
A CHARACTERIZATION OF THE RECONFIGURATION SPACEOF SELF-RECONFIGURING ROBOTIC SYSTEMSAbstra
t. Motion planning for self-re
on�guring robots 
an be made e�-
ient by exploiting potential redu
tions to suitably large subspa
es. However,there are no general te
hniques for identifying suitable restri
tions that havea positive e�e
t on planning e�
ien
y. We present two approa
hes to un-derstanding the stru
ture that is required of the subspa
es, whi
h leads toimprovement in e�
ien
y of motion planning. This work is presented in the
ontext of a spe
i�
 motion planning pro
edure for a hexagonal metamorphi
robot. Firstly, we use ideas from spe
tral graph theory - empiri
ally estimatingthe algebrai
 
onne
tivity of the state spa
e - to show that the HMR modelis better stru
tured than many alternative motion 
atalogs. Se
ondly, usingideas from graph minor theory, we show that the in�nite sequen
e of subspa
esgenerated by 
on�gurations 
ontaining in
reasing numbers of sub-units is wellordered, indi
ative of regularity of the spa
e as 
omplexity in
reases. We hopethat these prin
iples 
ould inform future algorithm design for many di�erenttypes of self-re
on�guring roboti
s problems.1. Introdu
tionSelf-re
on�guring systems (SRSs) are robots 
omprised of a 
olle
tion of roboti
sub-units that 
an physi
ally 
onne
t and dis
onne
t from one another. Through
ollaboration, the aggregate is 
apable of 
hanging its morphology on demand. Su
hsystems o�er versatility unparalleled by monolithi
 robot solutions. However, one
an only exploit the �exibility o�ered by SRSs if algorithms exist that 
an e�
ientlysynthesize plans to 
hange from one 
on�guration to another. So far, developinge�
ient algorithms has proved di�
ult, parti
ularly when there are many sub-unitsto 
oordinate, and intri
ate lo
al 
onstraints to 
onsider.In this paper we 
onsider a spe
i�
 re
on�guration ar
hite
ture, the hexagonalmetamorphi
 robot (HMR). This ar
hite
ture is simple to des
ribe, yet 
aptures1
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ulties in planning for an SRS. We present an algorithm that, for aspe
i�
 subspa
e of the Claytroni
s HMR state spa
e (to be explained later) 
alledthe Surfa
e spa
e, is 
apable of solving tasks in near linear time on average. Agoal is to synthesize plans for the di�
ult Claytroni
s HMR state spa
e. In priorwork, the planner presented here was 
ombined with an additional planner, the
ombination of whi
h solved up to 95% of shape re
on�guration tasks in lineartime, on average, for tasks involving up to 20,000 units [12℄.This paper aims to explore why some some re
on�guration state spa
es are eas-ier to plan within, and in parti
ular, how these easy planning spa
es 
an be found
ontained within harder state spa
es. We will use the Surfa
e spa
e as an exam-ple of an `easy' state spa
e that 
an be found within a number of possible `hard'state spa
es of the HMR. We demonstrate that the subspa
e is well 
onne
ted (ina sense to be made pre
ise), whi
h is why planning tasks 
an be solved e�
ientlyusing greedy methods with a low probability of failure. We test this hypothesisby utilizing a sampling-based method to estimate quantitative des
riptors of thealgebrai
 
onne
tivity of the state spa
e. We 
ompare the results from this spe
ial-ized subspa
e against a more general model of HMR re
on�guration, and dis
overa striking qualitative di�eren
e in the behavior of the algebrai
 
onne
tivity as thenumber of sub-units in the 
on�guration grows. The impli
ation is that the Surfa
espa
e 
ontains few bottlene
ks, even when there are high numbers of sub-units.A se
ond desirable property of the Surfa
e spa
e is that the di�erent instan
esof the re
on�guration spa
e, 
orresponding to in
remental addition of a module,are well ordered in a spe
i�
 sense. Spe
i�
ally, we prove that the re
on�gurationgraphs at in
reasing levels of 
omplexity are ordered by the graph minor relation, ina way that seems to extend the notion of meta-modularization. Ordering by graphminors explains why 
ertain SRS models 
an be solved re
ursively in a parti
ularlysimple and e�
ient way. We hope that these ideas might inspire further analysisof the global stru
ture of re
on�guration spa
es and algorithm designs.
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i�
 results of this paper are phrased in the 
ontext of the study of aspe
i�
 algorithm for a spe
i�
 model of a SRS, the quantitative and analyti
al tools
an be applied to any SRS, to explain when and why a subspa
e of a re
on�gurationspa
e for an SRS may be good to plan within, providing tools for 
hara
terizing andevaluating a subspa
e's suitability for e�
ient planning. In future work, we hopethat these tools 
an be utilized to develop automated methods for identi�
ation ofuseful subspa
es and other abstra
tions, to seed the development of SRS planningalgorithms for di�erent SRS ar
hite
tures.2. Prelim.Let P denote the set of points on a hexagonal latti
e, L. The metri
 d : P×P 7→ Zis de�ned as the Manhattan hex distan
e (see [3℄ for details). We say two lo
ations,
x1 ∈ P and x2 ∈ P are adja
ent as isAdj(x1, x2) ⇔ d(x1, x2) = 1. The undire
ted
onne
tivity graph, Gconn, of a set of lo
ations, V ∈ P(P) (P denotes the power setfun
tion) is the graph 
onstru
ted from Gconn(V ) = G(V, {(e1, e2)|isAdj(e1, e2)}).In all models of the HMR des
ribed here, a 
on�guration, c, is a 
onne
tedset of roboti
 sub-unit lo
ations, c ⊂ P(P) where ∀x, y ∈ c there exists a path in
Gconn(Y ). There are often further 
onstraints to the admissible set of 
on�gurationsdepending on the HMR model.A move, m, is an ordered pair of positions, m ∈M = P×P. A single-move plan,is an ordered sequen
e of moves. Whether a move is admissible depends on themotion 
atalog, whi
h is di�erent for di�erent models of the HMR.We spe
ialize the general de�nition of a metamorphi
 system by Ghrist et al.[1, 6℄ for des
ribing HMR motion 
atalogs here. Ghrist et al. permitted an arbitraryalphabet of symbols to label an arbitrary embedding spa
e to des
ribe a spe
i�
state of the system. A 'state' in Ghrist et al. work is a 
on�guration of sub-units for our purposes. Our alphabet for labelling the hexagonal latti
e, then, issimply A = {OCCUPIED, EMPTY }. By the Ghrist et al. de�nition, a lo
almetamorphi
 system's permissible state transitions are 
ompletely des
ribed by
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atalog, C, whi
h is a 
olle
tion of generators. A generator des
ribeswhi
h labels may 
hange (the tra
e) when a given 
ontext is present (the support).Spe
i�
ally, a generator, φ ∈ C 
onsists of a support, SUP (φ) ⊂ P(P), a tra
e,
TR(φ) ⊂ SUP (φ) and an unordered pair of labeled lo
al states, Û0,1 : SUP (φ) 7→ Asatisfying:

Û0|SUP (φ)−TR(φ) = Û1|SUP (φ)−TR(φ)In other words the labeling of Û0 and Û1 are equal over the support lo
ations,but may di�er in the tra
e. For the HMR motion 
atalogs des
ribe here, the tra
e
onsists of two adja
ent lo
ations, and the lo
al states are labeled to re�e
t that asingle unit moves from an OCCUPIED lo
ation to an EMPTY lo
ation.Generators des
ribe move 
lasses, but an a
tual movement is 
arried out ata spe
i�
 lo
ation in the embedding spa
e. Ghrist et al. de�ne an a
tion of agenerator φ ∈ C as a rigid body translation, Φ : SUP (φ) 7→ L, thus providinginformation as to where the generator was applied and in what dire
tion. Given astate U : L 7→ A, the a
tion is admissible if ∀x.Û0(x) = U(Φ(x)). The result of thea
tion on the state is
Φ[U ] :=















U : onL− Φ(TR(φ))

Û1(Φ
−1) : on Φ(TR(φ))In all the spe
i�
 
atalogs used here, the tra
e 
onsists of two adja
ent lo
ationslabeled EMPTY and OCCUPIED in Û0 whi
h are swapped for Û1, representinga sub-unit moving to an adja
ent lo
ation. So we 
an work out the rigid transform

Φ from m ∈ M. The Ghrist et al. notation is very general, and in the algorithmspresented in this paper we only need to know whether a move is admissible or not,so for 
onvenien
e we de�ne the fun
tion matchC : M, 7→ boolean to return true ifthe move is admissible for the given 
atalog, C.



