
1

Motion Planning and Reactive Control on
Learnt Skill Manifolds
Ioannis Havoutis and Subramanian Ramamoorthy

Abstract—We address the problem of encoding and executing
skills, i.e., motion tasks involving a combination of specifications
regarding constraints and variability. We take an approach that
is model-free in the sense that we do not assume an explicit
and complete analytical specification of the task - which can
be hard to obtain for many realistic robot systems. Instead,
we learn an encoding of the skill from observations of an
initial set of sample trajectories. This is achieved by encoding
trajectories in a skill manifold which is learnt from data and
generalizes in the sense that all trajectories on the manifold satisfy
the constraints and allowable variability in the demonstrated
samples1. In new instances of the trajectory generation problem,
we restrict attention to geodesic trajectories on the learnt skill
manifold, making computation more tractable. This procedure is
also extended to accommodate dynamic obstacles and constraints,
and to dynamically react against unexpected perturbations,
enabling a form of model-free feedback control with respect to an
incompletely modelled skill. We present experiments to validate
this framework using various robotic systems -ranging from a
3-link arm to a small humanoid robot- demonstrating significant
computational improvements without loss of accuracy. Finally,
we present a comparative evaluation of our framework against
a state-of-the-art imitation learning method.

I. INTRODUCTION

REALISTIC humanoid robotic tasks are often defined by
skill specifications that involve a combination of high-

dimensional nonlinear dynamics, kino-dynamic constraints
and task variability that is often idiosyncratic when captured
in the language of cost functions in an optimal control setting.
Although, in principle, such robotic skills may be handled by
well understood analytical methods, it can often be difficult
and expensive to formulate models that enable such an ana-
lytical approach.

As an instance of a task that motivates our general approach,
consider the Nao humanoid robot as used in robotic soccer
competitions. The agent as a whole needs a variety of dif-
ferent skills involving locomotion in the presence of dynamic
obstacles, full body manipulation such as for kicks and dives,
etc. One specific instance of a flexible skill would be that
of kicking - where the robot needs to be able to produce a
variety of different kicking motions that cover the entire space
reachable by the robot’s leg, taking into account considerations
ranging from staying upright, to dealing with constraints to leg

I. Havoutis is with the Department of Advanced Robotics at the
Italian Institute of Technology, and S.Ramamoorthy is with the Insti-
tute of Perception, Action and Behaviour, School of Informatics, Uni-
versity of Edinburgh, Edinburgh EH8 9AB, United Kingdom. Email:
Ioannis.Havoutis@iit.it, S.Ramamoorthy@ed.ac.uk.

1This paper unifies and extends previous work appearing in Havoutis and
Ramamoorthy (2010a,b).

and body movement, to the idiosyncracies of what defines a
‘good’ useful kick. The focus of this paper is on such skills
that are variations to a basic type of motion, which we wish
to encode in such a way as to enable efficient (in terms of
computation time and performance) motion synthesis.

To recapitulate the standard approach to dealing with such
problems, in a classical optimal control setting, e.g. Todorov
and Li (2005), one typically begins with analytical models of
the robot’s dynamics and kinematics, as well as models of
constraints such as due to joint limits or friction, the effects
of impact, etc. In addition, one specifies the task in terms
of objectives such as cost functions that specify in addition
to time and energy considerations, preferences with respect
to style, redundancy resolution and other somewhat more
subjective factors. Armed with these, one is in a position
to solve the problem using a variety of different search and
optimization techniques. In practice, such an approach presents
two types of difficulties. On the one hand, it can be hard to
completely specify skills of the kind we have in mind in terms
of the models and specifications mentioned above. However,
even when this can be done, the problem of searching through
the possible trajectories can be computationally intractable for
many realistic problem instances.

In practice, motion synthesis problems are rendered
tractable by the fact that the solutions to such optimization
and search problems are not arbitrarily complex paths through
high-dimensional configuration spaces but instead are typically
restricted to subspaces that are defined by the task specifica-
tions. In a sense, all variations of the trajectories representing
a parameterized skill can be described in terms of some
qualitative structure that is common to the solution trajectories.
Typically, this qualitative structure admits a geometric descrip-
tion and it can be learnt from data, which is the approach of
this paper.

