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ABSTRACT
We introduce a new model of collective decision mak-
ing, when a global decision needs to be made but the
parties only possess partial information, and are unwill-
ing (or unable) to first create a global composite of their
local views. Our macroscope model captures two key fea-
tures of many real-world problems: allotment structure
(how access to local information is apportioned between
parties, including overlaps between the parties) and the
possible presence of meta-information (what each party
knows about the allotment structure of the overall prob-
lem). Using the framework of communication complex-
ity, we formalize the efficient solution of a macroscope.
We present general results about the macroscope model,
and also results that abstract the essential computa-
tional operations underpinning practical applications,
including in financial markets and decentralized sensor
networks. We illustrate the computational problem in-
herent in real-world collective decision making processes
using results for specific functions, involving detecting a
change in state (constant and step functions), and com-
puting statistical properties (the mean).

INTRODUCTION
We consider collective decision making processes such as
a market that acts as a central mechanism for coordinat-
ing the actions of autonomous participants. We address
the questions: how does one measure the quality of the
collective decision making process, and how weak can
the central market mechanism be? In many applications,
there is significant interest in decentralizing computation
while still being able to arrive at results that cannot be
computed entirely locally. We use a simple model to cap-
ture the informational complexity of computing global
functions by aggregating results from participants1 who
are endowed with arbitrary allotments of local infor-
mation. This allows us to draw conclusions about the
requirements on allotments and protocols, for efficient
collective information processing. A key aspect of our
model is the specification of meta-information based on
distinguishing perfect information, single-blind arrange-
ments, and double-blind arrangements. Our technical
framework is built on the notions of communication com-
plexity. We assume that participants possess informa-
tion which is not available to other participants; we call
this the private information.
1We use the common English words agent, party, participant,
and player synonymously, ignoring more specific usage.

This work is motivated by several applications.

A rather timely application is found in the domain of
participants in electronic markets. Often, such as in fi-
nancial markets, participating agents would benefit from
an understanding of the global system dynamics (Darley
& Outkin 2007).2 For instance, agents might like to have
signals that indicate the presence of herding, bubbles and
other aggregate phenomena. Typically, the local view of
a single agent does not provide sufficient information to
reliably detect this. Moreover, in such a domain, one is
tightly constrained by what information can be revealed,
incentives to reveal this information, and other aspects
related to privacy in computation. If we seek efficient
decentralized information processing mechanisms under
these constraints, then we would like to be able to deter-
mine what is or is not possible, employing only a coarse
characterization of resources and endowment of informa-
tion. Recent studies such as in anonymized financial chat
rooms (Lu & Mizrach 2011) provide interesting insights
into the behaviour of such collectives, such as the charac-
terization of equilibria in which a subset of traders profit
from the information of others. This is but one example
of a larger body of economic literature related to phe-
nomena in networked markets (Hurwicz & Reiter 2006).
However, in that literature, it is not typical to investigate
our question of how the allotment structure and com-
munication protocols relate to the efficiency with which
specific types of computation are achieved. For instance,
change detection (Basseville & Nikiforov 1993) is of fun-
damental importance in financial markets – how weak a
protocol is sufficient to decide a change has occurred?
Recent work on the topic of complexity of financial com-
putations by Arora, Barak, Brunnermeier & Ge (2011)
indicates that this is a fertile direction to pursue.

Similar issues arise in many other application domains,
such as mobile sensor networks and distributed robotics.
Leonard, Paley, Lekien, Sepulchre, Fratantoni & Davis
(2007) describe a mobile sensor network for optimal data
gathering, using a combination of underwater and sur-
face level sensing robots to optimally gather informa-
tion such as chemical and thermal dynamics in a large
2See http://www.bankofengland.co.uk/publications/
speeches/2009/speech386.pdf for a discussion of this
issue from the perspective of financial regulation, and
http://www.bis.gov.uk/foresight/our-work/projects/
current-projects/computer-trading for information on
a major study by the UK government, under the Foresight
Project.

