
Learning Finite State Controllers from
Simulation

Matteo Leonetti1, Luca Iocchi1, and Subramanian Ramamoorthy2

1 Department of Computer and System Sciences, Sapienza University of Rome, via
Ariosto 25, Rome 00185, Italy

2 School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8
9AB, United Kingdom

Abstract. We propose a methodology to automatically generate agent
controllers, represented as state machines, to act in partially observable
environments. We define a multi-step process, in which increasingly ac-
curate models - generally too complex to be used for planning - are
employed to generate possible traces of execution by simulation. Those
traces are then utilized to induce a state machine, that represents all
reasonable behaviors, given the approximate models and planners previ-
ously used. The state machine will have multiple possible choices in some
of its states. Those states are choice points, and we defer the learning
of those choices to the deployment of the agent in the real environment.
The controller obtained can therefore adapt to the actual environment,
limiting the search space in a sensible way.

Keywords: Agent programming, Planning, Reinforcement Learning, Par-
tial Observability

1 Introduction

Decision making in real-world environments is characterized by uncertainty at
many and different levels. Part of the uncertainty can be captured by models
for planning under partial observability, to which a great deal of attention has
been payed in recent years. A paramount source of uncertainty lies in the as-
sumptions behind such models themselves, especially if the problem has not been
synthesized, but arises from an existing application. This is true regardless of
how accurately the model has been designed or learned. Such uncertainty cannot
be dealt with at planning time, and requires to monitor the execution in order
to identify any discrepancies between what is expected and what is perceived
[15]. Consider, for instance, a non-stationary environment incorrectly modeled
as stationary. Even after having learned a good approximation of the initial en-
vironment, when the environment and the model drift apart, plans may start
failing. Re-planning in the faulty model is of no use.

Reinforcement Learning (RL) can both learn models from data, or avoiding
models altogether. The amount of experience necessary to learn complex behav-
iors is still overwhelming in robotic applications, and any naive implementation

2 Learning Finite State Controllers from Simulation

is bound to limited scalability. Moreover, any learning mechanism involved -
such as function approximation - is characterized by a bias. On the one hand,
a bias necessary for any learning to take place, and on the other hand it may
let the representation diverge from what it aims to represent. RL has been ex-
tensively studied in the case of full observability, and the techniques developed
have been applied to a number of robotic scenarios. Learning and optimization
is successfully carried out on low-level control procedures, since the variables
that statistically determine what needs to be predicted are either readings of
proprioceptive sensors, or are, more in general, available to the perceptive sys-
tem. High-level decision making, on the other hand, has to cope with aspects
that cannot be observed, and often have no obvious model. A typical example
of this category of problems are those that involve other agents.

Hierarchical RL (HRL) [1] allows the designer to provide structure to the
policies searched, constraining the exploration in fully observable domains. This
is a fundamental aspect for real-world applications, as time is a strictly limited
resource, and robotic agents are subject to wearing and tearing. Such structure
can be provided either in the form of an hierarchy of tasks [6], a state machine
[14], or a Lisp program [11]. The automatic definition of the aforementioned
structures is still an open problem, and is usually carried out by hand.

In this paper, we propose a methodology to automatically generate agent
controllers, represented as state machines, combining several ideas developed in
the literature of planning under partial observability and reinforcement learning.
We define a multi-step process, in which increasingly accurate models - generally
too complex to be used for planning - are employed to generate possible traces
of execution by simulation. Those traces are then utilized to induce a state
machine, that represents all reasonable behaviors, given the approximate models
and planners previously used. The state machine will have multiple possible
choices in some of its states. Those states are choice points, and we defer the
learning of those choices to the deployment of the agent in the real environment.
Thus, the exploration in the real environment is constrained by the controller
- similarly to HRL, but applied to a partially observable domain - which is the
composition of the available low-level procedures, the rationality of a planner,
and a model of the problem to solve.