This observation regarding qualitative structure and its use
in motion synthesis has a rich history. To identify a few
key instances from this literature, Full and Koditschek (1999)
demonstrate how biological motion is structured through col-
lapse of dimensionality due to trimming away of degrees of
freedom, exploiting synergies and symmetries. The resulting
reduced model, a ‘template’, can be used as the target for
a reduced-complexity control strategy which may then be
‘anchored’ in the original system. This has a parallel in
robotics, e.g., Burridge et al. (1999), where complex control
strategies are composed of simpler pieces that have well
defined semantics in terms of stabilization within a basin
of attraction. In Conner et al. (2009, 2003, 2006), we see
an extension of this idea to the case of motion planning,

2

Fig. 1. Overview of our approach. Skills are encoded as skill manifolds that
are learnt from example solution sets offline. The learnt skill set is the used
by the robot to generate trajectories that accommodate novel goals and/or
constraints, and to react to unforeseen disturbances in an on line manner.

where motion plans are composed from local parameterized
feedback plans. Recent work such as Tedrake et al. (2010)
brings together the continuous control and discrete motion
planning angles by defining motion synthesis in terms of a tree
structured object whose nodes are linear quadratic regulators
with well defined domains of applicability.

A related observation from the control of autonomous flying
robots, e.g., Dever et al. (2006, 2004) and Frazzoli et al.
(2005, 2003), is that the solutions to optimal control problems
are nicely ordered within maneuver sets. So, a lowest level
description of a skill is in terms of a set of trajectories that
capture the variability of the task while respecting all of the
specifications regarding dynamics, constraints and costs. Such
skills may then be composed and dealt with as discrete objects
for higher levels of deliberation. For the purposes of this paper,
we note that these sets typically admit a description in the form
of manifolds embedded in the configuration and phase space
of the system being controlled.

The focus of our work in this paper is on learning such
solution sets from data in the form of a manifold, generalizing
from a sample set of trajectories that share the underlying
qualitative structure, and utilizing this manifold as the basis
for subsequent motion synthesis, by a process of constrained
geodesic trajectory generation. We learn the skill in an offline
phase directly from demonstrated data. Such data can be either
the result of an expensive optimization procedure (which is
feasible offline) or demonstrations of an expert. The learnt
skill manifold can be then used by the robot online, in an
autonomous manner, accommodating novel constraints and
goals, see Figure 1 for a visual depiction of this pipeline.

In our work, we bring together two different ways in which
the concept of manifolds have often been used. On the one
hand, control theorists and motion planning researchers are
well aware that system dynamics of many interesting systems
admit geometric structure yielding distinguished trajectories
that are sub-manifolds in the configuration and phase spaces
of the system. Indeed, some of our above mentioned examples
are drawn from this literature, (e.g. Kobilarov and Marsden
(2011), Lewis (2007)). Separately from this, machine learning
researchers have looked at manifolds as a way of repa-
rameterizing data, reducing from an initial high-dimensional

description to some lower dimension that captures the modes
of variation in a form that is suitable for visualization or
operations such as clustering. Typically, in this way of using
the notion of manifolds, one transforms the problem into
the low-dimensional space and abandons the original high-
dimensional space altogether as the objective was always the
extraction of the low-dimensional coordinates and associated
distances (e.g. Tenenbaum et al. (2000), Bitzer et al. (2008)).
In this paper, we use the notion of a manifold in a sense that
is closer to the control or motion planning usage - so we treat
trajectories as being restricted to a subspace within a higher
dimensional ambient space. Indeed, when we do reactive
control in the face of disturbances, we use the learnt manifold
to induce a distance in the ambient space. However, we also
draw on the machine learning approach by utilizing those
algorithms to identify the subspace without having recourse
to an initial analytical characterization. So, a key aspect of
the work described in this paper is the combination of these
two notions within a novel framework for motion synthesis.

The remainder of this paper is organized as follows. The
next section provides the background of our approach, cov-
ering both the motion planning and the machine learning
domains. Section III introduces the manifold learning method
that is core to our proposed framework. Section IV demon-
strates how one can learn such a representation in a data
driven manner, how to use a manifold encoding to generate
novel trajectories, how to add novel constraints to such learnt
skill manifolds, and how to utilize these for online reactive
control. The next three sections (section V, section VI, section
VII) present experimental evaluations on three robotic setups.
The first is a planar 3-link arm suitable for demonstrating all
the concepts of our approach in an easy to visualize manner.
The second is a set of experiments on an anthropomorphic
robotic arm. The third section evaluates our approach on a
set of experimental setups using the Nao humanoid robot,
performing tasks as walking and balancing on one leg. Finally,
section (VIII) provides a comparison of our framework with
a state-of-the-art immitation learning method, namely the
GMM/GMR framework (Gribovskaya et al., 2010).

