
Lifelong Transfer Learning with an Option Hierarchy

Majd Hawasly Subramanian Ramamoorthy
School of Informatics, University of Edinburgh, United Kingdom, EH8 9AB.

Email: M.Hawasly@ed.ac.uk Email: S.Ramamoorthy@ed.ac.uk

Abstract— Many applications require autonomous agents to
achieve quick responses to task instances drawn from a rich
family of qualitatively-related tasks. We address the setting
where the tasks share a state-action space and have the same
qualitative objective but differ in dynamics. We adopt a transfer
learning approach where common structure in previously-
learnt policies, in the form of shared subtasks, is exploited to
accelerate learning in subsequent ones. We use a probabilistic
mixture model to describe regions in state space which are
common to successful trajectories in different instances. Then,
we extract policy fragments from previously-learnt policies that
are specialised to these regions. These policy fragments are
options, whose initiation and termination sets are automatically
extracted from data by the mixture model. In novel task
instances, these options are used in an SMDP learning process
and option learning repeats over the resulting policy library.
The utility of this method is demonstrated through experiments
in a standard navigation environment and then in the RoboCup
simulated soccer domain with opponent teams of different skill.

I. INTRODUCTION

A. Lifelong Transfer Learning

In this work we propose a mechanism for transfer learning
that supports an agent in a lifelong learning process. Here,
a lifelong agent is one that is introduced continually to new
problem instances in a domain. Transfer refers to the use
of knowledge acquired in past instances to boost the ability
to solve new instances. Given that the learning process is
continual, it is essential to manage the acquired knowledge
in a way that enables computationally tractable, quick use.

Then, by lifelong transfer learning we mean the agent’s
ability to continually learn, manage experience, and reuse
it online in new instances drawn from a family of related
tasks in the domain. Our formulation is related to many
general models of transfer but our applications focus also
implies differences. For instance, we assume that task in-
stances can vary in fairly general ways, including arbitrary
changes to opponent strategies, although we do not explicitly
consider the problem of mapping between different state-
action spaces. Our focus is on scenarios where the agent
must respond quickly to tasks, making it infeasible to learn
policies from scratch. While many interesting and practically
useful domains require this kind of lifelong learning, we
focus attention on a couple of domains where it is possible to
experimentally induce substantial variability and evaluate the

* A preliminary version of this work appeared in [1].

performance of the algorithm. One such domain is simulated
robotic soccer [2].

In this paper, we consider transfer of reinforcement learn-
ing policies based on a continual policy abstraction process.
Policy abstraction aims to exploit the structure in a policy/set
of policies to accelerate planning/learning. We argue that
many interesting tasks require key behavioural components,
or subtasks, that are shared between instances but are neutral
to the variability in the instances, and that capturing these
would improve the agent’s performance in a novel instance.
We seek to automatically extract a set of such subtasks from
the agent’s experience, and continually refine the hierarchy
as new instances are solved.

To do this, we employ a probabilistic unsupervised learn-
ing method to automatically identify a generalised concept
of state trajectory bottlenecks, capturing interesting con-
tiguous regions in state space that frequently show up in
task instances. We combine that with a process of policy
reuse which populates these regions with the exact same
behaviours learnt in the previous instances, creating pieces
of skill. The options framework is used to represent these
abstract skills and the induced hierarchy. The process is
iterated, uncovering core skills that are generally useful in
solving multiple instances of the task.

B. Related Work

Learning to act in a set of related tasks by leveraging the
experience gained in a small subset is a branch of Transfer
Learning in reinforcement learning (see [3] for a review).
The set of source tasks and the novel target task may differ
in rewards, dynamics, or state-action space. Some successful
methods rely on an explicit observable parametrisation of
the task space (e.g. [4], [5]), while others assume a known
distribution of variability (e.g. [6]), or approximate it from
previously-seen source tasks (e.g. [7], [8]). Bayesian priors
can be defined from these estimates (e.g. [9], [10], [11]).
A different approach is to find an alternative task space in
which the related tasks are effectively the same [12].

Policy reuse is a specific approach to transfer that deals
with task families. With a mechanism to select the most
similar previous instance to any given novel instance, learnt
policies can be used as is [13], or used to bias the exploration
towards accelerated learning [14].

