies outside of the
local support locations of the S; move. The finite size of the motion catalog’s local
supports, plus the total mobility of the additional sub-unit, implies that “get out of
the way” moves always exist in the S; 11 state space. The “get out of the way” move
edges can be contracted to generate the S; graph, thus showing that S; < S;y1.
This argument, does not follow for the Ghrist model because, in general, the extra
sub-unit does not always have enough freedom to “get out of the way” of the local
supports that determined the admissibility of a move.

Concretely, we introduce the notions of local structure in a reconfiguration graph
around some vertex, and an inherited local structure which represents the analogous

locale in a reconfiguration graph generated by adding a unit.

Definition 4. The local structure for a configuration, v, is all configurations reach-
able by a single Surface move (remember a move is a REMOVE followed by an ADD

from the Surface catalog, figure 4.3).

Definition 5. The inherited local structure for a configuration, v, is all possible
configurations generated by applying an ADD from the Surface catalog to v. (Figure
4.3)

Lemma 6. Any two configurations belonging to a vertex’s inherited structure have

a valid move between them.

Proof. This follows from Lemma 1. Thus the inherited local structure forms a
clique of configurations connected by moves.
To show that the inherited local structure preserves analogous moves that existed

in the local structure, we first show that an extra sub-unit can always be added at
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FIGURE 6.4. Whether or not a sub-unit exists at location C does

not affect a move between A and B because its support does not

intersect A or B’s. Rather than showing this in 2-dim, we project

the support areas onto a line parallel to the widest diameter of

the shape. Showing the supports do not intersect is simplified to

showing the projected support intervals do not overlap.
a location that is far enough away from the start and end of the move so that it
does not affect the local support that determined the moves admissibility (sketched
in figure 6.4). If a move is between position A to position B, we need to show that
VAVB3C.(sup(A) N sub(C)) U (sup(B) N sub(C)) = . There are a variety of ways

to show this, for simplicity, in the following proof we project the support areas onto

a line parallel to the widest diameter of the configuration. O
Lemma 7. All generators of the Surface catalog have a width of less than 5.
Proof. See figure 4.3. t

Lemma 8. A connected configuration containing 631 or more sub-units has a large

diameter of at least 29.

Proof. The configuration with the smallest large diameter occurs when sub-units
are arranged into a perfect hexagon. 6312 sub-units can be arranged into a large

2A Hexagonal Number
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FIGURE 6.5. Lemma 9 is shown by sliding the shape shown in
green (of width 7) toward the configuration until it overlaps one or
more sub-units on its lower edge.

hexagon of diameter 29. Moving any sub-unit, or adding more sub-units, will only

increase the large diameter. O

Lemma 9. For a Surface configuration, within an columnar interval of width 7, a

valid ADD location and its complete support is contained.

Proof. First, a shape of width 7 is slid over empty space toward the configuration
(figure 6.5) until intersecting a sub-unit. The lower row of hexagons comprising
of the shape will then contain between one and seven sub-units and the remainder
shall be empty (by construction). We will now consider different cases of how the
bottom row can be occupied in order to show that regardless of how, there is always
a location where an extra sub-unit can be added.

A and B of figure 6.6 reflect the cases of when the bottom row contains only one
sub-unit. In each case a sub-unit can be added using Surface ADD E.1 (figure 4.3).
When two sub-units are present and adjacent, figure 6.6 C and its generalisations
demonstrate Surface ADD E.2 can be used to add a sub-unit. When the two sub-

units are a distance of one from each other, case D is relevant. Case D can only
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FI1GURE 6.6. The major cases for consideration of how the shape
in figure 6.5 can be occupied with sub-units. The area marked with
a green perimeter labels the location of an applicable support for

some Surface ADD generator. The location of where the sub-unit
can be added is shown in green.