II. BACKGROUND

At a high level, we are interested in solving the problem of
finding optimal trajectories - where the specifications involve a
variety of considerations already outlined above - in a way that
mirrors the model-free nature of established algorithms such as
for sampling-based motion planning. We would like to be able
to minimize the artistry demanded of the user, by devising a
reasonably general representation, an efficient learning method
utilizing this representation and efficient planning methods
that utilize this encoding. So, we begin by briefly discussing
background in control and planning methods. Also, we are
not the first to consider the notion of learning skills from
demonstration, although we do present a novel take on the
problem in terms of our task encoding and motion synthesis
method. We review the prior work in this domain to set the
scene for our own work.

Some of the most successful approaches to path planning
are randomized algorithms that exploit sampling. For example,

3

the Rapidly Exploring Random Tree (LaValle, 2006) is a
remarkably simple yet effective algorithm for planning a path
between two points in configuration space. Many modern RRT-
based samplers make use of two trees (Kuffner and LaValle,
2000, Diankov et al., 2008), rooted at the initial and the goal
points, where in every step the trees are grown and a check
for matching the trees is also performed. The key limitation,
however, is that sampling a high dimensional space densely
enough is computationally infeasible.

Other studies in this direction include obstacle based sam-
pling (Thomas et al., 2007, Rodriguez et al., 2006), Gaus-
sian sampling (Boor et al., 1999) and related approaches.
Kuffner et al. (2002) demonstrated an interesting approach
to this problem based on a combination of the RRT algorithm
(LaValle and Kuffner, 2001) and post-processing in the form of
dynamics filtering to ensure stability of the resulting behaviour.

Nonetheless, random sampling in high dimensions can
be excessively wasteful when the underlying task has more
restrictive structure. As it is becoming increasingly clear that
many interesting robotic behaviours are restricted to low-
dimensional subspaces (Vijayakumar et al., 2005, Bitzer et al.,
2008, Full and Koditschek, 1999, Ramamoorthy and Kuipers,
2006, Jenkins and Mataric, 2004), for a variety of reasons
ranging from joint limits and self-collisions to stability and
energy constraints, it is desirable to leverage this in the process
of achieving more focused coverage.

As known from the study of biological behaviours, natu-
ral systems utilize synergies and coordination strategies that
allow for efficient locomotion and fast planning. Biological
strategies usually have a musculoskeletal basis that is inherent
to the dynamics of the system, that restricts movement to a
subset of all possible solutions. In a robotics context, system
and (possibly artificial) task constraints can serve the same
purpose. Robotics (Ramamoorthy and Kuipers, 2008, Isto and
Saha, 2006) and graphics (Safonova et al., 2004) researchers
have utilized this fact to devise efficient motion synthesis
strategies. Some recent works (Berenson et al., 2009, Berenson
and Srinivasa, 2010, Stilman, 2007, Bretl et al., 2004) also
address this issue by considering how task space constraints,
e.g., end-effector constraints, can be used to structure planning
in configuration space with local Jacobian mappings. However
the low-dimensional nature of the solutions may not always
be taken into account explicitly.

Along this direction, Kobilarov and Marsden (2011) con-
sidered optimal control of mechanical systems that evolve on
a finite-dimensional Lie group. They use a discrete variational
principle that yields a set of trajectories that approximately
satisfy the dynamics and that respect the state-space structure
(manifold) of the system in question, while they also devel-
oped an approximate numerical solution for the computation
of such trajectories.

An aspect of the control problem associated with motion
synthesis in complex systems such as humanoid robots is
that of identifying desirable paths, executing evolution along
these paths and correcting deviations away from these paths.
In simple systems and systems where analytical models are
available, there exist numerous control approaches that can
provide principled and provably correct solutions (Stengel,

1995, Siciliano and Khatib, 2008, Levine, 1996). For many
realistic robot systems, explicit design of controllers utilizing
these established analytical methodologies appears infeasible.

Instead, one can break the state space of the system in
smaller regions where a well defined control law can be
implemented, this way assembling a global solution through
local decompositions. For example, Zhang et al. (2009) per-
form an approximate cell decomposition of the free space
and compute vector fields within cells by considering their
adjacency relations, with the constraints and goals in mind.
Conner (2008) decomposes the full space in smaller domains
and sets up local predefined feedback laws with specific state-
evolution properties. Such decomposition can also become
difficult as the dimensionality of the space increases.