2 Background and Related Work

This work lies at the intersection of reinforcement learning and planning in
partially observable domains. It also makes use of induction of state machines.
We assume the reader to be familiar with the basic definitions of RL [19], and
summarize the background behind symbolic representation of planning problems,
and finite-state automata.

Learning Finite State Controllers from Simulation 3

2.1 Symbolic action theories

Reasoning about actions comprises the use of formal systems to describe dynamic
systems. Regardless of the actual logic employed, all theories of actions share a
few elements [17], described in the following.

The state space is represented through fluents, propositions whose truth val-
ues depend on the current situation. A situation is the result of the application
of actions to some initial assignment of truth values. Such an assignment de-
termines the initial situation. Actions are described by pre-conditions, that is
formulas that must hold for the action to be applicable, and post-conditions (or
effects), that is formulas that hold after an action has been executed. Axioms are
formulas added to the theory in order to enforce constraints that must always
hold. Physic laws, for instance, enforce that moving an object causes all the ob-
jects on top of it to be moved as well. Such an atemporal formula (differently
from a fluent) must hold in every situation. Action specifications (in terms of
pre- and post-conditions) and axioms determine the way in which fluents change,
therefore the dynamics of the system represented.

A goal is represented as a formula, and a situation fulfills the goal when the
truth assignment for that situation models the goal formula.

2.2 Regular languages and automata

Let Σ be a finite, non-empty, set of symbols called an alphabet. A string (or word)
is a sequence of symbols, and a set of strings is called language. A deterministic
finite-state automaton is a tuple DFA = 〈Q,F,Σ, δ, q0〉, where:

– Q is a finite set of states
– F ⊆ Q is a set of final states
– δ : Q×Σ → Q is the transition function
– q0 is the initial state

Given a finite string w = w0w1 . . . wn, a DFA generates a unique trajectory
〈q0, w0, q1, w1, . . . , qn, wn〉. LetΣ∗ denote the set of all finite sequences of symbols
in Σ. A DFA accepts a language L ⊆ Σ∗ iff ∀w ∈ L s.t. qn is the last state of
the trajectory produced by the DFA over w, and qn ∈ F . A DFA recognizes
a language L, if it accepts all and only the strings in L. A DFA that accepts
a language L may also accept strings that do not belong to L, while a DFA
that recognizes L must not. A language L is regular iff there exists a DFA that
accepts L.

2.3 Controllers and partial observability

The work most closely related to our own follows two lines: hierarchical RL, and
automated planning for partially observable domains.

The methods for hierarchical RL (MAXQ [6], HAM [14], and ALisp [11]) all
assume full observability. In this work, we assume not only partial observability
but also partial information, as we do not require a specification of the state

4 Learning Finite State Controllers from Simulation

space, let alone the transition function. Our approach shares with those meth-
ods the idea of constraining the space of possible solutions, by exploiting some
structure that carries information about the task to solve (not the domain). We
do require an intermediate model, but subsequent learning in the real domain
alleviates the structural uncertainty behind it. Parr mentions the possibility for
HAMs to be extended to deal with partially observable domains [14], but to
the best of our knowledge it had not been done yet. Moreover, none of the men-
tioned methods provide a way to derive the controlling structure (state machine,
task hierarchy, or Lisp program) automatically. We do so by learning from both
simulation and the actual domain.

For what concerns automatic planning, in the last few years several authors
have pointed to state machines as effective ways to represent controllers in par-
tially observable domains. They are more compact than contingent trees, and
policies over belief states, and allow to generalize to some extent [3]. For some
particular cases, it is possible to derive a controller by logic [3, 4, 7]. Although,
in general, planning under partial observability is infeasible (at least EXP-hard)
[16]. About making use of existing execution traces, Srivastava et al.[18] pro-
posed a method to compute generalized plans. It aims at identifying parts of
given trajectories that might be able to solve the planning problem starting from
intermediate positions in an existing plan. The result is an extremely expressive
structure with sensing and loops. The main difference between our approach
and all the planning ones is that we do not require the model to be exploitable
for computing solutions, but just to verify that a given trajectory is indeed a
solution. Moreover, with respect to Srivastava’s work we also provide a way of
generating such trajectories.