occur if additional sub-units are found adjacent to the empty location (light blue),
because otherwise the configuration would be invalid (figure 4.4). With the implied
extra sub-units included, Surface ADD E.4 (figure 4.3) is applicable. Another
possibility when a pair of lower row sub-units are at a distance of one is case E,
this however, is an impossible Surface configuration (figure 4.4), but regardless,
an applicable ADD location exists. When two sub-units are at a distance greater
than two, such as in the case F, it is clear one sub-unit no longer becomes relevant
to determining an ADD applicability. For cases with more sub-units, the above
arguments are trivial to extend (Surface ADD E.3 is used when case B is extended
to three sub-units). Therefore, within an interval of 7, a valid ADD location can

always be found, regardless of the specifics of the Surface configuration. O
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6 5 6 5 6

FIGURE 6.7. On a line of length 28, two intervals of width 5 can be
placed such that an addition interval of 7 cannot be placed without
intersecting one of them.

Lemma 10. On a line of length 29 or greater, if two intervals of width 5 are

present, then an interval of width 7 can be found which intersects neither.

Proof. The worst placement of the intervals of width five are shown in figure 6.7
for a line of width 28. Clearly extending the length of line by one will permit space

for an interval of width 7 to be inserted without overlap. Il

Lemma 11. For any move between location A to location B on a Surface configura-
tion containing 631 sub-units or greater, there exists a location C where a sub-unit
can be added, whereby the support of A and B do not intersect the support of C,
i.e., YAVB3C.(sup(C) N sup(A)) U (sup(C) N sup(B)) = 0.

Proof. Projecting the supports of A and B onto a line parallel to the line defining
the large diameter of the 631 sub-unit sized configuration yields two intervals of
size 5 (by Lemma 7) on a line of length 29 (Lemma 8). An interval of width 7 shall
exist on this line that does not intersect either of the intervals of size 5 (Lemma 10).
Somewhere within the area of the configuration that would project to the interval
of size 7 exists and ADD location C (Lemma 9) which cannot intersect the supports

of A or B. O

Remark. This also holds for configurations of any size, but the only proof we are

aware of involves cumbersome enumeration of cases.

Lemma 12. For every move A — B in a local structure between configurations
v and u, there exists at least one pair of configurations v’ and v’ in the inherited

structure between the same locations.

Proof. A configuration can be represented as a set of sub-unit locations. Let v =

XU{A} and uw = X U{B}. We simply need to find an ADD location C that can be
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added to v and u such that it does not interfere with the support of A and B that
enabled the move A — B to take place. Lemma 11 shows such a C exists when

there are more than 631 sub-units in the configuration. Thus a C always exists

such that v' = X U{A4,C}, v’ = X U{B,C} and the move A — B is still valid. O

Lemma 13. The local structure of a vertex, v, is a graph minor of its inherited

local structure v'.

Proof. Each neighbor, u;, in the local structure of v, represents a valid move be-
tween the configurations v and w;. By Lemma 12 Vu;, there exists a location z;
that permits a move between vU{z;} and w;U{z;}. By definition, the configuration
vU{z;} is in the inherited structure. By Lemma 6 there exists a move between all
vU {2, } configurations. If all moves between v U {z,} are contracted and all edges
not vU{z;} — u; U{z} in the inherited structure are deleted, the remaining edges
are the local structure (see figure 6.8)

O

Theorem 14. The state space of the Surface model containing i sub-units is a graph

minor of the reconfiguration space containing i + 1 units, S; < S;41 for i > 631.

Proof. By Lemma 13 every vertex in the ¢ graph is a minor of the inherited graph.
For a pair of configurations in the ¢ graph, u = X U{z}, v = X U {y} with a move
between them, x — y, Lemma 13 states an ADD location on each, z,and z, exists
such that the same move can take place in the inherited structure, X U {z, 2, } —
X U{y,2zu} and X U{y,2,} — X U{z,2,}. By Lemma 6, a connecting move
between the local minors exists between X U {z, z,} and X U {z, z,} and thus we
can compose all the local minors of Lemma 13 into a graph and edge contracting the

connecting moves to produce the reconfiguration graph containing 7 sub-units. [

Remark 15. For an alternate viewpoint on the same result, we could entirely skip
the composition of local graphs. An extra sub-unit can be added, and moved out of