Exploiting policy abstraction for transfer purposes has
seen some success. Hierarchical policies were seen originally
as a way to control complexity in reinforcement learning, and

a number of methods to organise and learn a hierarchical
policy for a task were proposed in what became known
as Hierarchical Reinforcement Learning (HRL) [15]. Later,
the transfer potential of options [16] was examined. For
example, [12] introduces portable options which are abstract
actions defined not in the problem-space but rather in a
reduced state space (the agent-space) to be transferred to
any problem that shares that reduced representation. ‘Skills’
in [17] are extracted and chained to construct skill trees from
expert demonstrations. Finally, generalisation for parametris-
able tasks is achieved by the discovery of smooth low-
dimensional spaces where their policies lie [5].

Learning the abstraction is essential in a lifelong learning
framework. One way to abstract policies of a task is to
discover essential subgoals, and a commonly used notion
for this is that of a bottleneck: a landmark state which
successful trajectories tend to go through, but not the unsuc-
cessful ones. Bottleneck discovery has been approached in
many ways, including state visitation frequencies [18], [19],
graph-theoretic properties of the transition graph (e.g. Max-
flow/Min-cut [20], betweenness [21]), among others. Many
methods require discrete settings or an upfront complete
knowledge of the task, but in [17] options are discovered
automatically in a continuous space for a single task.

C. Unsupervised learning for lifelong transfer learning

Our approach depends on automatically extracting an
option hierarchy from experience, with continual refinement.
The concept of a bottleneck as a subgoal is a key concept
in option discovery. However, assumptions such as that of
discrete state spaces which are used in metrics like state vis-
itation frequencies, or the sort of complete knowledge needed
to compute centrality or betweenness, render the available
methods unsuitable for continuous and otherwise complex
domains. In the soccer example, we would anticipate that
concepts of ‘game play’, rather than isolated salient states,
are the key determinants of the ability to score. In [17],
continuous ‘target functions’ are identified first, then options
are learnt to achieve them. Alternately, we start by discov-
ering domains of potential options from traces of previous
successful trials. Using an EM (Expectation-Maximisation)
procedure, we find a generative mixture model of the states
of those good traces, then use the support of the components
to define the option boundaries. In our example, this corre-
sponds to identifying contiguous situations of play that are
common in successful trials, and creating skills around them.

In HRL, policies are specifically learnt to achieve the
discovered subgoals. We employ a process of policy reuse to
populate the discovered option domains with action policies.
That is, we ‘borrow’ from a previous instance a part of its
learnt policy and use it as is in the new option, replicating
policies in qualitatively similar situations.

D. Setup

We consider tasks that can be modelled as discrete-time
Markov decision processes (MDPs). An MDP m is the tuple
(S,A, T,R), where S is a bounded (possibly infinite) state

space; A is a bounded (possibly infinite) action space; T :
S×A×S → [0, 1] is the dynamics; and R : S×A×S → R is
the reward process encoding the goal of the task. A (Markov)
policy for an MDP is a stochastic mapping from states to
actions, π : S×A→ [0, 1], and the optimal policy π∗ is the
policy that maximises expected cumulative reward.

We consider episodic, goal-oriented tasks, in which ter-
mination occurs either by satisfying a goal function g :
S → {0, 1}, or when the episode elapses. The agent faces a
sequence of instances of its task, each slightly different. We
capture this variability by a set of MDPsM with a common
objective, sharing the state-action space S×A and the reward
R, but allowing for different dynamics T for each mi ∈M.
We do not assume that the model of variability in the task
is known to the agent beforehand.

The framework of options [16] defines generic temporally-
extended actions 〈I, π, β〉: I ⊆ S is the initiation state set
where the option can be invoked, π is a (Markov or semi-
Markov) policy to follow when the option is invoked, and
β is a probability distribution over the state space encoding
the termination condition of the option.

Next, we describe our approach in detail. Then, we discuss
extensions to improve efficiency and scalability (Section III).
Finally, we demonstrate the merits of the framework in two
domains: navigation in a rooms environment, and an attack
drill in simulated robotic soccer (Section IV).