Interestingly, the work on planning can be integrated in our framework. The
initial decision maker may be based on a planner, and let act in a simulated
environment as will be formally described in the following.

3 Generating Controllers from Simulation

In this section we define the process to generate a finite state controller for a given
problem under partial information. In the following we make use of a running
example to explain our method. The example is a simple partially observable
problem, that has been used as a benchmark in several RL publications [9, 10].

Consider the partially observable problem of Figure 1 (c). The agent starts
from any of the squares and has to reach the top-right corner. The actions
available are to move one step north, south, east, and west, and their effect is
deterministic. The agent, however, can only observe at any given time the eight
squares around its current position.

3.1 Environments, problems, and controllers

We begin with the definition of a dynamic environment E = 〈A, O, S, I, ∆, Ω〉
in which:

Learning Finite State Controllers from Simulation 5

(a) (b) (c)

Fig. 1. The different representations at different stages. (a) The initial decision maker
takes into account only obstacles in the four directions; (b) a model without obstacles;
(c) the grid of the actual problem

– A is a finite set of actions
– O is a set of observations
– S is a set of states
– I ⊆ S is a set of initial states
– ∆ : S ×A× S is the transition relation
– Ω : S → O is the observation function

In this work, we assume to have available only A and O, while all the other
components of the environment are unknown.

A generalized planning problem over an environment is a tuple (defined by
Bonet et al. [3]) P = 〈F, I, A, G, R, O, D〉 where:

– F is a set of primitive fluents
– I is a set of F-clauses representing the initial situation
– A is a set of actions
– G is a set of literals representing the goal situation
– R is a set of non-primitive fluents
– O ⊆ R is the set of axioms defining the fluents in R

In the literature [3, 4], as mentioned in Section 2, this problem specification is
used to derive, by logic, a controller. Due to the uncertainty on the definition of
the environment, we only assume to have A, and G. That is, we assume to know
the available actions and to be able to recognize the goal states. Hence, such a
problem cannot be solved directly by any planner, nor learned as a POMDP (no
description of the underlying state space is given). Such a situation is described
as partial information, which includes partial observability. Being a problem on
a real environment, however, experience can be gathered by acting in it.

A controller is a tuple C = 〈Q, A∗, O∗, δ, q0〉 where Q is a set of states,
q0 ∈ Q is the initial state, and A∗, O∗, and δ are the finite set of actions, set of
observations, and transition relation respectively. The (partial) transition rela-
tion δ maps pairs 〈qi, oi〉 of controller states and observations into actions, and
next states qi+1. The controller is deterministic if given a pair 〈qi, oi〉 the ac-
tion, and consequently the next states, are uniquely determined. A deterministic

6 Learning Finite State Controllers from Simulation

controller C over an environment E produces, from each initial state s0, a single
trajectory tC(s0) = 〈o0, q0, o1, q1, . . . , of , qf 〉. A non-deterministic controller, on
the other hand, can produce a set of trajectories that we denote with TC(s0).

A trajectory t(s0) is a solution of P from an initial state s0 iff the terminating
observation of is such that of |= G. We are assuming that of |= G ⇒ sf |= G,
that is, if an observation fulfills the goal specification, the underlying, unobserv-
able, state is a goal state. A deterministic controller solves a problem P over an
environment E iff each trajectory tC(s0), from each initial state s0, is a solution
from s0. We say that a non-deterministic controller C can solve a problem P if
∃t ∈ TC(s0) such that t is a solution from s0.

Finally, we define a restriction of a problem P to Î ⊆ I as the sub-problem
P (Î) = 〈F, Î, A, G, R, O, D〉.