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS5
Figure 3.1. Previous motion 
atalogs modulo isomorphisms.Green denotes the tra
e, where a sub-unit 
an move between. Blueand white respe
tively denote where sub-units must be/must notbe in the lo
al 
ontext for the move to be admissible. A: Theoriginal motion 
atalog for the hexagonal metamorphi
 robot byChirikjian [3℄. B: The motion 
atalog for the Claytroni
s proto-type [9℄. C: The three generators 
omprising of Ghrist's examplemotion 
atalog [1℄. D: A move permitted by the Claytroni
s modelbut not Ghrist's as it 
hanges the gross topology of the aggregate.

3. Ba
kgroundChirikjian originally proposed the HMR [3℄. This robot was one of the earliestproposed SRSs and remains a prototypi
al example of a latti
e-based SRS. Thestate of the SRS is entirely spe
i�ed by the lo
ations of all sub-units on the latti
e.This is in 
ontrast to 
hain type SRSs and unit 
ompressible SRSs where sub-unitsmay have further internal states, su
h as joint angles.In the HMR model of motion, a sub-unit may move ea
h time iteration. Insingle-move planning only one sub-unit is permitted to 
hange latti
e lo
ation pertime step, and in multi-move planning several may 
hange position per time step.Whether a sub-unit 
an move or not is dependent on its lo
al 
ontext, as well asthe global requirement that all units remain 
onne
ted. A number of di�erent lo
almotion 
atalogs have been developed, giving rise to several di�erent versions ofthe HMR model. Chrikjian's original de�nition was the least restri
tive, lo
allyrequiring only that a roboti
 neighbor was present for the moving sub-unit to pivotaround (�gure 3.1 A). However, the additional global requirement that the sub-units of the 
on�guration remain 
onne
ted requires expli
it 
he
king before anymove 
an be 
onsidered admissible. This global 
he
k requires O(n) time to run.
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ha et al. were able to develop an algorithm 
apable of solving Chirikjianre
on�guration tasks using a greedy simulated annealing pro
edure [16℄. Sin
e sim-ilar approa
hes fail for other similar models [11℄, we 
on
lude that their su

ess wasperhaps due to the relatively unrestri
ted motion 
atalog. In general, for simulatedannealing (and other randomized approa
hes) to be su

essful on a problem, theplanning spa
e must not 
ontain deep lo
al minima or related 
onstraints [13℄.A me
hani
al prototype of the HMR has been developed, 
apable of movinga

ording to the Chirikjian motion 
atalog [15℄. This motion 
atalog implies thata moving sub-unit 
ould be potentially 
ompletely enveloped by roboti
 neighbors,save for the empty spa
e it is moving into. This puts strong requirements onthe geometry of the sub-unit. If we denote the hexagonal spa
e as six equilateraltriangles with sides of length r, then a stationary unit must span a distan
e of 2r inorder to physi
ally 
onne
t to its six neighbors. However, when the sub-unit moves,it must squeeze through a spa
e as little as r, or alternatively, its neighbors mustbe 
ompliant in some way. In order to meet these stri
t requirements the prototypewas 
onstru
ted from six rotary a
tuators in a six-bar linkage me
hanism. Thus,ea
h sub-unit was quite 
omplex, making it a rather undesirable platform for manypra
ti
al appli
ations.A me
hani
ally simpler physi
al realization of a hexagonal metamorphi
 robotwas developed by the Claytroni
s team [9℄. This motion 
atalog was more restri
-tive, requiring empty spa
e to be present opposite the sub-unit around whi
h themoving sub-unit was pivoting (�gure 3.1 B). The extra pivoting spa
e permittedthe physi
al units to be 
ir
les and no deformation of geometry was ne
essary inthe physi
al realization, making it desirable from the pragmati
 viewpoint of manu-fa
ture. Unfortunately, the requirement of extra spa
e in the motion 
atalog makesplanning mu
h harder. The simulated annealing te
hnique su

essfully used byPame
ha et al. for the Chirikjian 
atalog requires exponential time as the numberof modules in
reases [11℄. As was the 
ase for the Chirikjian motion 
atalog, the



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS7Claytroni
s motion 
atalog requires an expli
it 
onne
tivity 
he
k to ensure theaggregate remains 
onne
ted during moves, at linear 
ost.In an attempt to develop a 
ross-model theory of self-re
on�guration, Ghrist etal. developed a general de�nition of a lo
al metamorphi
 system [1, 6℄. Ghristrequired, for all lo
al metamorphi
 systems, that the motion 
atalog should 
om-pletely des
ribe the lo
al and global motion 
onstraints. Neither of the above men-tioned 
atalogs satisfy this de�nition, as the requirement that the 
on�gurationsdo not be
ome dis
onne
ted must be enfor
ed expli
itly, and separately, from thelo
al motion 
atalog. Ghrist suggested a new motion 
atalog for the HMR (�gure3.1) as an example of a lo
al version of a similar metamorphi
 system. Ghrist'snew HMR motion 
atalog prevents gross topologi
al 
hanges to o

ur during mo-tion, su
h as introdu
tion of en
losed spa
e into the 
on�guration, or dis
onne
tionbetween sub-groups of sub-units.The theoreti
al analysis by Ghrist et al. yields useful impli
ations for all HMRre
on�guration state spa
es. Ghrist represented the re
on�guration state spa
e asa 
ubi
al 
omplex. Ea
h 
ube grouped moves that were 
ommutative. That is, asequen
e of moves drawn from a 
ube 
ould be admissibly applied in any temporalpermutation, i.e. the lo
al 
ontexts de�ning the appli
ability of the moves werenot overlapping. Further, this state 
omplex was of non-positive 
urvature, withthe immediate result that any multi-move plan (in
luding single-move plans) 
ouldbe deformed lo
ally into an optimal version of the same homotopy 
lass in O(n2)[1℄. 1The state des
ription of a 
on�guration for a HMR is the same for all modelsdis
ussed. It is only the admissible motions that are di�erent. One 
an see im-mediately from the motion 
atalogs (�gure 3.1), that Ghrist's motion 
onstraintsare more restri
tive than the Claytroni
s motion 
atalog whi
h is more restri
tive1Non-positive 
urvature in simple terms means that there are �no fat triangles� in the spa
e. So,the optimal shortest path 
an be found with a series of lo
al improvements from any starting pathwithin the same homotopy 
lass.
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atalog. Clearly, all less 
onstrained models 
an exe
uteplans appli
able for more 
onstrained models.Determining admissibility of moves in Ghrist's HMR model 
an be done in O(1),or in O(log(n)) persistently [11℄. In general, lo
al metamorphi
 systems are 
om-putationally attra
tive be
ause only lo
al 
ontexts need to be 
onsidered. However,in pra
ti
e, even with the additional 
ost of a linear 
ost 
onne
tivity 
he
k, theClaytroni
s model is qui
ker to plan for than Ghrist's HMR motion 
onstraints.This has been found to be true on a broad range of general planning strategies[11℄: simulated annealing [10℄, greedy sear
h [20℄, rapidly-exploring random trees[13℄ and probabilisti
 roadmap planning [8℄.A di�erent form of HMR is presented in [18℄ with O(
√