the way in order to realize all sequences of realizable moves (Lemma 12). However,
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FIGURE 6.8. A local structure (left) is a minor of the inherited
local structure (right). The left central vertex is surrounded by
all configurations reachable by a move (its local structure). The
right central vertex contains the inherited structure for that ver-
tex (a clique), yellow denoting where an additional sub-unit has
been added. For every move in the local structure (white to pur-
ple), a comparable move can be found in the inherited structure
with an addition sub-unit added, denoted by the verteces joining
the central vertex. The red lines within the inherited structure
shows which moves are required to move the additional sub-unit
around to “get out of the way” so that all analogous moves can
execute. Deleting all black edges in the inherited clique followed
by contracting the red edges reproduces the local structure.

this loses sight that there is a notion of locality relating the local structure to the
inherited local structure through the embedding space. This becomes important

when we consider the counter example for the Ghrist model.

Conjecture 16. The Ghrist reconfiguration graph containing ¢ units is not a graph

minor of i + 1 when i is greater than some constant.

Our above construction of graph minor for the Surface model does not hold for
the Ghrist configuration graph because an additional sub-unit in the inherited local
structures does not, in general, form a clique structure. Thus, while a location may
exist for every local move that permits the move to take place in the inherited
structure, there may not be connections between these locations. Figure 6.9 shows
a counterexample where the inherited structure is disconnected. In these cases the
local structures are not minors of the inherited structures, and so a global minor

cannot be constructed from a composition of local minors.
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FIGURE 6.9. A counterexample case for the Ghrist model. Two
neighbors in the local structure of the central H configuration are
shown (top). The induced local structure of the H configuration
is divided into four connected components, two cliques and two
unconnected vertices. The local structure cannot be reconstructed
from edge deletions and contractions of the inherited structure,
and thus is not a graph minor.

Interestingly, if the H configuration counterexample in figure 6.9 is used as a
starting point for a sub-graph sample for the procedure in section 5, then the
resulting sub-graph yields an A\s of just 0.03. This classifies the configuration as
the most bottlenecked configuration encountered. It appears that the areas of the
reconfiguration space where the graph minor relation breaks down is also where

bottlenecks appear.

Theorem 17. For the meta-module state space, My < Mo< ...,

Proof. Omitted for brevity, but the proof largely follows the logic for the Surface
model. O

Decoupling the start and end positions of moves is the primary reason why
minor ordering is found in the reconfiguration graphs of the easy planning spaces
studied here. It must be noted though, that the minor ordering is a global structural
property of the reconfiguration graphs, and not a consequence of the representation
used to describe the motion catalogs.

Graph Minor Theory is a powerful, modern mathematical tool. Many properties
are persevered or bounded by taking minors. If a graph H < G and G can be

drawn in some topological space without edge crossings (e.g. a planar graph, or a
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generalization thereof) then H can be too. H is no more complex (in a topological
sense) than G.

It may be initially difficult for a reader unfamiliar with graph minor theory to see
the consequences of minor ordering. Recall the easier-to-grasp concept introduced
first that if Hy < G, and H and G are distinct SRS motion models, then plans
for the hardware of H can be run on the hardware of G e.g. H could be a meta-
modularization of G. Generalizing this, we can now see that if H; < H;y; that
plans for the H; reconfiguration graph can be instantiated on the same hardware,
differing only in that an extra sub-unit has been added (H;y1). Thus, plans in
H; can be reused, and augmented, to form plans in H;;1, so planning in these
well-ordered spaces can be achieved in an incremental, local and recursive manner.

In contrast, the hard planning spaces, like the Ghrist model, do not permit this
efficient strategy. As G; is not a minor of G;4; this implies that both edge deletions
and additions must be used to modify G;4; into G; (and in fact, vice versa). So, a
plan that worked for a G; planning task may not always operate in an analogous
manner for the G, case, because it may of utilized an edge in the reconfiguration
graph that no longer exists.

Like the subset relation, the graph minor relation induces a partial order on a
set of elements. Partial orders can be summarised graphically using a nested set
notation. The observations in this section about how the Ghrist state spaces relate
to the Surface state spaces and between themselves using the graph minor relation

are summarised in figure 6.10.