Imitation learning approaches attempt to encode motions,
and feedback characteristics, directly from demonstration ex-
amples (Schaal et al., 2003). This sometimes requires little
to no prior knowledge of the system characteristics while it
is an intuitive way to teach complex motions with multi-DoF
systems. Popular imitation learning paradigms include Learn-
ing by Demonstration (LbD) and Dynamic Motion Primitives
(DMPs). Demonstration-Guided Motion Planning (DGMP)
(Ye and Alterovitz, 2011) is another recent development on
the imitation learning front.

LbD estimates the dynamics of a given set of demonstrations
in a statistical manner, using Gaussian Mixture Model (GMM),
approximating the behaviour with a nonlinear combination of
Gaussian kernels. Gaussian Mixture Regression (GMR) is then
used to sample the GMM and produce a control input given
the current system state (Calinon and Billard, 2008, 2009,
Hersch et al., 2008). Disadvantages of such methods include
the appearance of spurious attractors that can trap the evolution
of the state of the system and numerical difficulties that arise
from matrix singularities, something we discuss further in
section VIII.

DMPs provide a framework for learning the dynamics of
demonstrated motions by using a simple dynamical system
encoding with guaranteed attractor properties. Such dynamical
systems though can only exhibit trivial behaviour, thus a non-
linear function is being learnt from the examples that makes
up for the idiosyncrasies of the demonstrated movements. The
advantage of the formulation is that the generated trajectories
retain the spatial and temporal characteristics of the motion
that has been used for learning, providing discrete and rhyth-
mic movement formulations, while allow for easy changes of
start positions, goal positions and temporal scaling. In addition
convergence to the goal is guaranteed by the dynamics of
the underlying simple dynamical system, as the effect of the
non-linearity vanishes with the evolution of the time variable
(Ijspeert et al., 2002, 2001). A difficulty common to almost
all imitation learning approaches is that of scaling up to
systems with multiple DoFs and complex dynamics. Most
recent results consider Cartesian space motions, limited to a 2
or 3 dimensional Cartesian space (Gribovskaya et al. (2010),
Pastor et al. (2009)), making the variables in question much
more “well-behaved”, while an additional inverse kinematics
layer is used to produce the actual joint movement of the plant.

The machine learning literature includes many examples

4

of dimensionality reduction methods used to abstract and/or
make problem spaces manageable. For example Chalodhorn
et al. (2006) use a low-dimensional sensory-motor mapping to
optimize demonstrated motions over the robot’s dynamics. In
the same spirit (Abbeel and Ng, 2004) presented Apprentice-
ship Learning as an inverse reinforcement leaning formulation
that approximates the unknown reward function of a Markov
decision process (MDP) that the demonstrations are assumed
to be optimizing. Wang et al. (2008) introduced GPDM, a
Gaussian process based dimensionality reduction with a dy-
namical model of the evolution of the state, that can learn mod-
els of human kinematic trajectories. Bitzer et al. (2008) use
a Gaussian Process-based nonlinear dimensionality reduction
technique to arrive at an underlying model of demonstrated
data, while using a parameterized path generation method over
the learnt representation to generate novel movements. We
contribute to this growing literature by explicitly addressing
the issues of task variability and efficient feedback control
despite incomplete model specifications.

A. Motivation and comparison to dim. reduction methods
One of our goals is to learn a geometric structure, i.e.,

a skill manifold, that captures the intrinsic structure of the
space of trajectories by approximating the tangent space from
demonstration data. So, if one begins with a set of motion
examples from a specific class, e.g., due to a path optimization
or redundancy resolution principle or even a more complex
kinodynamic constraint, then one seeks a representation that
intrinsically captures both the restriction of states to a low-
dimensional space and the evolution of the trajectories in that
space - as opposed to imposing a trajectory generation scheme,
post hoc.

In the usual formulation, manifold learning is aimed at
finding an embedding or ‘unrolling’ of a nonlinear manifold
onto a lower dimensional space while preserving metric prop-
erties such as inter-point distances. Examples include MDS
(Hastie et al., 2001), LLE (Roweis and Saul, 2000) and Isomap
(Tenenbaum et al., 2000). Much of this work has been focused
on summarization, visualization or analysis that explains some
aspect of the observed data. On the other hand, as already
mentioned, our goal is to learn a manifold encoding of motion
tasks that allows us to perform control and planning operations
in the spirit of above mentioned methodologies - which
requires us to address a different problem from visualization
or clustering.

Examples of state of the art manifold learning algorithms
include the following:
• Coordinated factor analysis (CFA) has been introduced

in Verbeek (2006) for modeling data sampled from mani-
folds. It uses a mixture of factor analyzers to approximate
a non-linear factor manifold.