n) movement time per-forman
e. We 
onsider this to be di�erent from the other HMRs dis
ussed so far intwo respe
ts. Firstly, it uses an additional empty third dimension for units to moveinto during planning, whi
h simpli�es planning 
onsiderably by providing a largeempty spa
e for units to utilize. Se
ondly, ea
h unit is given a momentum, whi
hallows a single unit to move faster than one latti
e lo
ation per time unit. The
omputation e�ort required to form plans is still O(n), but for a less 
onstrainedmodel than the original Chirikjian HMR.In this paper, we present another subspa
e, 
alled the Surfa
e spa
e, that 
an beviewed as a further 
onstrained version of Ghrist's HMR motion 
atalog. It inheritsGhrist's lo
ality and admits a simple planning algorithm to solve Surfa
e-to-Surfa
ere
on�guration tasks e�
iently. This Surfa
e state spa
e has been used in otherrelated work to form long distan
e plans within the Claytroni
s HMR re
on�gura-tion state spa
e, whi
h allowed Claytroni
s-to-Claytroni
s re
on�guration tasks tobe solved, empiri
ally, on average, in linear time [12℄ for 97% of the state spa
e.An arbitrary Claytroni
s HMR 
on�guration, on average, is only a few moves awayfrom a nearby Surfa
e adhering 
on�guration using the Claytroni
s motion 
atalog.It is thus tra
table to 
ompute a motion traje
tory in the more general, and 
om-putationally less e�
ient, Claytroni
s spa
e only a small distan
e to �nd a nearby
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Figure 3.2. A: A potential meta-modularization of the HMRthat permits mobility of the sub-units found in the 
enter of ea
hhexagon edge using the Claytroni
s motion 
atalog, in parti
ular,providing empty spa
e opposite the pivot lo
ations. B: A 
on�gu-ration built out of 12 su
h meta-modules, and an example of howlo
al meta-module motion primitives 
an be daisy-
hained togetherto the e�e
t of moving one meta-module to an empty lo
ation ad-ja
ent to the perimeter. C: Expressing the lo
al support requiredfor a sub-unit to enter or leave a lo
ation.Surfa
e 
on�guration. The previous work [12℄ found a pair of nearby Surfa
e 
on-�gurations 
orresponding to the Claytroni
s start and end 
on�gurations in there
on�guration task, and found a traje
tory between them using a more e�
ientversion of the Surfa
e-to-Surfa
e planner presented here. While the algorithm washighly e�
ient and operated on a large fra
tion of the Claytroni
s state spa
e, theClaytroni
s-to-Surfa
e planning step was essentially a heuristi
 method that had afailure rate proportional to problem 
omplexity. In the interest of 
larity, all theanalysis in the following se
tions is restri
ted to the properties of the Surfa
e statespa
e, for whi
h a well-behaved motion planner is presented.So it is the nature of the re
on�guration state spa
e of the Surfa
e HMR motionmodel we wish to understand further. It is worth noting that the motivation forthe Surfa
e state spa
e de�nition is removal of the planning di�
ulties asso
iatedwith the Claytroni
s motion 
atalog requiring empty spa
e opposite the pivot lo
a-tion. Previous attempts at abstra
ting away troublesome 
onstraints in other SRSmodels have 
entered around meta-modularization of the state spa
e [19℄. In meta-modularization the atomi
 planning unit is a
tually a 
olle
tion of SRS sub-units
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es of moves that permit the meta-modules tomove with fewer motion 
onstraints than the underlying sub-units (�gure 3.2 B).The planning task is thus simpli�ed, but at the 
ost of 
oarsening the embeddinglatti
e signi�
antly. The drawba
k of the methodology be
omes apparent when one
onsiders the proportion of 
on�gurations in the underlying SRS state spa
e thathave a representation in the meta-module state-spa
e. Meta-module 
onforming
on�gurations o

upy an almost negligible proportion of the overall general statespa
e. Meta-modularization, then, does not lend itself well to being used as anintermediate path through a more general 
on�guration spa
e (for example, thereare no meta-module 
on�gurations for 13 sub-units for the example in �gure 3.2).Both a meta-modularization subspa
e and the Surfa
e subspa
e a
hieve similarqualitative behavior, simplifying planning, by adding additional motion 
onstraintsto an underlying motion model. The Surfa
e spa
e a
hieves a similar result tometa-modularization, but by sa
ri�
ing fewer 
on�gurations.So the motivation for this work is to shed light on the question: why is itthat adding extra 
onstraints 
an sometimes make planning harder, as in adding
onstraints to the Chirikjian 
atalog to 
reate the Claytroni
s 
atalog, and yetsometimes easier, as in adding 
onstraints to the Ghrist 
atalog to 
reate the Surfa
e
atalog, or by applying a meta-modularization strategy? By identifying generalprin
iples that des
ribe when and how adding 
onstraints 
an simplify planning,we expe
t advan
es in re
on�guration algorithms for mu
h harder models of SRSwhose motion state spa
e is di�
ult to mentally visualize e.g. M-TRAN [14℄.Furthermore, adding arti�
ial 
onstraints to a model redu
es the number of statesthe augmented system 
an express, so our work will aid in 
onstru
ting 
onstrainedmotion 
atalogs that sa
ri�
e the minimum state spa
e volume for a gain in planninge�
ien
y.
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Figure 4.1. Wrapping a tour around a 
on�guration. This 
on-�guration is not a valid Surfa
e 
on�guration be
ause it 
ontainsa kink violation (K) and a dual path violation (Dp).4. A Surfa
e-to-Surfa
e PlannerA Surfa
e adhering 
on�guration, c ∈ S, is de�ned as a 
on�guration that permitsa Hamiltonian path to be wrapped around the adja
ent external lo
ations (adj(c)).This requirement is 
ompromised by two 
lasses of violation. A kink violation ispresent when the peripheral tour leaves through the same edge it enters from (�gure4.1), and a dual path violation is where the tour traverses through the same lo
ationmore than on
e (�gure 4.1).A valid Hamiltonian path implies several properties relevant to motion under theClaytroni
s and Ghrist motion 
atalogs. If an extra sub-unit is added, the sub-unit
an move in a 
omplete loop around the entire perimeter of the 
on�guration. Thela
k of dual path violations implies there is always open spa
e above the additionalsub-unit for pivotal spa
e. Absen
e of kink violations implies there 
annot be a
hange of gross topology, spe
i�
ally an introdu
tion of en
losed spa
e, 
aused bya sub-unit bridging the empty spa
e adja
ent to the kink (�gure 3.1 D).Note however that while the added sub-unit is able to move around the 
on�gu-ration freely using Ghrist's motion 
atalog, it may not be able to stop anywhere onthis path and still result in a valid Surfa
e 
on�guration. The moving sub-unit mayitself 
ause kink or dual path violations. The Surfa
e model's 
onstraints merely
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Figure 4.2. Examples of a valid Ghrist 
on�guration and a validSurfa
e 
on�guration. Ghrist 
on�gurations may 
ontain narrowintrusions of spa
e, whi
h prevent sub-units on the perimeter from
rossing. Surfa
e 
on�gurations, by 
onstru
tion, do not.imply that if a unit 
an be removed from one perimeter lo
ation and pla
ed at an-other valid lo
ation, then a sequen
e of Ghrist motion moves will exist to link them(although violations may transiently be generated when exe
uting the underlyingGhrist sequen
e).Whilst the Hamiltonian path 
onstraint is a useful des
ription of the Surfa
emodel's restri
tions, both for implementation and visualization of the path aroundthe 
on�guration sub-units take, we 
an rewrite this fun
tionality in terms of anew set of lo
al 
ontexts for the motion 
atalog. This proves that the Surfa
e HMRmodel is also a lo
al metamorphi
 system by Ghrist's de�nition. A major di�eren
ewith the motion 
atalog for the Surfa
e model 
ompared to the other HMR modelsis that the start and end lo
ations for a move may not be adja
ent. So a Surfa
eplan is a set of moves that relo
ate individual sub-units from one lo
ation on theperimeter to another, with the guarantee that a detailed sequen
e of 
onse
utiveGhrist moves will exist that pass through the Surfa
e plan way-points.Figure 4.3 shows the generators where a unit 
an be added or removed froma Surfa
e 
on�guration to generate another valid Surfa
e 
on�guration. If lo
alstates at the single tra
e lo
ation, tr, satisfy Û0(tr) = EMPTY and Û1(tr) =

OCCUPIED then we say the generator is an ADD, otherwise it is a REMOV E.A move for the Surfa
e model is a REMOV E followed by an ADD elsewhere.Te
hni
ally, in Ghrist parlan
e, the 
atalog for the Surfa
e model is the (in�nite)
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6,6

E.1 E.2

E.3 E.4

Figure 4.3. There are four di�erent generators foradding/removing a sub-unit from a Surfa
e 
on�guration.union of all possible relative arrangements of a REMOV E and an ADD whoselabeled lo
al states agree.Figure 4.3 was not generated by hand. All valid Surfa
e 
on�gurations 
on-taining eight sub-units were enumerated using the Hamiltonian path 
onstraintdes
ription above. The relative lo
al 
ontexts of adja
ent empty spa
e was storedand annotated with a label des
ribing whether a sub-unit 
ould be added or not.This set of annotated lo
al 
ontexts was pro
essed by the C4.5 algorithm [17℄ foundin the Weka[7℄ data mining library to produ
e a shallow de
ision tree. The de
isiontree had 100% a

ura
y at determining what ne
essary lo
al 
ontext was present toadd a sub-unit, and was optimized upon valid 
on�gurations only. As a side e�e
t,the data mining tool identi�ed that a sub-unit 
ould not be added if it 
reated thepatterns shown in �gure 4.4.Lemma 1. For any given Surfa
e adhering 
on�guration, an additional module
an move around the perimeter in a 
omplete loop using the Ghrist motion 
atalog.Proof. By 
onstru
tion, dis
ussed above. �
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8,6