3.2 Simulators

The specification of the real environment is severely limited by uncertainty. We
assume that such an environment exists, that we can perform a set of actions on
it, and that we are able to perceive some observations. Traditional RL would re-
quire at least a description of the state space, although no unique definition is in
general available from the problem specification. In fact, designing a representa-
tion is a delicate task, that requires a great deal of experience and understanding
of the problem at hand.

In this work we take a different stand. We assume the existence of another
environment E ′ on which we can define a problem P ′. Informally, E ′ is a simulator
for E , as those commonly available in robotics. The characteristic of a simulator
is to be a model that provides an approximation of the environment E , that is
usually too complex to be used for planning. In such a model, however, experience
can be gathered much more cheaply than in E . We do not define any direct
relationship between E and E ′, we shall rather establish one through controllers.

Although we have a complete specification of both E ′ and P ′, we only use
them through simulation, that is, to generate trajectories. P ′ can be partially
observable, but does not necessarily have to. Furthermore, we assume the exis-
tence of a decision maker that can solve P ′ in E ′. For finite observation spaces,
such a decision maker always exists, and in the worst case it would just produce
all possible sequences of observations and actions of finite length, thus solving
P ′ if a finite solution exists. The aim of the decision maker, however, is to em-
ploy some rationality, so that exploratory moves that are clearly wrong can be
avoided. The designer may embed in the decision maker any previous knowledge
about possible solutions.

The decision maker is deployed in E ′ to generate trajectories t′(s′0) that are
solutions to P ′. The observations in such trajectories are removed, as they are,
in general, not related to the observations that the agent would experience in
the real environment. Later, a new mapping from observations to actions will be
learned in E , exploiting a controller derived in E ′.

Considering each action in A′ as a symbol, the set of trajectories that are
solutions to P ′, from which observations are removed, form a language. We

Learning Finite State Controllers from Simulation 7

induce a finite deterministic automaton C′ = 〈Q′, A′, ∅, δ′, q′0〉 that accepts
such a language. Note how this is equivalent to a controller with an empty
observation set. There is a vast literature about inducing such acceptors [5, 8],
and we mention a few methods later in the example.

Finally, we expand the edges of C′ to accommodate the observations of P .
We define a controller ∧C = 〈Q′, A′, O, δ̂, q′0〉 obtained from C′ such that for each

observation o ∈ O, δ̂ connects a state q′i to a state q′j when observing o and by
executing a′ ∈ A′, if and only if δ′ connects q′i to q′j by executing a′.

If the controller ∧C obtained through the process just described can solve a
reduction of P in E we say that the composition of the decision maker, E ′, P ′,
and the method used to induce the automaton is admissible. This can be verified
by executing ∧C in E .

Step 1: definition of an initial decision maker We begin with the definition
of a simple decision maker able to act in the domain presented at the beginning
of Section 3. To represent high-level procedures that take into account local
variables, we define four non-atomic actions with which the agent moves in each
direction until it encounters an obstacle. We denote these non-atomic actions
with up, down, left, and right, with obvious effects. The precondition for each
of those actions is the absence of an obstacle in the direction in which the agent
would go.

Our decision maker chooses randomly among the non-atomic actions avail-
able until it reaches the goal. To add a bit of rationality, from which the sub-
sequent phases can benefit, it also avoids the action opposite to the one just
chosen. Thus, for instance, if the last action was right, the next action cannot
be left. This because otherwise the same effect of moving right and then left
could have been achieved by moving left in the first place. In order to act ac-
cordingly to the decision maker just defined, the agent needs only to observe the
four squares in the cardinal directions, as represented in Figure 1 (a), and to
recognize the goal state.

Step 2: application of the decision maker to a model At this stage we
assume to have an approximated model of the environment E ′ and the problem
to solve P ′, but too complex to be exploited by a planner.