• Locally linear coordination (LLC) (Teh and Roweis
(2003)) aligns the hidden representations used by each
component of a mixture of dimensionality reducers into a
single global representation of the data throughout space.

• Manifold charting (Brand (2003)) coordinates local para-
metric models to obtain a globally valid nonlinear embed-
ding function. Like LLC, this charting method defines a

quadratic cost function and finds the optimal coordination
directly.

• Isomap, (Tenenbaum et al. (2000)), globally coordinates
proximal pairwise distances using all-pairs shortest paths
distances computed from a neighbourhood graph on the
dataset. Isomap assumes underlying structure is mani-
fested as a bordered manifold. This underlying manifold
can be uncovered by Isomap, given the input data set is
dense enough to cover the entire manifold and forms a
single connected component.

• Locally smooth manifold learning (LSML) (Dollár et al.
(2007)), rather than posing manifold learning as the
problem of recovering an embedding, poses the problem
in terms of learning a warping function for traversing
the manifold. LSML explicitly focuses on generalizing
to unseen portions of the manifold by making a smooth-
ness assumption, something very beneficial for use in a
robotics learning context as in our proposed framework.

Building on LSML, we learn a model of the tangent space
of the low-dimensional nonlinear manifold, conditioned on
the (temporally driven) adjacency relations of the high dimen-
sional data. Such a learnt manifold model can then be used to
compute geodesic distances, to find projections of points on
the manifold and to directly generate geodesic paths between
points. So, an important point that differentiates our approach
from alternate data-driven approaches that also utilize some
form of dimensionality reduction is that although we have a
low-dimensional representation to reduce complexity, we solve
an integrated planning and control problem in the ambient high
dimensional space. This gives a clearer interpretation to what
the controller is achieving: enforcing a large domain vector
field towards the manifold and along the manifold. This makes
the consideration of obstacles (Havoutis and Ramamoorthy
(2010b)) and disturbances much more natural, without having
to worry about how they themselves may be mapped to an
artificial low dimensional space. Issues such as this latter point
tend to be rather delicate in many alternate approaches.

III. MANIFOLD LEARNING

Our approach, building on LSML introduced in Dollár et al.
(2006), attempts to learn an approximation of the tangent space
that is locally common to neighboring data points. This way
we can start from a point in the high dimensional data space
and generate its neighbors, even beyond the support of the
training data and up to a locally quadratic approximation. The
key difference between embedding methods, that try to find a
structure preserving embedding, and our approach is the goal
of learning how to traverse such structure rather than embed
it to a new coordinate frame.

A. Model formulation

Assume a given data set of D dimensions, in our case a
set of example trajectories in a robot’s state space. Due to
task aspects including kinematic and/or dynamic constraints
and task constraints, the data lies on a smooth d-dimensional
manifold that is embedded in the D-dimensional state space.

5

The d dimensions of the manifold effectively explain the local
modes of variation as presented in the dataset.

The data set can be described as a set of points x ∈ RD,
while the image of the points on the manifold is y ∈ Rd.
There exists a continuous bijective mapping M that converts
low dimensional points y from the manifold, to points x of
the high dimensional space,

x =M(y).

The central observation is that given two neighboring points
on the manifold, xi and xj , the difference between these
points, ∆i

.j , should be a linear combination of the tangent
vectors at that point on the manifold, scaled by an unknown
alignment factor εij . Assume a mapping H from a point on
the manifold to its tangent basis H(x),

H : x ∈ RD 7→
[
∂

∂y1
M(y) · · · ∂

∂yd
M(y)

]
∈ RD×d,

where each column of H(x) is a basis vector of the tangent
space of the manifold at y, i.e. the partial derivative ofM with
respect to y. Taking ∆i

.j to be the centered estimate of the
directional derivative at x̄ij (where x̄ij ≡ (xi+xj)/2) and εij

to be the unknown alignment factor, we haveH(x̄ij)εij ≈ ∆i
.j ,

that holds given ε is small enough and the manifold can be
locally approximated with a quadratic form.

B. Formulation of the learning problem

We learn a model of H from data, parametrized by θ,
giving us the tangent space model Hθ. Learning requires the
following error to be minimized:

err(θ) = min
{εij}

∑
i,j∈Ni

∥∥Hθ(x̄ij)εij −∆i
.j

∥∥2

2
. (1)

The goal of training is to find the θ that minimizes Equation 1,
where εij are additional free parameters that are optimized
over and do not affect model complexity.