Figure 4.4. A Surfa
e 
on�guration never 
ontains the abovepatterns of empty spa
e (white) and roboti
 sub-units (red).The Surfa
e-to-Surfa
e planning algorithm �nds an admissible sequen
e of Sur-fa
e moves in order to 
hange one Surfa
e adhering 
on�guration into another.From lemma 1 the resulting plan 
an be exe
uted by a HMR 
onstrained by theGhrist, Claytroni
s or Chirikjian motion 
onstraints. Ea
h single move in the Sur-fa
e HMR, however, is a 
on
atenation of several single moves by the other 
atalogs(a so 
alled, long-move) on a

ount of the start and end lo
ation de
oupling. Thehigh level algorithm is outlined in algorithm 1. For 
larity, the version presentedhere does not in
lude a number of additional optimizations (see [12℄). So this spe-
i�
 algorithm does not really run in linear time. However, the salient featuresrelevant for the present dis
ussion have been preserved.The algorithm's main loop in
rementally 
hanges the 
urrent 
on�guration (whi
his initially the start 
on�guration) toward the goal 
on�guration by applying validSurfa
e moves determined by improve. The algorithm tra
ks a set P whi
h rep-resents pla
ed sub-units. On
e a unit is pla
ed, it is no longer 
onsidered by the
improve sub-routine to be a possible sub-unit that 
an be moved. P is updatedin
rementally by updateP (algorithm 2); a sub-unit is 
onsidered pla
ed if it is ad-ja
ent to an already pla
ed unit, and the goal 
ontains a unit at the same lo
ation.It has been empiri
ally determined that, on average, only O(

√
n) long-moves arerequired to transform a start 
on�guration into the goal 
on�guration[12℄.



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS15Units, n fails trials 95% C.I. of P (fail)250 264 10000 .0233 .0297500 7 10000 .0003 .0014Table 1. Probability of StoS failing to �nd an improvement inrandom tasks de
reases as the number of units in the random 
on-�gurations in
rease.
The sub-routine improve �nds a valid Surfa
e move that moves a sub-unit notin P to a lo
ation that would lead to an addition to P . The improve sub-routineis highly optimized elsewhere to maximize the 
han
es that only a few moves needbe 
onsidered [12℄, but these optimizations are not in
luded here. There is a small
han
e that no move will improve P in whi
h 
ase the planner fails to �nd a solutionfor the re
on�guration task at hand. Empiri
ally, this seems to happen rarely. Infa
t, the probability of failure tends toward zero as n tends to in�nity (table 1).The result of the Surfa
e-to-Surfa
e planner is a sequen
e of long-moves, rep-resenting lo
ation-to-lo
ation traversals round the perimeter of the intermediate
on�gurations. Unwrapping the long-moves into a sequen
e of short-moves, 
om-patible with other HMR models, 
an be done in near linear time [12℄. This ispossible be
ause, on average, the perimeter distan
e for ea
h long-move s
ales as

O(
√

n), and the number of long-moves required to re
on�gure also s
ales as O(
√

n).Thus it appears, empiri
ally justi�ed, that the average asymptoti
 performan
e ofthe Surfa
e-to-Surfa
e planner is nearly linear (subje
t to how 
lose to 
onstanttime improve 
an be implemented) with an insigni�
ant failure rate for large n.We wish to understand several things about this algorithm. Why does the al-gorithm asymptoti
ally fail less as n → ∞, even though it is essentially a lo
alheuristi
? Why 
an the task be solved in
rementally by growing a pla
ed set, P ?Also, why 
an't the Ghrist HMR re
on�guration tasks be solved in a similar fashioni.e. what makes this parti
ular HMR motion 
atalog spe
ial?
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e-to-Surfa
e �nds a set of admissible moves to 
hange a
on�guration c into a 
on�guration cgoal. A set of pla
ed sub-units, P , is in
remen-tally grown by 
alls to improve. improve sear
hes for admissible moves to improve
P .
improve : S× S× P(P) 7→M

improve(c, cgoal, P ) ,for(∀s.s /∈ P ∧ s ∈ c,∀e.e /∈ P ∧ e ∈ cgoal )if (match(c, s, REMOV E)))if (match(c− {s}, e, ADD))return (s, e)throw error
StoS: S× S 7→Mk

StoS(c, cgoal) , Mk

P ← updateP (∅, ORIGIN, c, cgoal)while(|P | < |c|)
m← improve(c, P, cgoal)
c← c ∪ {m2} − {m1}
P ← updateP (P, m2, c, cgoal)
append(m, M)Algorithm 2 The set of pla
ed units, P, is updated re
ursively. If a lo
ation, x, isin the 
urrent and goal 
on�guration but not in P it is pla
ed in P and updateP is
alled on its neighbors.

updateP : P(P)× P× S× S 7→ P(P)

updateP (Pprev, x, c, cgoal) , P
P ← Pprevif(x ∈ c ∧ x ∈ cgoal ∧ x /∈ P )

P ← P ∪ {x}for(∀q.isAdj(q, x))
P ← updateP (P, q, c, cgoal)

Figure 5.1. Left, a simple example of a planning spa
e. Theobsta
le in the 
enter 
auses bottlene
ks in Cfree(shown in red).Right, a graph approximation of the same spa
e.
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e Spa
e is Highly Conne
tedIn general terms, a planning algorithm's task is to �nd paths through somespa
e, Cfree, for multiple start and end points. The di�
ulty of the task, andtherefore the minimal 
omplexity of a planning algorithm, is inherently 
oupledto the properties of the 
on�guration spa
e. Typi
ally, for 
omputational reasons,one approximates a 
ontinuous or otherwise 
omplex, Cfree, by dis
retization orsampling-based methods to yield a graph whose verti
es are states in Cfree. ForHMR planning, Cfree is naturally dis
rete; verti
es of the spa
e represent 
on�g-urations, and edges represent admissible moves (or sets of moves in multi-moveplanning, but not 
onsidered here).Bottlene
ks in Cfree are well known 
ompli
ations for planners [13℄. A bottlene
kis a suitably narrow subset within Cfree that 
onstrains di�erent possible solutionpaths to go through it in order to traverse between mu
h larger subsets of thespa
e (�gure 5.1, in red). Iterative or sampling-based planning algorithms thatmust `dis
over' su
h bottlene
ks 
omputationally 
an fa
e serious 
hallenges as theymay be naively expending pre
ious 
omputational time exploring irrelevant areasof Cfree (�gure 5.1, in gray).Well founded graph-theoreti
 measures 
an 
on
isely express what we mean bya bottlene
k. Let G = (V, E) be a simple unweighted graph. A 
ut, W ⊂ V ,separates the graph into two sets of verti
es, W and V −W . Let deg(x ∈ V ) bethe degree of a vertex. Then the volume of a set of verti
es W ⊂ V is de�nedas vol(W ) ,
∑

i∈W deg(i). The 
ost of a 
ut on the graph is cut(W ) = |{x =

(u, v)|x ∈ E ∧ u ∈ W ∧ v /∈ W}|, in other words, the number of edges 
rossing the
ut.The Cheeger 
onstant of a graph, hG, is a measure of �bottlene
kedness� whi
h�nds a small 
ut that separates the graph into two large volumes [4℄. It is de�nedas:
hG = min

S

cut(S)

min{vol(S), vol(V − S)}
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tly measuring the Cheeger 
onstant for a graph is 
omputationally in-tra
table. It is, however, bounded by the 2nd smallest eigenvalue of the Lapla
ianmatrix (whi
h is also known as the algebrai
 
onne
tivity of the graph [4℄).The Lapla
ian L matrix of a graph is:
li,j :=































1 if i = j and deg(vi) 6= 0

− 1√
deg(vi)deg(vj)

if i 6= j and vi is adjacent to vj

0 otherwiseIf L has the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn then the Cheeger 
onstant hG isbounded by:
√