http://www.bankofengland.co.uk/publications/speeches/2009/speech386.pdf
http://www.bankofengland.co.uk/publications/speeches/2009/speech386.pdf
http://www.bis.gov.uk/foresight/our-work/projects/current-projects/computer-trading
http://www.bis.gov.uk/foresight/our-work/projects/current-projects/computer-trading


volume of water (typically measured in square miles).
Similar systems have been utilized for tracking oil spills
and algal blooms. A key computational method utilized
by such distributed robotic networks involves distributed
optimization (Bullo, Cortés & Mart́ınez 2009). The de-
ployment of modules in such a network needs to satisfy
a spatial coverage requirement, described as a cost func-
tion, so that each module plans trajectories to optimize
this criterion. The sensor fusion problem, to determine
a combined estimate of an uncertain parameter, may
also be posed an as optimization problem in the sense
of maximizing information gain. Despite this rigorous
approach, relatively little is known about how to com-
pare different formulations of these optimization prob-
lems – given that we are interested in a certain type
of global function (say, number of peaks in a chemical
concentration profile or some distributional aspect of the
overall field) using weak local sensing and the ability to
move sensing nodes, how does one compare or otherwise
characterize protocols and other aspects of the problem
formulation?

A line of work that begins to touch upon some of these
questions is that of Ghrist and collaborators. Barysh-
nikov & Ghrist (2009) use tools from algebraic topology
to solve the problem of counting targets using very weak
local information (such as unlabelled counts in a local
neighbourhood). de Silva & Ghrist (2007) present an
approach to detection of holes in coverage through decen-
tralized computation of homology. Here again, the focus
being on aspects of the specific function being computed,
the authors do not address the relationship between the
protocols and problem formulation, and the efficiency of
computation.

Extending the idea of decentralized computation in so-
cial systems, consider the problem faced by a program
committee, such as one that might review this paper. We
seek a decentralized computation of a ranking problem.
Similar ranking problems also occur in executive decision
making such as the hiring decision in academic depart-
ments. The key issue here is that of parsimonious infor-
mation sharing, coupled implicitly or explicitly with the
meta-information problem. These challenges arise due
to limitations on the capacities of the decision makers to
exchange information with each other.

The common theme underlying all of these applications
is the computation of a function based on allotment of
portions of the information to parties who have reason-
able amounts of computational resource but would like
to keep exchange of information limited. We wish to
understand how weak the corresponding protocols can
be, for various types of functions. Major categories of
functions of interest include change detection and rank-
ing. We model change detection by an abstract version
of the key underlying problem, of determining whether
the data forms a constant or a step function. The main
statistical property we consider here is the computation
of the mean.

We are interested in understanding just how much com-
munication must occur to answer various questions of
interest. Therefore, instead of working with detailed
models for the questions about market behaviour or sen-
sor networks discussed previously, we have deliberately
kept the models we study as simple as possible. This
makes our lower bound results stronger. Determining an
answer to any more realistic question will require even
more information to be exchanged than in these simple
models, as long as the more realistic model includes the
simpler problem at its core. It therefore makes sense in
our setting to study the simplest possible embodiment
of each of the core problems. For the upper bounds, our
results are a first step and will need to be extended to
more realistic models.

MODEL
Our model is based on the notion of communication
complexity (Kushilevitz & Nisan 1997), which has been
highly influential in computer science. A Boolean func-
tion models yes/no decisions, by requiring that the func-
tion take either the value 0 or the value 1. A quantity
with value either 0 or 1 is known as a bit, and quantities
that are drawn from a larger range of values can be ex-
pressed by using multiple bits; a function that is defined
over a domain containing 2n different values is said to
have an n-bit input. Say two players Alice and Bob wish
to compute a Boolean function f on a 2n-bit input, but
Alice only has access to the first n bits and Bob to the
other n bits. Alice and Bob are not computationally
constrained, but they are informationally constrained.
The question now is: how many bits of information do
Alice and Bob need to exchange to compute f on a given
2n-bit input? A protocol for this problem specifies, given
the inputs to the players and the communication so far,
which player is the next to send information, as well
as what information is actually sent. There is a trivial
protocol where Alice merely sends her part of the input
to Bob. Bob now has all the information he needs to
compute f , and he sends back the 1-bit answer to Alice.
The cost of a protocol is the total number of bits that
are exchanged; this simple protocol has a cost of n + 1
for any function. The field of two-party communication
complexity studies, for various functions f of interest,
whether more efficient protocols exist. As an example,
for the Equality function which tests whether Alice and
Bob’s inputs are exactly the same, it is known that the
communication upper bound of n + 1 is tight for de-
terministic protocols, but there is an improved protocol
with cost O(log(n)) when the players’ messages are al-
lowed to be randomized and it is sufficient for the final
answer to be correct with high probability.