II. ILPSS: INCREMENTAL LEARNING OF POLICY SPACE
STRUCTURE

Figure 1 gives a snapshot of the components of the
framework and its operation, involving the following key
steps:

Fig. 1. A high level overview of ILPSS.

1) Starting from a collection of n policies π0, π1, . . . , πn
of some sample instances of the task m0,m1, . . . ,mn ∈
M, we sample a set of complete episode-long state
traces τ = {s0, . . . , s|τ |−1}, sj ∈ S.

2) We label the trajectories with respect to their success (+)
or failure (−) in reaching the goal. An episode is suc-

cessful if it terminates at the goal. Only the states in suc-
cessful traces of instance mi, τττ+i =

⋃
l{τl | g(s|τl|−1) =

1}, are used to make the state dataset D =
⋃n
i=1 τττ

+
i .

3) To identify the contiguous regions in state space that
show up frequently in successful trials we search for a
probabilistic mixture model of D. The combination of
such a model with policy reuse is what defines ILPSS.
In more concrete terms, we want to find the parameters
θ of a model that maximises the log likelihood

logP [D; θ] =
∑
i

logP [τττ+i |θ] =
∑
i

∑
τ

logP [τ+i ; θ] (1)

assuming independence of traces of an instance given the
model, and independence of traces of different instances.
That is, the model summarises all the correlations. Here,
we ignore time and make the traces as bags of states,

logP [τ ; θ] =
∑
s∈τ

logP [s|θ] (2)

We use to model P [s|θ] a mixture of |K| multivariate
Gaussian kernels, each represented by its mean µk and
covariance matrix Σk in S,

logP [s|θ] = log
∑
k

pkN (s;µk,Σk) (3)

For our choice of model, the parameters are the
weights {pk}, means {µk} and covariances {Σk}, k =
1 . . . |K|. We allow {pk} to be instance-specific, i.e.
each task instance i has it own weighting of the
components pk

i, while {µk} and {Σk} are instance-
independent, i.e. all the task instances share the exact
same components. That is, we push toward finding a
common set of mixture components across the different
instance policies, regardless of their relative significance
in the various instances. This shared structure is what we
are after for lifelong transfer.

The mixture components define kernels in the state
space, Kk(.) = N (.;µk,Σk). These are an important
component of our representation of the policy space
in that we assign policy fragments to the state regions
defined by them, Sk = {s ∈ S : Kk(s) > Ψ} for some
cutoff probability Ψ. For a specific kernel, we borrow
a policy fragment from a learnt policy of a previous
instance πi by restricting it to the kernel’s state space
region: πki : Sk × A → [0, 1]. The scale (or weight) of
a component k in a task instance i (captured by pki) is
ignored as it is irrelevant from a structure-learning point
of view.

To fit the model, we set the desired number of kernels
|K| and use an adapted EM algorithm [22] that takes
our structural constraint into account.

4) A discovered kernel k can spawn a set of policy frag-
ments {πk0 , πk1 , . . . , πkn}, each borrowed from a different
policy. These will give a set of options Ok, the domain
and the termination conditions of which are both the
PDF defined by the kernel. That is, an option from Ok
is allowed to start at a particular state s with a proba-
bility equal to the normalised kernel function K̄k(s) =

Kk(s)/maxKk(.), and will continue stochastically with
the same probability, terminating with probability 1 −
K̄k(s). That is, we are reusing policies of previous tasks
in controlled regions of state space where they fared well
in experience.

5) Adding the options to the action repertoire, the agent is
presented with another task instance mn+1, and a policy
πn+1 is learnt. If the discovered options are not useful in
solving the new instance, SMDP learning will fall back
to learning using the primitive actions.

6) Adding πn+1 to the policy collection, the exact same
procedure is repeated (traces, bag of states, probabilistic
model, then options) in a lifelong learning process.

Algorithm 1 ILPSS: Incremental Learning of Policy Space
Structure
Require: input policies π0, . . . , πn, number of kernels |K|,

cut-off probability Ψ.
1: Initialise the repertoire O← φ.
2: for every new instance mn+1 do
3: Generate state traces {τ} from input policies through

simulation or runtime recording.
4: Label and extract successful traces {τ+}.
5: Create a ‘bag of states’ dataset D =

⋃n
i=1{τ

+
i }.