2λ2 > hG ≥
λ2

2

λ1 is 0 for all Lapla
ians [4℄. λ2 is known as the algebrai
 
onne
tivity of thegraph. If a graph has a low Cheeger 
onstant, this implies there are small 
uts that
an separate large volumes of the graph. This 
aptures the essen
e of bottlene
ks;paths between the two volumes must be routed through a small 
orridor.Our hypothesis is that the 
on�guration spa
e of the Surfa
e model has fewerbottlene
ks 
ompared to the Ghrist model of the HMR. We will use algebrai
 
on-ne
tivity and its relation to the Cheeger 
onstant to measure the severity of bottle-ne
ks in Cfree for the Ghrist model and the Surfa
e model. However, �rst note thatthe atomi
 moves in the Ghrist motion model represent a single sub-unit movingan adja
ent lo
ation, whereas Surfa
e moves represent a single sub-unit moving anumber of latti
e lo
ations. To 
ompare the models fairly, we 
reated an analo-gous de�nition of a long-move for the Ghrist model to be a sequen
e of 
onse
utiveadmissible moves applied to a single sub-unit i.e. all the lo
ations that a singlesub-unit 
an rea
h while the other sub-units remain �xed. In addition, be
auseboth model 
atalogs don't permit gross topologi
al 
hanges in the morphology, weonly study 
on�gurations that do not 
ontain en
losed spa
e.
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en |V | |E| λ2 |V | |E| λ22 6 15 1.2000 6 15 1.20003 33 168 1.1429 33 168 1.14294 176 1431 1.1186 176 1431 1.11865 930 10836 1.1033 900 10332 1.11116 4878 75945 1.1 4482 67725 1.09787 25480 506394 1.0872 21910 417042 1.0909Table 2. The number of verti
es, edges and measure of algebrai

onne
tivity (λ2) for the Ghrist and Surfa
e model re
on�gurationgraphs generated by di�erent numbers of sub-units (n). The statesspa
es are identi
al up to n = 4, and only di�er marginally at
n = 7For the 
on�guration graphs 
ontaining up to 7 sub-units, it is possible to 
on-stru
t the Lapla
ian and 
al
ulate the algebrai
 
onne
tivity dire
tly. The resultsare shown in table 2. However, the re
on�guration graphs di�er very little at su
hlow numbers of sub-units for the two models. With few sub-units, there are notenough permutations of possible lo
al 
ontexts to di�erentiate the models. Thedi�eren
e between models only be
omes apparent at higher 
omplexity levels.Unfortunately, expanding the 
on�guration graphs 
ontaining larger number ofsub-units qui
kly be
omes intra
table. So in order to estimate the properties of theCheeger 
onstant at higher 
omplexity levels, i.e. sub-unit numbers, we use a sam-pling methodology. First, we generated a random Surfa
e adhering 
on�guration
ontaining n units by iteratively uniformly sele
ting an ADD a
tion to a growing
on�guration (starting from the ORIGIN). Se
ond, we applied 1000 random movesfrom the respe
tive motion 
atalog (long-moves for the Ghrist model), so that theinitial Surfa
e 
on�guration di�uses into a model-spe
i�
 area of the 
on�gurationspa
e. Finally, the model-spe
i�
 
on�guration rea
hed is used as a starting lo
a-tion for taking a sample. Examples of 
on�gurations generated by this pro
edureare shown in �gure 4.2.A sample sub-graph is generated by performing a breadth �rst sear
h to a depthof two from the sample lo
ation (the sample lo
ation, its neighbors, and its neigh-bor's neighbors). The algebrai
 
onne
tivity may be 
omputed for this sub-graph,
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Figure 5.2. The estimated densities of λ2 of the Lapla
ian aftersampling 100 sub-graphs from the re
on�guration spa
es of theGhrist model and the Surfa
e model.and should 
orrelate to the global algebrai
 
onne
tivity. This pro
edure was ap-plied to 100 samples for ea
h 
omplexity level under study. The smoothed resultsare shown in 5.2.For the Ghrist model, �gure 5.2 shows that as the number of units in the 
on-�guration in
reases, so the spread of λ2 in
reases, and the mean diminishes. Thissuggests that our sampled sub-graphs are in
reasingly likely to 
ontain bottlene
ks.For higher numbers of sub-units this suggests that the Cheeger 
onstant is tendingtoward 0. For the Surfa
e model the reverse seems to be true. The spread of λ2is de
reasing, and the mean in
reasing. Bottlene
ks seem to be sparser as we addmore units to the Surfa
e 
on�gurations.Our interpretation for the Surfa
e model is that when there are very large num-bers of sub-units, the movement of a parti
ular sub-unit is relatively unrestri
ted;it is able to move anywhere on the surfa
e. Intera
tion between sub-units mainlyo

urs at the lo
al level, whose importan
e diminishes as the number of units grows.Thus lo
al intera
tions that 
ause bottlene
ks be
ome less likely, and the mobility
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Figure 6.1. Graph minor operations, graphs to the right are mi-nors of those to the left. Red denotes an edge 
ontra
tion opera-tion, and green an edge deletion.of sub-units on the perimeter in
reases. For the Ghrist model, it only takes twokinks on the surfa
e to divide the perimeter into two 
lasses that units 
annot movebetween (see the H 
on�guration in �gure 6.9 in next se
tion). As the number ofunits grow, so the probability of two or more kinks being found somewhere on theperimeter tends toward 
ertainty.The impli
ation of �gure 5.2 is that the Surfa
e model has fewer bottlene
ks
ompared to the Ghrist model. The sparsity of bottlene
ks in the Surfa
e modelexplains why a greedy planning pro
edure, su
h as the one employed in the S-to-Splanner, su�
es in an in
reasing proportion of 
ases as n grows.6. Graph Minor Sub-Stru
tureThe previous se
tion uses Spe
tral Graph Theory in order to explain when greedyplanning methods su�
e in a re
on�guration state spa
e. Within this next se
tionwe introdu
e the use of the Graph Minor Theory to the analysis of SRS statespa
es, �rstly as a 
ompa
t, pre
ise notation for representing that one state spa
eis a 
onstrained version of another, and as a tool that reveals startling di�eren
esbetween the easy and hard planning spa
es as sub-units are added. This last pointin parti
ular partially explains why e�
ient planning methods may only exist forsome planning state spa
es.De�nition 2. A graph, H , is said to be a minor of a graph, G, denoted H ≤ Gif there exists a sequen
e of edge deletions, 
ontra
tions and vertex deletions to
hange G into H .[5℄
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 graph minor modi�
ation operations. The graphminor relation is a 
ompa
t notation for des
ribing when one state spa
e 
an beexe
uted upon another model; for des
ribing when one SRS motion model is a
onstrained version of another. Consider the similar sub-graph relation:De�nition 3. A graph, H , is said to be a sub-graph of a graph, G, if there existsa sequen
e of edge deletions and vertex deletions to 
hange G into H .[5℄The sub-graph relation la
ks edge 
ontra
tions. Now 
onsider the meta-modulere
on�guration state spa
e graph 
ontaining k meta-modules, Mk, and the Claytron-i
s state spa
e whi
h 
ontains 12 sub-units for every meta-module, C12k (�gure 6.2).Meta-module movements are built from sequen
es of underlying motion primitives,so although ea
h Mk vertex is present in the C12k graph, ea
h edge of the Mk graphrepresents a sequen
e of underlying C12k edges. Thus Mk is not a sub-graph of C12k,yet it is a graph minor, i.e., Mk ≤ C12k. Similarly, we 
an summarize all the dis-
ussed HMR state spa
es using graph minor nomen
lature as Jk ≥ Ck ≥ Gk ≥ Sk,where Jk, Ck, Gk and Sk stand for the Chirikjian, Claytroni
s, Ghrist and Surfa
emodel re
on�guration state spa
es 
ontaining k sub-units respe
tively.The minor relation is a 
ompa
t, pre
ise notation for expressing what we meanby one state spa
e is a 
onstrained version of another. Butler et al.[2℄ present anargument that their 
ubi
 SRS model is generi
 be
ause it 
an be instantiated byvarious existing SRS motion 
atalogs. If we denote their 
ubi
 SRS re
on�gurationstate spa
e 
ontaining k sub-units as Bk, the meta-modularized M-Tran state spa
eas Tk, we 
an rewrite one of the instantiations des
ribed in the work as Bk ≤ T4k,as four M-Tran units were required to 
ooperate in order to a
hieve the minimummotion requirements of their model.While the graph minor relation is a useful notation for des
ribing relationshipsbetween di�erent SRS motion 
atalogs, we now look at the family of state spa
egraphs of an individual SRS 
atalog generated by di�erent numbers of sub-units,e.g., Sn, for n > 1; to understand how the planning problem 
hanges as moresub-units are added. Intuitively one might presume that the state spa
e graph for



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS23
A B

...