The notion of communication complexity can be general-
ized from the two-party setting to the multi-party setting
(Chandra, Furst & Lipton 1983). Here the number of
players is not limited to two, each player has some infor-
mation about the global input, and they wish to compute
some Boolean function of the global input. There are two
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standard models for how the input is distributed among
the players: the number-in-hand model (NIH) and the
number-on-forehead (NOF) model. Suppose there are k
players and the global input is N bits long. In the NIH
model, there is some fixed partition of the global input
into k parts, and each player gets one of these parts. In
the NOF model, again there is a fixed partition into k
parts, but the i-th player gets all the parts except the
i-th part.

The main motivation for our model is that in many sit-
uations, such as financial markets or sensor networks,
information is distributed among players in a more com-
plex fashion than in the NOH or NIF models. Moreover,
the players might not have control over which pieces of
information they have access to – the allotment of inputs
to players might be arbitrary, perhaps even adversarial.
As an example, creators of financial instruments may
decide which assets to bundle into pools that are then
offered for sale. Purchasers of such instruments might
wish to check fairness of allocation, without revealing
to each other their precise holdings; or regulators might
wish to check that sellers behaved impartially but with-
out relying on full disclosure.

Yet, the players might still wish to compute some func-
tion of their global input in this less structured setting.
Now different kinds of question arise than in the standard
communication complexity setting. For a given function,
which kinds of allotment structures allow for protocols?
Does the meta-knowledge of what the allotment struc-
ture actually is make a difference to whether there is an
efficient protocol or not? These questions are interesting
even for simple functions which have been thoroughly
investigated in the standard setting.

To be more formal, let f be a function which k play-
ers wish to compute on a global input x of size N bits.
An (N, k) allotment structure is a sequence of k subsets
S1, S2 . . . Sk of [N ] = {1, 2, . . . , N}. An allotment struc-
ture corresponds to an allotment of input bits among
players in the following way: Player i receives all bits xj

for j ∈ Si. Note that unlike in the NOH and NIF mod-
els, this allotment of input bits is completely general –
it might be the case that two players receive the same
set of bits, for example. This is the main novelty of our
approach. Our intention here is to model two kinds of
situations. In the first, the players have little control over
which pieces of information they can access – they have
to do the best they can, with the available information.
In the second, the allotment is made by a centralized
authority, and it is of interest to study which allotment
would most facilitate the computation in question.

A k-player macroscope on N bits is simply a function f
on N input bits together with an (N, k) allotment struc-
ture. We will abuse notation and sometimes use a macro-
scope to refer to a sequence of functions fN , N = 1 . . .∞,
where each function fN depends on N bits. This will en-
able us to pose and study the question of the asymptotic
efficiency of protocols for macroscopes.

x1

x2

x3

x4

...

xN

S1 = {1, 2, N}

S2 = {1, 3, 4, N}

...

Sk = {2, 3, 4}

x

Figure 1. Example (N, k) allotment structure. We wish to
compute f(x) with a k-player protocol, in two situations.
(Single-blind) Player i knows {S1, . . . , SN} and xj for j ∈ Si.
(Double-blind) Player i only knows xj for j ∈ Si.

The generalized modelling of the allotment of inputs
raises the issue of meta-information – how much do play-
ers know about the allotment of inputs, and how can
they take advantage of this? In the case of the NIH and
NOF models, the allotment is implicitly known to all
players because it is fixed in advance. However, in our
setting, there are two different kinds of situations – the
single-blind situation and the double-blind situation. In
a single-blind macroscope, all players know the allotment
structure, however Player i does not know the values of
any input bits apart from the ones whose indices are in
Si. In a double-blind macroscope, the players are more
hampered in that they do not even know the allotment
structure, however they do know the indices of the bits
they receive.