To enforce the smoothness of the mapping Hθ we add an
explicit regularization term, in addition to implicit smoothness
that may come from the form of the model itself. The intuition
behind the first term is that the learned tangents at two
neighboring locations, x̄ij and x̄ij

′
, should be similar, i.e.,∥∥∥Hθ(x̄ij)−Hθ(x̄ij′)∥∥∥2

F
, should be small. The second term is

used to avoid numerical instabilities, ensuring that Hθ’s do
not get very small and ε’s very large, thus

∥∥εij∥∥2

2
is also

constrained. This way the following regularization term is
added to Equation 1:

r = λE
∑∥∥εij∥∥2

2
+ λθ

∑∥∥∥Hθ(x̄ij)−Hθ(x̄ij′)∥∥∥2

F
.(2)

To simplify the error term we can rewrite it using a single λ as
we can treat Hθ and αHθ as the same for any α > 0. This way
the error of Hθ with regularization terms (λE , λθ), is equal to
the error of αHθ with regularization terms (α2λE ,

1
α2λθ), in

essence translating in a single λE = λθ = λ. Throughout this
work we set λ equal to 10−3.

C. Learning algorithm

In principle any regression technique can be employed for
modeling Hθ, e.g. Vijayakumar et al. (2005), Rasmussen and
Williams (2006). A linear model of radial basis functions
(RBFs) is particularly well suited for the task (Bishop (2007)).
The RBFs we use are of the form:

fk(x) = exp(
−||x− µk||22

2σ2
k

),

where the basis centers µ are computed with K-means cluster-
ing on the given dataset and the basis width σ is set to be twice
the average of the minimum distance between each cluster and
its nearest neighbor center. This is a common choice for σ in
RBF methods (Bishop, 2007), that ensures coverage of the
space between kernels, i.e. no disconnected components exist.
From the RBFs we can compute a feature vector fi from x̄ij

of the form fi = [f1(x̄ij), . . . , fk(x̄ij)], where the number of
basis function k controls the smoothness of the final mapping
Hθ. This way a large k would result in a mapping that better
fits local variations of the dataset but whose generalization
abilities to other points on the manifold would be weaker,
following the bias-variance trade-off. We can then define,

Hθ(x̄ij) = [Θ1fij , . . . ,ΘDfij],

where the Θs are randomly initialized d× f matrices.
To solve the system we compute the thin singular value

decomposition (SVD) of ∆i. From the linearity assumption
there are at most d non-zero singular values. In practice we
can compute the truncated SVD that keeps at most 2d singular
values and allows for significant computational reduction. This
way we have ∆i = U iΣiV i

T and by plugging in this and
Hθ(x̄ij) into Equation 1, and rearranging we get:

err(θ) = min
Ei

n∑
i=1

D∑
k=1

∥∥∥fi
T

ΘkTEi − U ik.Σi
∥∥∥2

2
. (3)

To solve Equation 3 simultaneously for E and Θ is complex
but by keeping either one constant we can optimize iteratively
the other variable, in an EM–like fashion, becoming a least
squares problem. This way we solve for Ei keeping the Θks
fixed as:

Ei = argmin
Ei

D∑
k=1

∥∥∥fi
T

ΘkTEi − U ik.Σi
∥∥∥2

2
(4)

= argmin
Ei

∥∥HiEi − U ik.Σi
∥∥2

F
(5)

= Hi+U iΣi. (6)

In the next iteration we keep Ei fixed and optimize for Θks
by:

Θk = argmin
Θk

n∑
i=1

∥∥∥fi
T

ΘkTEi − U ik.Σi
∥∥∥2

2
(7)

= argmin
Θk

∥∥∥(EiT ⊗ fi
T
)
vec

(
ΘkT

)
− vec

(
U ik.Σ

i
)∥∥∥2

F
.(8)

6

Since vec
(
U ik.Σ

i
)

= ΣiU ik.
T the least squares solution for Θk

becomes

vec
(
Θk
)

=

 E1T ⊗ f1T

...
EnT ⊗ fnT


+  Σ1U1

k.
T

...
ΣnUnk.

T

 (9)

We continue iterating the error minimization procedure until
the system converges. The iterative nature of the algorithm
does not guarantee the convergence to a global minima of the
error function, thus a number of random restarts are performed
to avoid bad local minima. In all experiments we performed
3 random restarts and continue with the model that achieves
the smallest error. In practice the error difference between the
random restarts was never significant and, to our knowledge,
there is no evidence that we suffered from serious local minima
issues.