Figure 6.2. A. A meta-module 
an tunnel through another, rep-resented by a single edge in the planning state spa
e. This sin-gle move in the meta-module state spa
e is implemented usinga sequen
e of moves from the underlying state spa
e. The tran-sient moves used in the Claytroni
s state spa
e have used the edge
ontra
tion operation to form atomi
 moves in the meta-modulestate spa
e (B, red). The edge 
ontra
tions, plus pruning of non-
onforming meta-module states and moves (green) show that meta-modularization 
orresponds to a graph minor of the Claytroni
sstate spa
e.a HMR model 
ontaining i sub-units will share similarities with the state spa
e
ontaining i + 1 sub-units. We address this question formally and �nd a signi�
antdi�eren
e between the state spa
es generated by models that are hard to plan for,e.g., the Ghrist 
atalog, and models that have e�
ient solutions in existen
e, e.g.,the Surfa
e 
atalog or a meta-modularized state spa
e.For the Surfa
e model, the i re
on�guration graph is a graph minor of the i +

1 re
on�guration graph, S1 ≤ S2≤ . . .. This does not appear to be true of the
on�guration graphs generated by the Ghrist motion 
atalog. In fa
t, the 
ounter-examples for the Ghrist 
ase are 
aused by the very 
ases where bottlene
ks arefound. Similar to the S 
ase, the HMR meta-modularization example is also well-ordered by the minor relation, M1 ≤ M2 ≤ . . .. As will be dis
ussed further later,graph minor ordering in the re
on�guration state spa
es has signi�
ant impli
ationsfor the motion planning problem, and is likely to be the me
hanism for explainingwhy one motion model admits e�
ient planning and others do not.
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Figure 6.3. To globally show Xi ≤ Xi+1 we 
an de�ne a lo
alrelationship between the graphs, and show that this relationshiplo
ally adheres to the minor relationship. Red denotes edge 
on-tra
tions, and green, edge and vertex deletions. The global minor
an be proved by stit
hing together the lo
al minors.To show that a re
on�guration state spa
e, Xi is a minor of Xi+1, we utilize thefa
t that ea
h vertex of the re
on�guration graphs is labeled by the arrangement ofsub-units on a 
ommon embedding latti
e. This labeling s
heme permits a vertex,
vi of the Xi graph to be asso
iated with a group of verti
es, v̄i+1, in the Xi+1graph that 
orresponds to possible lo
ations a sub-unit 
an be added to the vi
on�guration to generate a 
on�guration within Xi+1. This observation impliesthat a lo
al area of the Xi graph has a 
orresponding lo
al area in the Xi+1 graph.To show globally that the Xi graph is a minor of the Xi+1 graph, it is su�
ientto prove that: for every vertex, vi, in the Xi, that vi's lo
al graph neighborhoodis a minor of v̄i+1 graph neighborhood, and that these lo
al neighborhoods are
onne
ted in the same topology. This is summarized diagrammati
ally in �gure6.3.The sket
h of the proof to show that Si ≤ Si+1 is as follows. Any 
on�gurationadhering to the Surfa
e model implies that if a module 
an move at all, then itis free to move in a 
omplete loop around the exterior. The Si+1 spa
e 
ontainsone extra sub-unit. We show that the sub-unit 
an always move out of the way,in order to let any move that existed in the Si graph take pla
e. Prevention of a
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e for the Si+1 state spa
e 
an only o

ur if the extra sub-unit in the Si+1 state spa
e interferes with the lo
al support that determined themove's admissibility. We argue geometri
ally that for large 
on�gurations, therealways exists a potential lo
ation for the added sub-unit that lies outside of thelo
al support lo
ations of the Si move. The �nite size of the motion 
atalog's lo
alsupports, plus the total mobility of the additional sub-unit, implies that �get out ofthe way� moves always exist in the Si+1 state spa
e. The �get out of the way� moveedges 
an be 
ontra
ted to generate the Si graph, thus showing that Si ≤ Si+1.This argument does not follow for the Ghrist model be
ause, in general, the extrasub-unit does not always have enough freedom to �get out of the way� of the lo
alsupports that determined the admissibility of a move.Con
retely, we introdu
e the notions of lo
al stru
ture in a re
on�guration grapharound some vertex, and an inherited lo
al stru
ture whi
h represents the analogouslo
ale in a re
on�guration graph generated by adding a unit.De�nition 4. The lo
al stru
ture for a 
on�guration, v, is all 
on�gurations rea
h-able by a single Surfa
e move (remember a move is a REMOVE followed by an ADDfrom the Surfa
e 
atalog, �gure 4.3).
De�nition 5. The inherited lo
al stru
ture for a 
on�guration, v, is all possible
on�gurations generated by applying an ADD from the Surfa
e 
atalog to v. (Figure4.3)Lemma 6. Any two 
on�gurations belonging to a vertex's inherited stru
ture havea valid move between them.Proof. This follows from Lemma 1. Thus the inherited lo
al stru
ture forms a
lique of 
on�gurations 
onne
ted by moves.To show that the inherited lo
al stru
ture preserves analogous moves that existedin the lo
al stru
ture, we �rst show that an extra sub-unit 
an always be added at
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A

B

C

Sup(A)

Sup(B)

Figure 6.4. Whether or not a sub-unit exists at lo
ation C doesnot a�e
t a move between A and B be
ause its support does notinterse
t A or B's. Rather than showing this in 2-dim, we proje
tthe support areas onto a line parallel to the widest diameter ofthe shape. Showing the supports do not interse
t is simpli�ed toshowing the proje
ted support intervals do not overlap.a lo
ation that is far enough away from the start and end of the move so that itdoes not a�e
t the lo
al support that determined the moves admissibility (sket
hedin �gure 6.4). If a move is between position A to position B, we need to show that
∀A∀B∃C.(sup(A) ∩ sub(C)) ∪ (sup(B) ∩ sub(C)) = ∅. There are a variety of waysto show this, for simpli
ity, in the following proof we proje
t the support areas ontoa line parallel to the widest diameter of the 
on�guration. �Lemma 7. All generators of the Surfa
e 
atalog have a width of less than 5.Proof. See �gure 4.3. �Lemma 8. A 
onne
ted 
on�guration 
ontaining 631 or more sub-units has a largediameter of at least 29.Proof. The 
on�guration with the smallest large diameter o

urs when sub-unitsare arranged into a perfe
t hexagon. 6312 sub-units 
an be arranged into a large2A Hexagonal Number
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7

Figure 6.5. Lemma 9 is shown by sliding the shape shown ingreen (of width 7) toward the 
on�guration until it overlaps one ormore sub-units on its lower edge.hexagon of diameter 29. Moving any sub-unit, or adding more sub-units, will onlyin
rease the large diameter. �Lemma 9. For a Surfa
e 
on�guration, within an 
olumnar interval of width 7, avalid ADD lo
ation and its 
omplete support is 
ontained.Proof. First, a shape of width 7 is slid over empty spa
e toward the 
on�guration(�gure 6.5) until interse
ting a sub-unit. The lower row of hexagons 
omprisingof the shape will then 
ontain between one and seven sub-units and the remaindershall be empty (by 
onstru
tion). We will now 
onsider di�erent 
ases of how thebottom row 
an be o

upied in order to show that regardless of how, there is alwaysa lo
ation where an extra sub-unit 
an be added.A and B of �gure 6.6 re�e
t the 
ases of when the bottom row 
ontains only onesub-unit. In ea
h 
ase a sub-unit 
an be added using Surfa
e ADD E.1 (�gure 4.3).When two sub-units are present and adja
ent, �gure 6.6 C and its generalisationsdemonstrate Surfa
e ADD E.2 
an be used to add a sub-unit. When the two sub-units are a distan
e of one from ea
h other, 
ase D is relevant. Case D 
an only



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS28
A B

C D

E F

Figure 6.6. The major 
ases for 
onsideration of how the shapein �gure 6.5 
an be o

upied with sub-units. The area marked witha green perimeter labels the lo
ation of an appli
able support forsome Surfa
e ADD generator. The lo
ation of where the sub-unit
an be added is shown in green.o

ur if additional sub-units are found adja
ent to the empty lo
ation (light blue),be
ause otherwise the 
on�guration would be invalid (�gure 4.4). With the impliedextra sub-units in
luded, Surfa
e ADD E.4 (�gure 4.3) is appli
able. Anotherpossibility when a pair of lower row sub-units are at a distan
e of one is 
ase E,this however, is an impossible Surfa
e 
on�guration (�gure 4.4), but regardless,an appli
able ADD lo
ation exists. When two sub-units are at a distan
e greaterthan two, su
h as in the 
ase F, it is 
lear one sub-unit no longer be
omes relevantto determining an ADD appli
ability. For 
ases with more sub-units, the abovearguments are trivial to extend (Surfa
e ADD E.3 is used when 
ase B is extendedto three sub-units). Therefore, within an interval of 7, a valid ADD lo
ation 
analways be found, regardless of the spe
i�
s of the Surfa
e 
on�guration. �
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6 5 6 5 6Figure 6.7. On a line of length 28, two intervals of width 5 
an bepla
ed su
h that an addition interval of 7 
annot be pla
ed withoutinterse
ting one of them.Lemma 10. On a line of length 29 or greater, if two intervals of width 5 arepresent, then an interval of width 7 
an be found whi
h interse
ts neither.Proof. The worst pla
ement of the intervals of width �ve are shown in �gure 6.7for a line of width 28. Clearly extending the length of line by one will permit spa
efor an interval of width 7 to be inserted without overlap. �Lemma 11. For any move between lo
ation A to lo
ation B on a Surfa
e 
on�gura-tion 
ontaining 631 sub-units or greater, there exists a lo
ation C where a sub-unit
an be added, whereby the support of A and B do not interse
t the support of C,i.e., ∀A∀B∃C.(sup(C) ∩ sup(A)) ∪ (sup(C) ∩ sup(B)) = ∅.Proof. Proje
ting the supports of A and B onto a line parallel to the line de�ningthe large diameter of the 631 sub-unit sized 
on�guration yields two intervals ofsize 5 (by Lemma 7) on a line of length 29 (Lemma 8). An interval of width 7 shallexist on this line that does not interse
t either of the intervals of size 5 (Lemma 10).Somewhere within the area of the 
on�guration that would proje
t to the intervalof size 7 exists and ADD lo
ation C (Lemma 9) whi
h 
annot interse
t the supportsof A or B. �Remark. This also holds for 
on�gurations of any size, but the only proof we areaware of involves 
umbersome enumeration of 
ases.Lemma 12. For every move A → B in a lo
al stru
ture between 
on�gurations

v and u, there exists at least one pair of 
on�gurations v′ and u′ in the inheritedstru
ture between the same lo
ations.Proof. A 
on�guration 
an be represented as a set of sub-unit lo
ations. Let v =