It remains to formally define what a protocol is in our
model. To keep things simple, we focus on simultaneous-
message protocols, where each player broadcasts a se-
quence of bits to all players; this is often presented fig-
uratively as each player writing their bit string on a
universally viewable blackboard. A protocol solves a
macroscope if each player can determine the value of
the function on the global input simply by looking at its
own input bits as well as the information written on the
blackboard. The cost of a protocol for a macroscope is



then the total length of strings written by the players.
In protocols for single-blind macroscopes, the message
of Player i is a function of the values of bits whose in-
dices are in Si as well as of the allotment structure. For
double-blind macroscopes, the message of Player i is a
function only of the values of bits whose indices are in
Si.

We make a deliberate choice in our modelling to be
highly general in terms of the allotment structure, and to
be specific in terms of the structure of the actual commu-
nication. This is because our main aim is to understand
the impact of the allotment structure on efficiency of
communication. Our model can be extended to allow
more degrees of freedom with regard to the communica-
tion structure. One way in which this can be done is to
allow multiple-round protocols, where players communi-
cate in turns, with the protocol specifying whose turn it
is to communicate. Another is by allowing randomness
– here each player is assumed to have access to a private
source of randomness, on which its message can depend.
A third way is to restrict communication to take place
between specified pairs of players, i.e., there is an implicit
topology of communication. This third approach is taken
in the field of distributed algorithms (Lynch 1996), where
however input allotment is not modelled in a flexible way.

We are interested in protocols which have communica-
tion as low as possible. This is desirable not just in terms
of efficiency, such as meeting bandwidth constraints, but
also in terms of privacy. In applications such as financial
markets, the players would like to obtain some global
knowledge without revealing their own inputs. Thus,
Player i has more than one reason for not following the
trivial protocol of publishing the values of all bits in Si.
The lower the communication, the less the information
revealed about the values of bits held by individual play-
ers; we will rely on this link between parsimony of com-
munication and the weakness of the coordination mecha-
nism. Privacy requirements are modelled more explicitly
in sub-areas of cryptography such as secure multi-party
computation (Yao 1982, Goldreich 2004). We prefer not
to model these requirements explicitly so as not to com-
plicate our model too much.

We make no assumption about the relationship between
the number of players and the number of bits in the
global input. In an application such as sensor networks,
there might be few players (sensors), each having a large
amount of information, whereas in the financial markets
application, there are typically many players each having
few pieces of information. Our model deals equally well
with both extremes.

A first observation is that to compute a non-trivial func-
tion over the global input, i.e. a function that depends
on all the input bits, the allotment structure must sat-
isfy the covering property – each index j ∈ [N ] lies in at
least one set Si of the allotment structure. If the cov-
ering property did not hold, consider an index j which
does not belong to the allotment, and an input X such

that f is sensitive to X at index j, meaning that f(X) is
different from F (Xflip

j ), where Xflip
j is X with the value

of the jth bit flipped. By the non-triviality of f , such
an input X must exist. Clearly any protocol outputs the
same answer for X as for Xflip

j since j does not belong to
the allotment, and hence the protocol cannot be correct.
Henceforth, we automatically assume that a macroscope
has the covering property.

There are no general necessary conditions on the allot-
ment structure beyond the covering property for compu-
tation of non-trivial functions. But intuitively, the more
“even” the allotment is, in the sense of each bit being
allotted to the same number of players, the easier it is
to compute a symmetric function of the inputs. We de-
fine an even (N, k) allotment structure as an allotment
structure for which there is a number C such that each
index i ∈ [N ] belongs to exactly C distinct subsets Si,
and each subset Si is of the same size. Clearly, for such
an allotment structure, each set Si is of size NC/k.

RESULTS
Our first results address the question of what we can say
in general about the cost of single-blind and double-blind
macroscopes.

Theorem 1. Every single-blind macroscope on N bits
has a protocol with cost N . Moreover, this bound is op-
timal.

Note that the upper bound does not depend on the num-
ber of players. The proof of the upper bound in Theo-
rem 1 takes advantage of the global knowledge the play-
ers have about the allotment structure.