6: Fit a probabilistic mixture model to D, generating a
set of kernels K = {Kk(.)}|K|1 in state space.

7: Extract state regions from the kernels, Sk = {s ∈ S :
Kk(s) > Ψ}, for k = 1, . . . , |K|.

8: Restrict input policies to kernel state regions, πki :
Sk ×A→ [0, 1], for all k and i.

9: Create a set of options O =
⋃|K|
k=1Ok with oki =

〈K̄k, 1− K̄k, πki 〉 ∈ Ok.
10: O← O ∪ O.
11: Learn a policy πn+1 for the new instance with O.
12: Add πn+1 to the input policies.
13: n← n+ 1.
14: end for
15: return Option set O.

III. SCALING ILPSS

A. Managing experience

To control the number of maintained options, a process of
temporal discounting (forgetting) is employed. The options
that do not get used often enough will become less likely to
be used afterwards and more likely to be forgotten. On the
other hand, options that are used often will persist, and may
develop and generalise through reuse inside future options.

One way to do this is by shrinking the support of the
option in state space, making it less likely to be chosen later
and concentrating it on a denser domain in state space. After
crossing a threshold on effective option size Υ, the options
can be pruned out of O. In our implementation, we achieve
forgetting by multiplying the covariance of the distribution
Σo with a scalar ξ < 1 in every new instance in which the
option is not used.

The procedure Option Discounting, that can be called after
every ILPSS learning trial, is detailed in Algorithm 2.

Algorithm 2 Option Discounting
Require: options O, newly-learnt policy π, forgetting pa-

rameter ξ, effective kernel size Υ.
1: for every option o ∈ O not used in π do
2: Σo ← ξΣo.
3: Update the option domain So.
4: if

∫
1So(s) ds < Υ, with 1So(.) being an indicator

function, then
5: O← O/o.
6: end if
7: end for
8: return Option set O.

B. Trace sampling

Density estimation methods in general, including EM, tend
to be computationally expensive, especially with the increase
in the size of the input dataset. In ILPSS, the dataset repre-
sents states that are used in successful trials more often as
the agent is experiencing more instances. To control the size
we employ two down-sampling measures. First, we choose a
subset of previous instances to be included inD after learning
a new instance rather than using them all. The choice is
based on similarity to the newly-learnt instance. This will
still uncover commonalities in the included instances and
encourage generalisation and reuse. If similarity cannot be
measured, instances can be sampled randomly subject to the
risk of generating less ‘meaningful’ options.

The second measure is to sample states from the chosen
traces, up to the desired dataset size. This depends on the
continuity of the state space and the probabilistic fitting
method to overcome the representation gaps.

IV. EMPIRICAL RESULTS

A. Rooms environment

The aim of this experiment is to test the lifelong learning
aspect of the proposed framework by visualising the set of
skills that can be produced and maintained after experiencing
many instances of a specific domain. This task, in a discrete
domain, requires an agent to navigate in a rooms environment
from some random initial position to a random goal position.
The domain is a 2D grid world of size 25 × 25 with walls
and exits. After completing each trial, the agent uses ILPSS
to generate a set of options that are used in the next trials.

In this experiment, |K| is set to 4, and the forgetting ξ
is 0.8. The agent receives -1 for each time step, and 10 for
reaching the goal. After experiencing 25 instances of the
task, the agent ends up with the skills shown in Fig. 2.

In Fig. 3 we show a heat map of the visitation frequency of
states from traces, which is one metric to identify bottlenecks
in discrete domains. The white dots on the figure are the
means of ILPSS kernels extracted using the same traces.
What this shows is that the framework is able to approximate
the discrete bottlenecks.

Fig. 2. ILPSS in the rooms environment. LEFT: acquired options after
solving 25 instances of the task. The black lines are walls, and each ellipse
defines an option (70% support of a kernel). The arrows show option
policies, which move the agent through different rooms and exits. RIGHT:
two options that appear in the highlighted bottom-right corner in the domain,
zoomed-in. They allow passing in and out of the room through the exit.