X ∪{A} and u = X ∪{B}. We simply need to �nd an ADD lo
ation C that 
an be
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h that it does not interfere with the support of A and B thatenabled the move A → B to take pla
e. Lemma 11 shows su
h a C exists whenthere are more than 631 sub-units in the 
on�guration. Thus a C always existssu
h that v′ = X ∪{A, C}, u′ = X ∪{B, C} and the move A→ B is still valid. �Lemma 13. The lo
al stru
ture of a vertex, v, is a graph minor of its inheritedlo
al stru
ture v′.Proof. Ea
h neighbor, ui, in the lo
al stru
ture of v, represents a valid move be-tween the 
on�gurations v and ui. By Lemma 12 ∀ui, there exists a lo
ation zithat permits a move between v∪{zi} and ui∪{zi}. By de�nition, the 
on�guration
v ∪ {zi} is in the inherited stru
ture. By Lemma 6 there exists a move between all
v ∪ {zx} 
on�gurations. If all moves between v ∪ {zx} are 
ontra
ted and all edgesnot v ∪ {zi} → ui ∪{zi} in the inherited stru
ture are deleted, the remaining edgesare the lo
al stru
ture (see �gure 6.8)

�Theorem 14. The state spa
e of the Surfa
e model 
ontaining i sub-units is a graphminor of the re
on�guration spa
e 
ontaining i + 1 units, Si ≤ Si+1 for i ≥ 631.Proof. By Lemma 13 every vertex in the i graph is a minor of the inherited graph.For a pair of 
on�gurations in the i graph, u = X ∪ {x}, v = X ∪ {y} with a movebetween them, x→ y, Lemma 13 states an ADD lo
ation on ea
h, zuand zv existssu
h that the same move 
an take pla
e in the inherited stru
ture, X ∪ {x, zu} →

X ∪ {y, zu} and X ∪ {y, zv} → X ∪ {x, zv}. By Lemma 6, a 
onne
ting movebetween the lo
al minors exists between X ∪ {x, zv} and X ∪ {x, zu} and thus we
an 
ompose all the lo
al minors of Lemma 13 into a graph and edge 
ontra
ting the
onne
ting moves to produ
e the re
on�guration graph 
ontaining i sub-units. �Remark 15. For an alternate viewpoint on the same result, we 
ould entirely skipthe 
omposition of lo
al graphs. An extra sub-unit 
an be added, and moved out ofthe way in order to realize all sequen
es of realizable moves (Lemma 12). However,
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Figure 6.8. A lo
al stru
ture (left) is a minor of the inheritedlo
al stru
ture (right). The left 
entral vertex is surrounded byall 
on�gurations rea
hable by a move (its lo
al stru
ture). Theright 
entral vertex 
ontains the inherited stru
ture for that ver-tex (a 
lique), yellow denoting where an additional sub-unit hasbeen added. For every move in the lo
al stru
ture (white to pur-ple), a 
omparable move 
an be found in the inherited stru
turewith an addition sub-unit added, denoted by the verte
es joiningthe 
entral vertex. The red lines within the inherited stru
tureshows whi
h moves are required to move the additional sub-unitaround to �get out of the way� so that all analogous moves 
anexe
ute. Deleting all bla
k edges in the inherited 
lique followedby 
ontra
ting the red edges reprodu
es the lo
al stru
ture.this loses sight that there is a notion of lo
ality relating the lo
al stru
ture to theinherited lo
al stru
ture through the embedding spa
e. This be
omes importantwhen we 
onsider the 
ounter example for the Ghrist model.Conje
ture 16. The Ghrist re
on�guration graph 
ontaining i units is not a graphminor of i + 1 when i is greater than some 
onstant.Our above 
onstru
tion of graph minor for the Surfa
e model does not hold forthe Ghrist 
on�guration graph be
ause an additional sub-unit in the inherited lo
alstru
tures does not, in general, form a 
lique stru
ture. Thus, while a lo
ation mayexist for every lo
al move that permits the move to take pla
e in the inheritedstru
ture, there may not be 
onne
tions between these lo
ations. Figure 6.9 showsa 
ounterexample where the inherited stru
ture is dis
onne
ted. In these 
ases thelo
al stru
tures are not minors of the inherited stru
tures, and so a global minor
annot be 
onstru
ted from a 
omposition of lo
al minors.
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Figure 6.9. A 
ounterexample 
ase for the Ghrist model. Twoneighbors in the lo
al stru
ture of the 
entral H 
on�guration areshown (top). The indu
ed lo
al stru
ture of the H 
on�gurationis divided into four 
onne
ted 
omponents, two 
liques and twoun
onne
ted verti
es. The lo
al stru
ture 
annot be re
onstru
tedfrom edge deletions and 
ontra
tions of the inherited stru
ture,and thus is not a graph minor.Interestingly, if the H 
on�guration 
ounterexample in �gure 6.9 is used as astarting point for a sub-graph sample for the pro
edure in se
tion 5, then theresulting sub-graph yields an λ2 of just 0.03. This 
lassi�es the 
on�guration asthe most bottlene
ked 
on�guration en
ountered. It appears that the areas of there
on�guration spa
e where the graph minor relation breaks down is also wherebottlene
ks appear.Theorem 17. For the meta-module state spa
e, M1 ≤M2≤ ....Proof. Omitted for brevity, but the proof largely follows the logi
 for the Surfa
emodel. �De
oupling the start and end positions of moves is the primary reason whyminor ordering is found in the re
on�guration graphs of the easy planning spa
esstudied here. It must be noted though, that the minor ordering is a global stru
turalproperty of the re
on�guration graphs, and not a 
onsequen
e of the representationused to des
ribe the motion 
atalogs.Graph Minor Theory is a powerful, modern mathemati
al tool. Many propertiesare persevered or bounded by taking minors. If a graph H ≤ G and G 
an bedrawn in some topologi
al spa
e without edge 
rossings (e.g. a planar graph, or a
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an be too. H is no more 
omplex (in a topologi
alsense) than G.It may be initially di�
ult for a reader unfamiliar with graph minor theory to seethe 
onsequen
es of minor ordering. Re
all the easier-to-grasp 
on
ept introdu
ed�rst that if Hk ≤ Gk, and H and G are distin
t SRS motion models, then plansfor the hardware of H 
an be run on the hardware of G e.g. H 
ould be a meta-modularization of G. Generalizing this, we 
an now see that if Hi ≤ Hi+1 thatplans for the Hi re
on�guration graph 
an be instantiated on the same hardware,di�ering only in that an extra sub-unit has been added (Hi+1). Thus, plans in
Hi 
an be reused, and augmented, to form plans in Hi+1, so planning in thesewell-ordered spa
es 
an be a
hieved in an in
remental, lo
al and re
ursive manner.In 
ontrast, the hard planning spa
es, like the Ghrist model, do not permit thise�
ient strategy. As Gi is not a minor of Gi+1 this implies that both edge deletionsand additions must be used to modify Gi+1 into Gi (and in fa
t, vi
e versa). So, aplan that worked for a Gi planning task may not always operate in an analogousmanner for the Gi+1 
ase, be
ause it may of utilized an edge in the re
on�gurationgraph that no longer exists.Like the subset relation, the graph minor relation indu
es a partial order on aset of elements. Partial orders 
an be summarised graphi
ally using a nested setnotation. The observations in this se
tion about how the Ghrist state spa
es relateto the Surfa
e state spa
es and between themselves using the graph minor relationare summarised in �gure 6.10. 7. Dis
ussionSelf-re
on�guring systems are a desirable future roboti
 te
hnology. Unfortu-nately, pra
ti
al implementations of SRS tend to have awkward motion 
onstraintsthat make planning 
omputationally di�
ult. To get the full bene�ts of SRSs we re-quire e�
ient motion planning algorithms so that SRS deployments 
an re
on�gureon demand in response to environmental 
hallenges.
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Figure 6.10. Ea
h Surfa
e state spa
e 
an be nested within thenext. While a Surfa
e state spa
e is always found within a Ghriststate spa
e, ea
h Ghrist state spa
e 
ontains an area that is not
ontained with its 
hild. It is for this reason that Ghrist problems
annot be solved e�
iently over the entirety of the state spa
e.So far e�
ient motion planning algorithms have been developed on a somewhatad ho
 basis, wherein resear
hers have looked 
arefully at ea
h instantiation ofSRS ar
hite
tures and 
arefully 
hosen motion 
atalog restri
tions. So far, we havela
ked a theoreti
al understanding of why some 
lasses of SRS are good to planwithin and some are not. Our work is an attempt to elu
idate the stru
ture ofSRS re
on�guration spa
es, whi
h 
ould be exploited in planning algorithms. Weapplied graph-theoreti
 te
hniques to sample the re
on�guration spa
e in orderto quantify the presen
e of bottlene
ks, and we identi�ed a graph property thatseparated an easy to plan with SRS model from a harder one. These are generalmethodologies with 
omputational impli
ations for a mu
h larger 
lass of SRS.Meta-modularization has been a 
ommon ta
ti
 in the SRS 
ommunity for iso-lating troublesome motion 
onstraints within an abstra
tion. Meta-modularizationoften involves the de�nition of a tunneling pro
edure that allows a peripheral meta-module to appear anywhere else on the perimeter of the 
on�guration. The un-
onstrained movement of meta-modules around the perimeter using a tunnelingpro
edure is similar to the Surfa
e model's long-move motion primitives (though
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e model does not permit movements to lo
ations on the perimeter that
ause Surfa
e violations). Both meta-modularization and the Surfa
e model 
on�g-uration graphs are well-ordered by the graph minor relationship, whi
h we believegoes some way towards explaining why these approa
hes make planning easier. It is
lear that the Surfa
e model's motion 
atalog is far less restri
tive than the strategyo�ered by meta-modularization though. The 
on�gurations adhering to the Surfa
emodel's 
onstraints o