In our simple example, we assume the model in Figure 1 (b), that is the same
grid as the real domain but without obstacles. We let our agent act on such a
model for a number of episodes, and record the sequences of actions that led to
the goal state within a certain threshold. In this case we ran 1000 episodes, and
accepted any trajectory able to lead from the random initial state to the goal in
at most 2 times the Manhattan distance. Taking all trajectories regardless of a
measure of performance is possible but likely to produce extremely sub-optimal
plans. The set of sequences of actions generated is the following: { 〈 up 〉, 〈 right
〉, 〈 right, up 〉, 〈 up, right 〉, 〈 down, right, up 〉, 〈 left, up, right 〉 }.

The output of the this second step is a deterministic finite state automaton
that accepts the strings produced by the simulation. By standard techniques for

8 Learning Finite State Controllers from Simulation

(a) (b)

Fig. 2. Two finite state automata that both solve the given problem

automaton composition and minimization [12] we obtain the state machine in
Figure 2 (a), which recognizes the language of the strings produced. A possible
alternative consists in using algorithms like Bierman [2] and RPNI [13] providing
them both positive and negative examples. Negative examples (sequences the
automaton must not accept) may be taken from traces that fail to reach the
goal, and sub-sequences of both successful and failing traces (as only complete
traces must be accepted), unless they have reached the goal at least once. For
instance, 〈right〉 is a sub-sequence of 〈right, up〉, but must be taken as a
positive example, as it reached the goal at least once. On the other hand, both
〈down〉 and 〈down, right〉 are sub-sequences of 〈down, right, up〉 and must be
taken as negative examples, as they never reached the goal themselves. The
resulting machine is shown in Figure 2 (b). Note that the language accepted by
automaton (a) is a sub-set of the language accepted by automaton (b), and the
latter is a generalization of the strings (possible plans) provided as examples.

3.3 Reinforcement learning on controllers

The controller ∧C, obtained through simulation and automaton induction, pro-
vides at the same time a constraint to the possible behaviors, and a partial
specification of a solution for a problem that could not otherwise be solved. If
such an automaton is deterministic no further improvement is possible, and it
constitutes a completely specified solution to P (with no performance guaran-
tees). More interestingly, if such a controller is non-deterministic, learning in the
real environment can determine (and be limited to) the behavior at choice states.
In order to generate a non-deterministic controller ∧C, either the decision maker
must be able to produce more than a solution trajectory, from at least some
initial states, or the induction method must be able to generalize over sample
trajectories. The two options are not mutually exclusive.

Non-deterministic controllers may help alleviate the structural uncertainty
behind the model E ′, without having to give up on modeling completely. The
trajectory that proved best in E ′ is not necessarily the best one in E too, but

Learning Finite State Controllers from Simulation 9

limiting the search to a set of reasonable trajectories in the real environment is
of capital importance.

In this section we define a controllable stochastic process from a controller
∧C in order to apply reinforcement learning to it. As previously mentioned, if
E is fully observable such a definition already exists, and HAMs [14] can be
used to learn the optimal policy compliant with the constraints imposed by the
controller. We define a decision problem DP = 〈Sd, A,D, ρ〉 such that:

1. Sd = Q′ ×O
2. D connects a state 〈q′i, oi〉 to 〈q′j , oj〉 through action a ∈ A, if and only if

δ̂(q′i, oi) = q′j
3. ρ : Sd ×A→ < is a reward function

D is a probability distribution over Sd × A × Sd. By saying that D connects
si ∈ Sd to sj ∈ Sd through a ∈ A, we only mean that the probability to go from
si to sj by executing a is not necessarily zero. If the two states are not connected
by D, on the other hand, such a probability is set to zero. In general, however,
the probabilities not set by definition to zero are unknown, as they depend on
the probability to land on a state that returns a given observation in the real
environment.