Fig. 3. The visitation frequency of the rooms environment after 30 random
instances. The darker the colour, the less-visited the state. The superimposed
white dots show the means of ILPSS kernels learnt using the same instances.

B. RoboCup simulated robotic soccer

The aim of this experiment is to test the transfer capability
of the proposed framework in a continuous domain. The task
models a training drill for 2 vs. 2 players, in which the team
with ball possession tries to cross a specific line in the field
with the ball. The task is episodic, starting with the agents
in set positions, and terminating either successfully when
the goal is achieved, or otherwise if the adversaries intercept
the ball, kick it out of the training region (35m×35m), or
the episode elapses (100 time steps). The experiment is
conducted using RoboCup 2D Simulation League Soccer
Server [23] and the Keepaway extension [2]. The setup is
shown in Fig. 4.

The state space is defined using 9 continuous state features
describing the position and orientation of the agent with
respect to other agents and the goal line. The action space
comprises 3 basic options: holding the ball, passing to a
team mate and dribbling toward the goal. The action set is
enriched later with the discovered options.

The learning agent is the striker with the ball, while
others use hand-tuned stochastic behaviours. The variability
in defenders’ behaviour is manifested by different tendencies

Fig. 4. The experiment setup. LEFT: the attacking team starts from the
top corners, the defending team starts from the bottom. RIGHT: the task of
the attackers is to reach the bottom line with the ball, with the middle point
having the highest reward, while the defenders are trying to prevent that.

toward the ball and the goal line. In the experiment, four op-
ponent teams are used: the first two are only concerned with
the ball, having different coordination protocols between the
players; the third type has one opponent which intercepts the
ball while the other protects the goal line; the fourth sees
both opponents protecting the goal with a small probability
of going to the ball, making it different and tougher to beat.

The opponents are presented to the learning agents sequen-
tially, with ILPSS running after each to generate 5 options.
After experiencing the first three opponents and acquiring 15
options, the performance against the fourth is compared to
learning the same task from scratch in Fig. 5.

Fig. 5. Average reward against the fourth opponent team using ILPSS
options of three other instances (BLUE), compared to learning anew (RED).

As the results show, using the set of options discovered
by ILPSS gives a head start in performance. This shows that
ILPSS is able to produce useful abstractions in the policy
space allowing faster convergence in novel instances. We
show in Fig. 6 example traces generated by the most used
options. It appears that the agent developed a behaviour
to approach the adversaries slowly closer to the middle
before beating them to the goal line at a short range, which
seems to be a sensible approach considering the opponents’
conservative behaviour.

V. DISCUSSION

ILPSS is built around fitting a mixture model to the states
of successful trajectories in a task family to uncover useful
commonalities. This assumes that task instances do share
common structure, complete traces can be generated, and a

Fig. 6. Traces through time from ILPSS options in the simulated soccer
domain. The blue circles are locations of the learning agent in the field
moving toward the goal line. The red crosses are for the two adversaries.

probabilistic model can be fit to the resulting state dataset.
In a very high-dimensional, complex domain that does not
satisfy all these assumptions ILPSS may need extensions.
The specific techniques and models used in this paper (e.g.
EM and GMMs) are not essential to the operation of ILPSS;
these can be replaced with other state-of-the-art tools to
better tackle high dimensionality. Combining this framework
with dimensionality reduction method is also a topic of future
work.

The intuition behind the incremental, lifelong nature of
the framework is in ‘biasing’ the evolved hierarchy toward
finding common components. Reusing the previously-learnt
policies in options while learning a new instance encourages
the agent to generalise and evolve useful, stable behaviours,
while allowing it to fall back to complete policy search in
extreme cases. We argue that this is the kind of structure
needed to face a novel instance of a task. However, a biased
experience may cause a bias in abstraction, delaying the
convergence into a meaningful skill set. This is analogous to
negative transfer in transfer learning, and similar solutions
may be needed.