Proof. Consider a protocol in which each input bit
Xi has a player “responsible” for it – Player j is re-
sponsible for input bit Xi iff i ∈ Sj and i 6∈ Sk for
k < j. It follows from the covering property that each
input bit has a player responsible for it. It should also
be clear that at most one player is responsible for any
given input bit. The protocol consists of players sending
the values of all the bits they are responsible for. Since
the macroscope is single-blind, each player knows who is
responsible for which input bits. Hence each player can
reconstruct the input from the information sent in the
protocol, and therefore also compute the function on the
input. The cost of the protocol is N , since each bit has
exactly one player responsible for it.

To see that this bound is optimal, consider the macro-
scope consisting of the Parity function3 together with
an (N,N) allotment structure which allots each input
bit to a distinct player. Suppose there is a protocol for
this macroscope where one of the players does not send
a message. Assume, without loss of generality, that this
player holds the i-th bit. Then the Parity function can-
not depend on the i-th bit, which is a contradiction.

3The Parity function returns 1 if an odd number of the input
bits are 1, and 0 otherwise.
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Theorem 2. Every k-player double-blind macroscope
on N bits has a protocol with cost at most 2Nk.

Proof. The protocol giving the upper bound of The-
orem 2 is a simple one. The j-th player sends an N -bit
string specifying its allotment Sj , as well as at most N
bits which specify the values of the bits whose indices are
in the allotment Sj . Once this information is made pub-
lic by each player, the players can each reconstruct the
input and hence compute the function on that input.

We do not know whether the bound in Theorem 2 is
optimal in general, but we believe this to be the case for
protocols that use only one round of communication.

Our primary focus is on studying the complexity of
macroscopes for problems which arise in contexts such as
electronic markets and distributed sensor networks. For
each of these problems, we are interested in issues such as
the optimal cost of solving a macroscope, the differential
cost of meta-information (the reduction in cost when us-
ing a single-blind macroscope rather than a double-blind
macroscope), and for single-blind macroscopes, the de-
pendency of the cost on the allotment structure.

A fundamental problem in the context of electronic mar-
kets is the Constancy problem of detecting whether a
given function is constant or not.4 We model this prob-
lem as a Boolean function on [D]N , which is 1 if all the
inputs are equal, and 0 otherwise. This requires a slight
adaptation of our model to inputs which areD-ary rather
than binary, but this adaptation can be done in a natural
way. We are able to characterize the cost of protocols for
single-blind Constancy macroscopes optimally in terms
of the allotment structure.

Given an (N, k) allotment structure, we define the inter-
section graph of the structure as follows. The graph has
N vertices, and there is an edge between vertex i and
vertex j for i, j ∈ [N ] iff Si ∩ Sj 6= ∅.

Theorem 3. Every k-player single-blind Constancy
macroscope on N D-ary inputs can be solved with cost
r(dlog(D)e) + k, where r is the number of connected
components of the intersection graph of the allotment
structure associated with the macroscope. Moreover, this
bound is optimal to a constant factor.

Note that the bound does not actually depend on N , the
number of inputs!

Proof. Since the macroscope is single-blind, each
player knows the identities of all the other players in the
same connected component in the intersection graph of
the allotment structure. This is because these identities
depend only on the allotment structure and not on the
input.

4Although the actual values may be constantly changing, we
use the abstract Boolean version of this problem to repre-
sent a more significant shift from some statistical notion of
the normal behaviour. For instance, we might ask if the ob-
served deviations from some base value are significant at a
5% confidence level.

The protocol is as follows: For each connected compo-
nent, it is only the player with the smallest index in that
connected component who sends a “long” message of
dlog(D)e bits long, specifying a value in [D] that occurs
in its portion of the input. In addition, each player sends
a 1-bit message saying whether its portion of the input is
constant or not. The players know that Constancy holds
if each 1-bit message encodes “yes”, and in addition, the
values in [D] sent in the long messages are all the same.
Indeed, if the function is constant, it is clear that all the
1-bit messages are “yes”, and that the values in the long
message are the same. To argue the converse, just notice
that if a fixed player in a connected component of the
intersection graph sees a constant value l ∈ [D], and if
all other players in the connected component see a con-
stant value, it follows that all players in the connected
component see the same constant value l.

We argue that this bound is optimal up to a factor of
2. We will give separate arguments that k bits of com-
munication are required and that rdlog(D)e bits of com-
munication are required. From these separate bounds, it
follows that max(k, rdlog(D)e) ≥ (k+ rdlog(D)e)/2 bits
of communication are required.