The decision problem DP may or may not be Markovian, depending on
whether the memory embedded in the controller is sufficient to statistically
justify the reward. This problem is very well understood in the literature of
POMDPs. Therefore, a learning algorithm must be chosen carefully, preferring
methods that search in policy space if the decision problem proves to be Non-
Markovian.

This general definition of a decision problem in the real environment allows
the designer to implement a different abstraction at each choice state. This may
reduce the expansion at point 2 of the definition of DP if the observation space
is too large or continuous. If the underlying environment is fully observable,
therefore having one observation per state, DP is exactly equivalent to a HAM
flattened over the underlying MDP.

The controller might get stuck because of discrepancies between E ′ and E ,
such that actions that were possible in the former happen to be not applicable
in the latter. In such a case, the agent has to improvise reverting to the decision
maker, or in the worst case to a random behavior, and hope for the best. Any
successful trajectory generated in the real environment can be included in the
controller (re-inducing it), modifying the structure on the fly and avoiding such
issues in future executions.

Once the learning phase has terminated, the reward function can be used
to compare different controllers, along with the particular reduction that they
solve. In general a maximal reduction (possibly the whole initial problem itself) is
preferable. If from some initial states a particularly high reward can be obtained,
however, a controller that solves a smaller reduction including those states might
be better. The reward function can also be used in the previous phase to exclude
trajectories that solve P ′ with poor performance.

10 Learning Finite State Controllers from Simulation

The whole process can in principle be iterated, with the newly generated
controller acting as one of the available procedures, for a problem at a higher
level of the hierarchy.

Step 3: learning in the real environment If the domain were fully observ-
able, either one of the machines derived at the former step could be used to learn
as a HAM on the underlying MDP. The automata are deterministic as accep-
tors of the sequences of actions, since each state never has two outgoing edges
that recognize the same symbol. From the point of view of the agent, however,
each state with more than one outgoing edge is a choice state, since more than
one action is possible from it. Those remaining choices, and only those, will be
learned directly in the real environment. We performed the transformation pre-
viously defined of the automata into decision processes, and used an algorithm
for searching in policy space to learn in choice states. We define the problem
as episodic imposing a maximum length of 30 actions. The reward function re-
turns −1 after each atomic action is executed. Therefore a non-atomic action
that moved the agent for n squares would receive a reward of −n. Finally, the
problem is considered undiscounted. Figure 3 shows the results of learning. Both

Fig. 3. Results of learning for both automaton

automata reach the same level of performance, although automaton (a) is able
to learn faster. Note how the number of episodes taken by automaton (a) to
reach the optimum value compatible with its structure is extremely low. With
46 initial states and 2 to 4 actions available per state, about 300 episode is close
to performing each action in each initial state only once. Automaton (a), how-
ever, is not able to solve the problem from the initial state right on top of the
left-most obstacle. From that state the two available paths both run into walls.

Learning Finite State Controllers from Simulation 11

Automaton (b), on the other hand, is able to execute the sequence 〈 left, right,
down, right, up 〉 that is sub-optimal but reaches the goal.

4 Conclusions and Future Directions

We proposed a method to generate agent programs, in the form of state ma-
chines, by combining different components: an initial decision maker, available
to the designer to include any previous knowledge about the task; a simulator,
that is, a model too complex to be used for planning, but from which possible
trajectories can be extracted; the induction of an automaton that accept the
extracted trajectories; and finally reinforcement learning, on the derived state
machine, directly in the real domain. Simulators are commonly employed, but
are rarely integral parts in the development of agent programs.

Constraining the final learning, through the interaction of all those compo-
nents, significantly limit the search space in the real domain. This has a twofold
effect: on the one hand the optimal behavior might be lost, and only the best be-
havior compliant with the final state machine can be learned. On the other hand,
limiting the exploration to those trajectories that are related to both the ratio-
nality of the designer and a model of the actual task, significantly reduces the
number of episodes required to learn. In real-world environments, this trade-off
inevitably arises and sensible ways of limiting the search space are necessary.