upy a mu
h larger volume of HMR 
on�gurations, and thussa
ri�
e less generality in the 
on�gurations that 
an be planned with e�
iently,than an alternative meta-modularization approa
h would.The reason why Surfa
e 
onstraints are signi�
antly less restri
tive is be
ausethey are de�ned as addition lo
al 
onstraints des
ribing where a sub-unit 
annotstop along a motion path. There is no restri
tion that the lo
al 
onstraints to bede�ned in global terms (e.g. at spe
i�
 points on a globally de�ned grid spa
ing asin meta-modularization). It seems entirely plausible that with a set of geometri
path primitives (path segments and perhaps more generally bran
hes), and with theinsights of this paper (keeping algebrai
 
onne
tivity high, and looking for graphminor ordering), that a set of lo
al 
onstraints that 
onstrain an underlying modelonly a little, but simplify planning signi�
antly, 
an be elu
idated automati
ally.Constraining a motion model only a little implies that only a small volume of thetarget general state spa
e 
annot be represented. In previous work [12℄, we utilizedthe Surfa
e state spa
e as an e�
ient basis for long range planning a
ross the moregeneral Claytroni
s motion 
atalog, with o

asional re
ourse to more expensive butgeneral sear
h methods. Although the overall algorithm targeted the Claytroni
smotion 
atalog, by �nding a large subspa
e that was e�
ient to work within, thesize of the `di�
ult' part of the remaining spa
e was greatly redu
ed. Thus, overall,the algorithm 
ould a
hieve near linear performan
e, as empiri
ally demonstratedusing a large number of randomly generated 
on�gurations, over a large proportionof the target state spa
e.
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lusionsSRSs need e�
ient motion planning algorithms, but developing them has beendi�
ult be
ause of the inherent high dimensionality and 
omplexity (due to motionand shape 
onstraints) of the problem. An e�
ient SRS motion planning algorithmmust exploit lo
al and global stru
ture. In this work we have shown that even in
ases where the basi
 state spa
e of a planning problem may be 
omplex, spe
i�
subspa
es may admit mu
h more interesting stru
ture that 
an be gainfully utilizedfor planning. We have made pre
ise what stru
ture is required of the subspa
e, andmoreover, we have shown how one 
an 
hara
terize this stru
ture using general andpowerful mathemati
al tools that are appli
able to a large 
lass of SRS problems.One promising dire
tion for future work is to try to utilize these 
on
eptual ideasto develop te
hniques that automati
ally dis
over e�
ient subspa
es from more
omplex self-re
on�guration models.Referen
es[1℄ A. Abrams and R. Ghrist. State 
omplexes for metamorphi
 robot systems. Intl. J. of Roboti
sResear
h, 23(7):809�824, 2004.[2℄ Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generi
 de
entralized 
ontrol for a 
lass ofself-re
on�gurable robots. In Pro
eedings of the 2002 International Conferen
e on Roboti
sand Automation (ICRA 2002), pages 809�816.[3℄ G. S. Chirikjian. Kinemati
s of a metamorphi
 roboti
 system. In Roboti
s and Automation,Pro
eedings., 1994 IEEE International Conferen
e on, volume 1, pages 449�455.[4℄ Fan Chung. Spe
tral Graph Theory. Ameri
an Mathemati
al So
iety, 1997.[5℄ Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathemati
s. Springer-Verlag, Heidelberg, third edition, 2005.[6℄ R. Ghrist and V. Peterson. The geometry and topology of re
on�guration. Advan
es in Ap-plied Mathemati
s, 38:302�323, 2007.[7℄ Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.Witten. The weka data mining software: an update. SIGKDD Explor. Newsl., 11(1):10�18,2009.[8℄ Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H. Overmars. Probabilisti
roadmaps for path planning in high-dimensional 
on�guration spa
es. pages 566�580, 1997.



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS37[9℄ B.T. Kirby, B. Aksak, J.D. Campbell, J.F. Hoburg, T.C. Mowry, P. Pillai, and S.C. Goldstein.A modular roboti
 system using magneti
 for
e e�e
tors. Intelligent Robots and Systems,IEEE/RSJ International Conferen
e on, pages 2787�2793, 29 2007-Nov. 2 2007.[10℄ S. Kirkpatri
k, C. D. Gelatt, and M. P. Ve

hi. Optimization by simulated annealing. S
ien
e,220:671�679, 1983.[11℄ Tom Larkworthy, Gilian Hayes, and Subramanian Ramamoorthy. General motion planningmethods for self-re
on�guration planning. Towards Autonomous Roboti
 Systems, 2009.[12℄ Tom Larkworthy and Subramanian Ramamoorthy. An e�e
ient 
entralized algorithm forself-re
on�guration planning in a modular robot. In Roboti
s and Automation, Pro
eedings.,IEEE International Conferen
e on.[13℄ S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.[14℄ S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji. M-tran:self-re
on�gurable modular roboti
 system. Me
hatroni
s, IEEE/ASME Transa
tions on,7(4):431�441, 2002.[15℄ A. Pame
ha, C. Chiang, D. Stein, and G. Chirikjian. Design and implementation of meta-morphi
 robots. In The ASME Design Engineering Te
hni
al Conferen
e and Computers inEngineering Conferen
e, 1996.[16℄ A. Pame
ha, I. Ebert-Upho�, and G. Chirikjian. Useful metri
s for modular robot motionplanning. Roboti
s and Automation, IEEE Transa
tions on, 13(4):531�545, Aug 1997.[17℄ Ross J. Quinlan. C4.5: programs for ma
hine learning. Morgan Kaufmann Publishers In
.,San Fran
is
o, CA, USA, 1993.[18℄ John Reif and Sam Slee. Optimal kinodynami
 motion planning for 2d re
on�guration ofself-re
on�gurable robots. Roboti
s: S
ien
e and Systems, 2007.[19℄ D. Rus and M. Vona. Crystalline robots: Self-re
on�guration with 
ompressible unit modules.Autonomous Robots, 10(1):107�124, 2001.[20℄ Stuart J. Russell and Peter Norvig. Arti�
ial intelligen
e: a modern approa
h. Prenti
e-Hall,In
., Upper Saddle River, NJ, USA, 1995.