7. DISCUSSION

Self-reconfiguring systems are a desirable future robotic technology. Unfortu-
nately, practical implementations of SRS tend to have awkward motion constraints
that make planning computationally difficult. To get the full benefits of SRSs we re-
quire efficient motion planning algorithms so that SRS deployments can reconfigure

on demand in response to environmental challenges.
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FIGURE 6.10. Each Surface state space can be nested within the
next. While a Surface state space is always found within a Ghrist
state space, each Ghrist state space contains an area that is not
contained with its child. It is for this reason that Ghrist problems
cannot be solved efficiently over the entirety of the state space.

So far efficient motion planning algorithms have been developed on a somewhat
ad hoc basis, wherein researchers have looked carefully at each instantiation of
SRS architectures and carefully chosen motion catalog restrictions. So far, we have
lacked a theoretical understanding of why some classes of SRS are good to plan
within and some are not. Our work is an attempt to elucidate the structure of
SRS reconfiguration spaces, which could be exploited in planning algorithms. We
applied graph-theoretic techniques to sample the reconfiguration space in order
to quantify the presence of bottlenecks, and we identified a graph property that
separated an easy to plan with SRS model from a harder one. These are general
methodologies with computational implications for a much larger class of SRS.

Meta-modularization has been a common tactic in the SRS community for iso-
lating troublesome motion constraints within an abstraction. Meta-modularization
often involves the definition of a tunneling procedure that allows a peripheral meta-
module to appear anywhere else on the perimeter of the configuration. The un-
constrained movement, of meta-modules around the perimeter using a tunneling

procedure is similar to the Surface model’s long-move motion primitives (though
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the Surface model does not permit movements to locations on the perimeter that
cause Surface violations). Both meta-modularization and the Surface model config-
uration graphs are well-ordered by the graph minor relationship, which we believe
goes some way towards explaining why these approaches make planning easier. It is
clear that the Surface model’s motion catalog is far less restrictive than the strategy
offered by meta-modularization though. The configurations adhering to the Surface
model’s constraints occupy a much larger volume of HMR configurations, and thus
sacrifice less generality in the configurations that can be planned with efficiently,
than an alternative meta-modularization approach would.

The reason why Surface constraints are significantly less restrictive is because
they are defined as addition local constraints describing where a sub-unit cannot
stop along a motion path. There is no restriction that the local constraints to be
defined in global terms (e.g. at specific points on a globally defined grid spacing as
in meta-modularization). It seems entirely plausible that with a set of geometric
path primitives (path segments and perhaps more generally branches), and with the
insights of this paper (keeping algebraic connectivity high, and looking for graph
minor ordering), that a set of local constraints that constrain an underlying model
only a little, but simplify planning significantly, can be elucidated automatically.

Constraining a motion model only a little implies that only a small volume of the
target general state space cannot be represented. In previous work [12], we utilized
the Surface state space as an efficient basis for long range planning across the more
general Claytronics motion catalog, with occasional recourse to more expensive but
general search methods. Although the overall algorithm targeted the Claytronics
motion catalog, by finding a large subspace that was efficient to work within, the
size of the ‘difficult’ part of the remaining space was greatly reduced. Thus, overall,
the algorithm could achieve near linear performance, as empirically demonstrated
using a large number of randomly generated configurations, over a large proportion

of the target state space.
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8. CONCLUSIONS

SRSs need efficient motion planning algorithms, but developing them has been
difficult because of the inherent high dimensionality and complexity (due to motion
and shape constraints) of the problem. An efficient SRS motion planning algorithm
must exploit local and global structure. In this work we have shown that even in
cases where the basic state space of a planning problem may be complex, specific
subspaces may admit much more interesting structure that can be gainfully utilized
for planning. We have made precise what structure is required of the subspace, and
moreover, we have shown how one can characterize this structure using general and
powerful mathematical tools that are applicable to a large class of SRS problems.
One promising direction for future work is to try to utilize these conceptual ideas
to develop techniques that automatically discover efficient subspaces from more

complex self-reconfiguration models.
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