D. Intrinsic manifold dimensionality

The manifold dimensionality d is a parameter of the mani-
fold learning approach. Throughout this work we have used a
simple cross-validation approach to determine this parameter.
We begin with a dimensionality of 1 and iteratively increase
the model dimensionality while keeping track of the model
error. The point at which the error derivative with respect to
the dimensionality flattens is a good candidate for the model
dimension. In other words beyond that point adding more
dimensions to the model produces only a small decrement to
the model error, sometimes also interpreted as over-fitting. A
number of methods for estimating the intrinsic dimensionality
of manifolds are available in the literature (e.g. Costa and Hero
(2003), Kégl, Levina and Bickel (2004), Hein and Audibert
(2005), Eriksson and Crovella (2012)). This is an active area of
machine learning research, however, intrinsic dimensionality
estimation is beyond the scope of this paper.

IV. PATH PLANNING AND CONTROL WITH MANIFOLDS

The core of a planning and control framework requires a set
of procedures relevant to learning, generalizing and executing
motions. To begin with, a procedure for learning motions is
important. In essence this would be a way to add new skill-
representations to the existing skill-set. Another important
feature of the framework would be to generalize from learnt
skills and be able to refine them according to the constraints
and goals of novel planning queries. In addition, the control
phase of the framework requires a method for observing the
nominal execution of the planned trajectories and reacting in
a corrective manner should unexpected perturbations occur.

This section presents the main methods developed and
utilized for learning manifold skill encodings and for planning
and controlling a robotic system through such representations.
The first subsection describes leaning skills from examples
and generating unconstrained trajectories. The second subsec-
tion presents the method for incorporating novel constraints
on learnt manifolds without the need to re-learn. The third
subsection describes how we can control the system on-line

(a) Manifold geometry (b) Initialization

(c) Gradient optimization (d) Geodesic path

Fig. 2. Sketch of the geodesic trajectory generation procedure. (a) We begin
with a learnt manifold model, a starting point on the manifold, often being
the current state of the system, and a goal point, that is the state we want to
reach. (b) We initialize with a trajectory that can traverse the ambient space
of the system. This can be as crude as a simple manifold interpolation for low
dimensional spaces. (c) We subsequently optimize the trajectory with respect
to the manifold geometry by following the gradients of two errors defined over
the geometry. The first drives the points on the manifold while the second
minimizes the path length. (d) The outcome is an optimal length geodesic
trajectory. In other words the shortest trajectory that connects the start and
goal states and does not diverge from the underlying manifold geometry.

given a learnt skill manifold. In essence we present step-by-
step how a manifold representation can be used to tightly
integrate path planning and control of robotic systems.

A. The manifold encoding for robotic skills

We are interested in preserving properties (e.g. spatial prop-
erties) of trajectories in the data set. Thus, our goal is to learn
a model of the tangent space –a geometric representation– of
the low-dimensional nonlinear manifold, conditioned on the
adjacency relations of the high dimensional data. The learnt
manifold can be used to compute geodesic distances, to find
projections of points on the manifold and to directly generate
geodesic paths between points.

1) Learning the manifold model: A manifold encoding
is grounded in a set of example solutions. As mentioned
earlier, such a set is produced either from a computationally
intensive optimization procedure, an optimal controller, or
even an expert demonstrator. The key characteristic is that
such examples are trajectories corresponding to a specific
objective that represents the skill, and these trajectories define
the underlying manifold geometry. Thus, similar queries have
similar solutions, directly deriving from a local smoothness
assumption.

Training data are points from the system’s state space that
represent trajectories of a particular skill. These are of the
form,

Q = [q1, . . . ,qk]T , (10)
qi = qi1, . . . , q

i
n, i = 1, . . . , k, (11)

where the number of examples is k and the length of each
trajectory is represented by n. Each datapoint qij belongs to
a D-dimensional space, the system’s state space, and lies on
a locally smooth d-dimensional manifold. This subspace is
embedded in the D-dimensional space. To approximate this
we learn a mapping from each point of the D-dimensional
space to the tangent basis of the manifold, H(q).

7

The datapoints belong to the state space of the system and
such a state space can contain configuration variables, poses,
higher order terms, as velocities and accelerations, or any
combination of the above. Most of our experiments focus on
the configuration space of the systems rather than the task
space.

Modeling Hθ is done with a linear model of radial basis
functions (RBF’s) with features over the evidence (Hastie et al.
(2001)), where the RBF’s, µ’s and σ’s are computed directly
from the data in an unsupervised manner. The model is trained
with the procedure presented in the previous section.