To see that k bits of communication are necessary, con-
sider any allotment structure such that Si \ (∪j 6=iSj) is
non-empty for each player i. Define a function f : [k]→
[N ] such that f(i) ∈ Si \ ∪j 6=iSj for each player i. Sup-
pose there is a player i who does not send a message.
Then the protocol gives the same answer on both the all
1’s input and the input that is all 1 except at f(i), since
the communication pattern is the same for both of these
inputs. However the Constancy function differs on these
inputs.

Next we show the rdlog(D)e lower bound. Consider
any allotment structure whose intersection graph con-
tains r connected components. Suppose that fewer than
rdlog(D)e bits of communication are sufficient for solv-
ing the macroscope on this allotment structure. Then
there is some connected component C of the intersection
graph such that the corresponding players send less than
log(D) bits of communication in all. This implies that
there are two values v1, v2 ∈ [D] such that the communi-
cation pattern of players in C is exactly the same when
the players in C all receive the input v1 as when they all
receive the input v2. Now consider two inputs – input x
in which all co-ordinates are the constant v1 and input
y in which all co-ordinates outside C have value v1 and
co-ordinates in C have value v2. The communication
pattern of the protocol is the same for x and y, however
the Constancy function is true for x and false for y. This
is a contradiction.

Thus, for single-blind Constancy macroscopes, the crit-
ical property of the allotment structure is the number
of connected components of the intersection graph. The
fewer the number of connected components, the more
efficiently the macroscope can be solved. We next study
the situation for double-blind macroscopes.



Theorem 4. Every k-player double-blind Constancy
macroscope on N D-ary inputs can be solved with cost
kdlog(D+1)e. Moreover, there are k-player double-blind
Constancy macroscopes which require cost kdlog(D)e.

Proof. The protocol giving the upper bound is sim-
ple. Each player sends a message encoding one of D+ 1
possibilities: either the players’ portion of the input is
non-constant, or if it is constant, which of the D possible
values it is. The protocol accepts if each message encodes
the same value v ∈ [D].

For the lower bound, since each player is unaware of
players’ allotments other than its own, the lower bound
of rdlog(D)e in the proof of Theorem 3 holds with the
maximum possible value of r, namely r = k.

Thus, in the case of the Constancy function, the differ-
ential cost of meta-information can be quite significant,
especially when the intersection graph of the allotment
structure is connected.

Next we consider a formalization of the change detection
problem. The Boolean Step Function (BSF) problem is
defined as follows: a string x ∈ {0, 1}N evaluates to 1 if
there is an index i such that xj = 0 for j ≤ i and xj = 1
for j > i, or to 0 otherwise.

x1 x2 x3 x4 x5 . . . xN−1 xN

. . .

Figure 2. Boolean step function (BSF).

Possibilities for different structures of allotment lead to a
twofold challenge in a BSF macroscope. First, no party
may see the step, so parties need to share some informa-
tion about the values they see. Second, if several parties
detect a step, they then need to determine whether they
are observing the same step.

x1 x2 x3 x4 x5 . . . xN−2 xN−1 xN

. . .

Figure 3. A Boolean function that is not a step function.

Theorem 5. Every k-player double-blind BSF macro-
scope on N bits can solved with cost 2kdlog(N)e.

Proof. The protocol is as follows: for each i ∈ [k],
Player i sends two indices l(i) and m(i), where l is the
largest index in Si for which xl = 0 and m is the smallest
index in Si for which xm = 1. Given all these messages,
each player can calculate the value of the smallest index
m for which xm = 1 simply by taking the minimum of
m(i) over all players i, as well as the largest index l for

which xl = 0, simply by taking the maximum of l(i) over
all players i. Note that BSF (x) = 0 iff l = m− 1.

We conjecture that the bound of Theorem 5 is tight
for double-blind BSF macroscopes for protocols that
use only one round of communication. For single-blind
macroscopes, however, we can do better.

Theorem 6. Every k-player single-blind BSF macro-
scope on N bits can be solved with cost kdlog(N)e+ 2k.