Traditional bottleneck discovery methods work best for
single tasks with small, discrete state spaces for which com-
plete interaction graphs can be built or sufficient visitation
information can be collected. The aim of these methods
is to locate potential subgoals, leaving the policies to be
subsequently learnt. On the other hand, ILPSS generalises
that concept of a bottleneck into a continuous, probabilistic
model in state space, making it more appropriate in large and
continuous domains. Also, it immediately discovers where
the existing policies might be useful, avoiding the two-step
process of subgoal discovery followed by policy learning.
ILPSS may appear close in spirit to skill trees of [17] but
the assumptions are different, with ILPSS being devised to
extract common structure in many instances of a task, rather
than backchaining to solve a specific task.

An earlier method that defines skills with probabilistic
domains is the SKILLS algorithm [24] where the aim is to
find a set of macro-actions for a single task with a minimum
description length. The policy of a skill is learnt in a way that
balances performance loss with compactness gains. ILPSS
policies are chosen to support an extensive family of tasks,
while achieving compactness through option discounting.

The work in [25] investigates the structure in the space

of value functions for optimal policies of related tasks. They
employ a mixture model as the generative process of value
functions, with components representing the discontinuity in
value due to inherent properties of the task/domain (e.g.,
location of walls in a room environment). They use the model
to accelerate learning in new instances by augmenting the
state space with the discovered high-level features. ILPSS
defines structure in policy space implicitly via a probabilistic
model in state space with reusable policy fragments. The
components in state space do not necessarily feature smooth
value functions but rather a useful and consistent policy.
ILPSS only requires sample traces compared to complete
explicit representations (e.g. value functions or transition
graphs), making it usable even before learning converges,
especially in big worlds.

Using Gaussian kernels for option domains may not al-
ways be the optimal choice as they suggest symmetry across
all dimensions, but they stand as an intuitive choice from
a computational point of view. More work is needed on
defining option boundary in state space (e.g. a mixture model
per option). Some previous work used probabilistic models
in HRL. [26] defines a more-complicated graphical model
for both state and policy, trained from sample trajectories
using EM, but constrained to a single task.

VI. CONCLUSION

We introduce a framework for learning and refining a
structural description of the space of policies for a set of
qualitatively-related task instances. The aim of ILPSS is to
enable an agent to react quickly in novel instances of the
same task. We employ a principled probabilistic method to
decompose the state space, and relate the learnt abstraction
with policy fragments through policy reuse. The resulting
structure is maintained using a set of temporally-extended
options. We note that learning continually is essential for
extracting useful decompositions in policy space.

ILPSS does not require explicit representation of the space
of policies, and it does not rely on the optimality of the input
policies, allowing it to scale well. Only a set of trajectories
of successful trials and the policies that generated them
are needed to enable the agent to produce a rough and
quick solution to a novel instance, then refined by learning.
Testing this framework on larger problems to understand its
scalability is a topic of future work, as well as understanding
the effects of state abstraction on the learnt action abstraction.

ACKNOWLEDGMENT

This work has taken place in the Robust Autonomy and
Decisions group in the School of Informatics, University of
Edinburgh. Research of RAD is supported by the UK Engi-
neering and Physical Sciences Research Council (grant num-
ber EP/H012338/1) and the European Commission (TOMSY
Grant Agreement 270436, under FP7-ICT-2009.2.1 Call 6).

REFERENCES

[1] M. Hawasly and S. Ramamoorthy, “Lifelong learning of structure in
the space of policies,” in Lifelong Machine Learning, AAAI Spring
Symposium Series, 2013.

[2] P. Stone, R. Sutton, and G. Kuhlmann, “Reinforcement learning for
robocup soccer keepaway,” Adaptive Behavior, vol. 13, no. 3, pp. 165–
188, 2005.

[3] M. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey,” The Journal of Machine Learning Research,
vol. 10, pp. 1633–1685, 2009.

[4] N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern, “Transfer in
variable-reward hierarchical reinforcement learning,” Machine Learn-
ing, vol. 73, no. 3, pp. 289–312, 2008.

[5] B. D. Silva, G. Konidaris, and A. Barto, “Learning parameterized
skills,” in Proceedings of the 29th International Conference on Ma-
chine Learning (ICML-12), ser. ICML ’12, J. Langford and J. Pineau,
Eds. New York, NY, USA: Omnipress, July 2012, pp. 1679–1686.