Different automata may be induced by different methods. The obtained au-
tomaton also depends on the positive and negative sample trajectory provided.
Thoroughly considering the available options in the future can make the method
increasingly effective.

An interesting future direction consists in replacing the simulator with a
human, that drives the agent in the real environment. In this case, sequences
of both actions and observations might be recorded, and a state machine that
mimics and generalizes the behavior of the human be induced.

State abstraction is another aspect that may be considered in the future. The
automaton allows to specify a different abstraction at each choice state, partially
decoupling the problem of effectively reacting to observation, with back-chaining
action sequences in order to reach the goal. Since plausible sequences are already
encoded in the machine itself, learning an abstraction should result simpler.

Finally, adaptivity to the real environment may be achieved by training the
agent on different sub-problems, and inducing the machine with the union of
their trajectories. The resulting controller may be able to solve all the different
problems, and discover from the real environment which one it is actually facing.
For instance, the agent might be trained in simulation against a number of
different adversaries, learning different tactics. When playing against a specific
agent, it might adapt to the best of the tactics available.

References

1. A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13(1-2):41–77, 2003.

12 Learning Finite State Controllers from Simulation

2. A. Biermann and J. Feldman. On the synthesis of finite-state machines from
samples of their behavior. Computers, IEEE Transactions on, 100(6):592–597,
1972.

3. B. Bonet, H. Palacios, and H. Geffner. Automatic derivation of memoryless policies
and finite-state controllers using classical planners. In Proc. of ICAPS, pages 34–
41, 2009.

4. G. De Giacomo, F. Patrizi, and S. Sardina. Agent programming via planning
programs. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1, pages 491–498. International
Foundation for Autonomous Agents and Multiagent Systems, 2010.

5. C. de la Higuera. A bibliographical study of grammatical inference. Pattern
Recogn., 38:1332–1348, September 2005.

6. T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

7. Y. Hu and G. De Giacomo. A generic framework and solver for synthesizing finite-
state controllers. In Proc of the AAAI 2011 Workshop on Generalized Planning
(GenPlan’11), 2011.

8. M. Leucker. Learning meets verification. In Proceedings of the 5th interna-
tional conference on Formal methods for components and objects, pages 127–151.
Springer-Verlag, 2006.

9. M. L. Littman. Memoryless policies: Theoretical limitations and practical results.
In From Animals to Animats 3: Proceedings of the Third International Conference
on Simulation of Adaptive Behavior, pages 238–247, 1994.

10. J. Loch and S. Singh. Using eligibility traces to find the best memoryless policy
in partially observable Markov decision processes. In Proceedings of the Fifteenth
International Conference on Machine Learning, pages 323–331, 1998.

11. B. Marthi, S. J. Russell, D. Latham, and C. Guestrin. Concurrent hierarchical
reinforcement learning. In Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI), pages 779–785, 2005.

12. M. Mohri. Minimization algorithms for sequential transducers. Theoretical Com-
puter Science, 234(1-2):177–201, 2000.

13. P. Oncina, J.; Garca. Identifying regular languages in polynomial time, chapter -.
World Scientific Publishing, 1992.

14. R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. Ad-
vances in neural information processing systems, pages 1043–1049, 1998.

15. O. Pettersson. Execution monitoring in robotics: A survey. Robotics and Au-
tonomous Systems, 53(2):73–88, 2005.

16. J. Rintanen. Complexity of planning with partial observability. In Proc. of ICAPS,
volume 4, pages 345–354, 2004.

17. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2005. Third Edition.

18. S. Srivastava, N. Immerman, and S. Zilberstein. Merging example plans into gen-
eralized plans for non-deterministic environments. In Proceedings of the 9th In-
ternational Conference on Autonomous Agents and Multiagent Systems: volume
1-Volume 1, pages 1341–1348. International Foundation for Autonomous Agents
and Multiagent Systems, 2010.

19. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