Proof. The protocol witnessing the upper bound is
as follows. Each player sends a message consisting of two
parts. The first part is 2 bits long, and specifies which of
the following is the case: (1) the player’s portion of the
input is constant, (2) there is a single transition from 0 to
1 in the player’s input, (3) neither (1) nor (2) holds. The
second part is dlog(N)e bits long. The interpretation of
the second part of the message is as follows: if case (1)
holds for the first part, then the second part encodes
which constant (either 0 or 1) the player is given. If
case (2) holds, then the second part encodes the index
at which a transition occurs, i.e., a number j ∈ [N ] such
that j ∈ Si (assuming that the player in question is
Player i) and such that for all l ∈ Si, l ≤ j =⇒ xj = 0
and l > j =⇒ xj = 1. If case (3) holds, the contents of
the second part of the message are irrelevant.

From the messages, the players can either reconstruct
the input x, if case (1) or (2) holds for each player, or
conclude directly that BSF (x) = 0, if case (3) holds for
any player. From the input x, each player can compute
BSF (x) on its own.

In this case, too, the advantage of using single-blind
macroscopes can be seen, though a matching lower
bound in Theorem 5 is needed to prove this.

Next, we attempt to model the averaging function. Dis-
tributional statistics of different kinds need to be com-
puted in a decentralized way in various contexts such as
sensor networks. To model this, we again depart from
the framework of bit strings as inputs. The input is
now a sequence of real numbers {xi}, xi ∈ [0, 1] for each
1 ≤ i ≤ N . Given a parameter ε > 0, we study the cost
of protocols for ε-Averaging macroscopes, where each
player needs to arrive at an ε-additive approximation
to the average of the numbers xi by using the protocol
to communicate.

Theorem 7. Let ε > 0 be fixed. Every k-player
single-blind ε-Averaging macroscope on N inputs can be
solved with cost kdlog(k/ε)e.
Notice again that there is no dependence of the cost on
N , merely on the number of players and the approxima-
tion error.

Proof. We again use critically the meta-information
of players about the allotment structure. Each player
i knows, for each index j ∈ Si, the number Nj of dis-
tinct players receiving input xj . The message sent by
Player i is an ε/k-additive approximation to the quan-
tity Σj∈Si

xj/Nj . Since the quantity is between 0 and
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1, the approximation can be specified using dlog(k/ε)e
bits. Given the messages of all players, each player can
compute an ε-approximation to the average simply by
summing all the individual approximation. Since the
individual approximations are ε/k-additive approxima-
tions, the sum will be an ε-approximation to the aver-
age.

In the case of Averaging macroscopes, we can show that
the double-blind restriction is a significant one, in that
it leads to a dependence of the cost on the number of
players. The proof uses a dimensionality argument.

Theorem 8. Let ε > 0 be a parameter. There are
2-player double-blind ε-Averaging macroscopes on N in-
puts which require cost N log(1/(Nε)).

Proof. Consider a 2-player double-blind macroscope
for ε-Averaging, with Player 1 receiving an allotment
S1 ⊆ [N ] and Player 2 receiving an allotment S2 ⊆ [N ].
Our assumption that the allotment structure is covering
implies S1∪S2 = [N ], but neither player knows anything
about the other player’s allotment beyond this fact.

We show that a player’s message must essentially reveal
its input. Consider Player 1, and let |S1| = l. Now
for each i ∈ S1, consider S2,i = [N ] \ {i}. If Player
1 has allotment S1 and Player 2 has allotment S2,i,
then in a correct protocol, Player 2 eventually knows
an ε-approximation to Σj∈[N ]xj/N . Since it also knows
all values except xi, this implies that it knows an Nε-
approximation to xi. Thus an Nε-approximation to xi

should be extractable from Player 1’s message. This
should hold for every i, which means Player 1 must send
at least l log(1/(Nε)) bits. By a symmetric argument,
Player 2 must send at least (N − l) log(1/(Nε)) bits,
which means that at least N log(1/(Nε)) bits are com-
municated in all.

Theorem 8 has the disadvantage that it does not say
much about ε, which may be large in comparison to
N . However, we believe that a refinement of the proof
which argues about information revealed about subsets
of inputs rather than individual inputs can be used to
establish an improved lower bound.