[6] T. Perkins, D. Precup, et al., “Using options for knowledge transfer in
reinforcement learning,” University of Massachusetts, Amherst, MA,
USA, Tech. Rep, 1999.

[7] F. Tanaka and M. Yamamura, “Multitask reinforcement learning on the
distribution of mdps,” in Computational Intelligence in Robotics and
Automation, 2003. Proceedings. 2003 IEEE International Symposium
on, vol. 3. IEEE, 2003, pp. 1108–1113.

[8] M. Snel and S. Whiteson, “Multi-task reinforcement learning: shaping
and feature selection,” Recent Advances in Reinforcement Learning,
pp. 237–248, 2012.

[9] F. Sunmola and J. Wyatt, “Model transfer for markov decision tasks
via parameter matching,” in Proceedings of the 25th Workshop of the
UK Planning and Scheduling Special Interest Group (PlanSIG), 2006.

[10] A. Wilson, A. Fern, S. Ray, and P. Tadepalli, “Multi-task reinforcement
learning: a hierarchical bayesian approach,” in Proceedings of the 24th
intl. conference on Machine learning. ACM, 2007, pp. 1015–1022.

[11] A. Wilson, A. Fern, and P. Tadepalli, “Transfer learning in sequential
decision problems: A hierarchical bayesian approach,” in ICML 2011
Unsupervised and Transfer Learning Workshop. JMLR W&CP, 2012.

[12] G. Konidaris and A. Barto, “Building portable options: Skill transfer
in reinforcement learning,” in Proceedings of the 20th International
Joint Conference on Artificial Intelligence, vol. 2, 2007, pp. 895–900.

[13] S. Ramamoorthy, M. H. Mahmud, M. Hawasly, and B. Rosman,
“Clustering markov decision processes for continual transfer,” School
of Informatics, University of Edinburgh, Tech. Rep., 2013.

[14] F. Fernández and M. Veloso, “Probabilistic policy reuse in a reinforce-
ment learning agent,” in Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems. ACM,
2006, pp. 720–727.

[15] A. Barto and S. Mahadevan, “Recent advances in hierarchical rein-
forcement learning,” Discrete Event Dynamic Systems, vol. 13, no. 4,
pp. 341–379, 2003.

[16] R. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1, pp. 181–211, 1999.

[17] G. Konidaris, S. Kuindersma, A. Barto, and R. Grupen, “Constructing
skill trees for reinforcement learning agents from demonstration tra-
jectories,” Advances in neural information processing systems, vol. 23,
pp. 1162–1170, 2010.

[18] M. Stolle and D. Precup, “Learning options in reinforcement learning,”
Lecture Notes in Computer Science, vol. 2371, pp. 212–223, 2002.

[19] Ö. Şimşek and A. Barto, “Using relative novelty to identify useful
temporal abstractions in reinforcement learning,” in Proceedings of
the 21st intl. conference on Machine learning. ACM, 2004, p. 95.

[20] I. Menache, S. Mannor, and N. Shimkin, “Q-cut: dynamic discovery
of sub-goals in reinforcement learning,” Machine Learning: ECML
2002, pp. 187–195, 2002.

[21] Ö. Simşek and A. Barto, “Skill characterization based on between-
ness,” in In Advances in Neural Information Processing Systems, 2009.

[22] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the em algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), pp. 1–38, 1977.

[23] I. Noda and H. Matsubara, “Soccer server and researches on multi-
agent systems,” in Proceedings of IROS Workshop on RoboCup, 1996.

[24] S. Thrun, A. Schwartz, et al., “Finding structure in reinforcement
learning,” Advances in neural information processing systems, pp.
385–392, 1995.

[25] D. Foster and P. Dayan, “Structure in the space of value functions,”
Machine Learning, vol. 49, no. 2, pp. 325–346, 2002.

[26] V. Manfredi and S. Mahadevan, “Hierarchical reinforcement learning
using graphical models,” in Proceedings of the ICML05 Workshop on
Rich Representations for Reinforcement Learning, 2005, pp. 39–44.