DISCUSSION
The previous two sections have focused on the details of
a model for collective information processing and prop-
erties of this model. We now take a step back to discuss
why these results are of relevance to the motivating ex-
amples identified in the Introduction.

Consider the problem of agents in financial markets. It
is increasingly the case that, with the emergence of di-
verse communication methods and agents deciding at
time scales ranging from microseconds to days, com-
mon knowledge isn’t so commonly available in prac-
tice. This has significant implications for dynamics
(Rubinstein 1989) and much of the modern discus-
sion regarding markets is related to such issues (Arora
et al. 2011). In this setting, there is a need for diagnostic

tools that could provide useful signals – by computing
global properties, i.e. functions, based on local informa-
tion that can be used subject to limitations on protocols.
For instance, has there been a change from a ‘constant’
level in a global sense? Or, is there a significant differ-
ence – in the form of a step change – between segments
of a networked market? We illustrate the use of con-
cepts from complexity theory to address abstract ver-
sions of such questions. Indeed, our techniques could be
used to answer further such questions – about statistical
distributions, ranking queries, etc. A key novelty, even
in comparison to the state of the art in communication
complexity, is that we consider an arbitrary endowment
of inputs and meta-information such as single and double
blind protocols.

An important general direction for future work in this
area would be to extend our analysis to more directly
address the subtleties of the above mentioned dynam-
ics as they occur in applications of interest. Also, we
would like to better understand the relationships be-
tween our model of decentralized computation under in-
formational constraints and previous established models,
such as (Hurwicz & Reiter 2006), which employ different
methods and focus more on temporally extended sequen-
tial protocols such as auctions.

In terms of more specific questions, our model could
be extended in various ways. We have considered the
case of a simple structure of communication, with si-
multaneous messages sent in one round of communica-
tion, and a possibly complex allotment structure of the
inputs. We could allow more sophisticated communi-
cation structure. For example, double-blind protocols
with two rounds of communication can emulate single-
round single-blind protocols with some loss in efficiency,
simply by using the first round to share publicly infor-
mation about the input allotment, and then running the
single-blind protocol in the second round. More gen-
erally, communication might be restricted to occur only
between specific pairs of players. In the context of sensor
networks, for instance, it is natural to model both the
location of information and the structure of communica-
tion as governed by the topology of the ambient space.
Even studying very simple functions such as Constancy
in such general models appears to be interesting.

We emphasize that we are interested in understand-
ing the communication requirements of even very sim-
ple functions in modelling frameworks that render them
non-trivial. This distinguishes our work from the exist-
ing research on communication complexity, where func-
tions such as Constancy and BSF are trivial because
the model of communication is so simple. We are espe-
cially interested in modelling some aspects of collective
information processing, such as information overlap and
meta-information, which have been neglected so far and
which we believe can have a significant impact on the
efficiency of communication. The way we capture these
notions is quite flexible and can be used both to model



computation of continuous quantities such as Average
and computation of discrete quantities such as Boolean
functions, as we have illustrated with our results.

Another direction that we find compelling is modelling
meta-information in a more sophisticated way. As of
now, we have the single-blind model and the double-
blind model. But there are various intermediate notions
that are reasonable to study. For example, each player
might know the number of players and the number of in-
puts but nothing about which inputs are given to which
other players. Or a player might know which other play-
ers also receive the inputs it receives, but nothing about
inputs it does not receive. Or some global property of
the allotment structure, such as that the allotment struc-
ture is even, might be known. Notice that in the case
of Averaging macroscopes, there is an efficient proto-
col whose cost doesn’t depend on the number of players
if the allotment structure is even and the size of each
allotment is known. The protocol simply involves the
players summing all their inputs and dividing by a uni-
versal constant. In general, one can ask: assuming that
there are efficient single-blind protocols known, what is
the minimal information about the allotment structure
required to give efficient protocols?

Ranking is an important subject that we have not ad-
dressed in this paper. Some interesting problems can
be captured as ranking macroscopes, and we leave their
study for further work.

We have seen that in some cases more information hin-
ders making a global decision, rather than helping. More
generally, why is allotment structure important? We are
striving to fully understand how the allotment structure
of information affects our ability to efficiently answer
questions that require global information.
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