2) Optimal geodesic paths: Our goal is to find the shortest
path between two prespecified poses q1, qn ∈ RD, D being
the dimensionality of the configuration space, that respects the
geometry of the learnt manifold. In a robotics context, being
on the manifold essentially means that the constraints (e.g.,
optimality w.r.t. a particular task-specific cost) inherent in the
training data are respected. In practice we, discretize our path
into a set of n via points, q = q1, . . . , qn, with the q1 and qn
being fixed, and we follow a combination of gradient descent
steps to minimize the length of the path while not leaving the
support of the manifold. Figure 2 presents sketches of each
step of the trajectory generation procedure that is elaborated
below.

The geodesic trajectory generation procedure consists of
two phases. In the first phase an initial estimate of the path
is created and in the second phase this path is optimized with
respect to the manifold geometry and the overall path length.

3) Geodesic path initialization: The initialization proce-
dure is based on the start and goal points, that are kept
constant, and the average distance estimate `, that is derived
from the training data set. The process begins with the distance
between the two initial points, the edges of the path. The
distance is split in half and either the left or right edge (start
or end) is grown recursively towards the middle.

Growing the path involves taking consecutive small
geodesic steps, i.e. finding points that move towards the
midpoint of the distance and are on the manifold. The point
reached is set to the new estimate of left (or right) and the
procedure continues with recursion. The recursion stops when
the distance between the two points in consideration is equal or
less to `. Pseudocode of this phase is available in Algorithm 1
while Figure 2(b) provides a sketch of the outcome of the ini-
tialization step. This produces the geodesic path initialization
which is subsequently optimized with respect to the manifold
geometry. This recursion is guaranteed to find a path given the
assumptions of the manifold learning phase described earlier
(III-A,III-C), i.e. the manifold is a single connected component
and smooth up to a locally quadratic approximation.

4) Geodesic path optimization: The initial estimate of the
path is a manifold interpolation that roughly follows the man-
ifold geometry but is not the shortest geodesic path possible.
Since we have learnt the tangent space of the manifold we can
find a minimum energy solution that is a geodesic path and
its length can be minimized.

The optimization of the path is performed with an iterative
gradient descent procedure that is performed in two steps. The
first step follows the orthonormal (to the manifold) component

Algorithm 1 Initial Geodesic Trajectory
INPUT: M, `, qstart, qend
OUTPUT: q ≡ {qstart, q2, . . . , qi, qend}
qLeft = qstart, qRight = qend, distPrev =∞
loop
diff = qLeft− qRight
dist = norm(diff)
if dist < ` then
break {Distance reached}

else if dist < distPrev then
midpoint = (qLeft+ qRight)/2
qLeft = recursion(qLeft,midpoint)
qRight = recursion(qRight,midpoint)
break {Recursion}

else
distPrev = dist
qNext = qLeft (or qNext = qRight)
H = Hθ(qNext)
diff = H ×H ′ × (diff/norm(diff))
qNext = qNext+ diff × ` {Geodesic step}

end if
end loop

of the gradient of:

errM(q) = min
{εij}

∑
i,j∈Ni

∥∥Hθ(q̄ij)εij − (qi − qj)
∥∥2

2
,

that essentially makes the qi’s “stick” to the learnt manifold
by iteratively moving them to points where neighbouring
(consecutive) bases are aligned. The second gradient descent
step follows the parallel (to the manifold) component of:

errlength(q) =

n∑
i=2

∥∥qi − qi−1
∥∥2

2
,

that iteratively minimizes the length of the path without
leaving the support of the learnt manifold, while keeping the
endpoints fixed.

Thus we are able to generate novel unconstrained trajec-
tories that are geodesic paths over the learnt manifold. Such
paths are locally optimal with respect to path length while also
following the underlying geometry, specific to each robotic
skill and observed in the demonstrated solution set.

B. Changing environments and dynamic constraints

Often in systems that act in a changing environment novel
constraints can be introduced dynamically. For example con-
sider the task of walking for a humanoid robot. We can learn an
unconstrained walking manifold that produces stable stepping
motions of variable step start and end points. Such trajectories
assume that there are no obstacles in the way of the swinging
leg. Now if obstacles are introduced, imagine the play-room of
a kid, the system will have to generate motions that are able
to avoid such obstacles in task space, e.g. step over a pile
of Legos, avoid randomly dropped toys. Such obstacles were
not present in the manifold learning step and are regarded as
constraints that are not encoded in the skill manifold.

8

(a) Unconstrained geodesic (b) Obstacles introduced

(c) Constrained geodesic path

Fig. 3. Example sketch of a constrained optimization scenario and of
the proposed solution procedure. (a) An unconstrained generated geodesic
trajectory for a path planning query originating qstart and reaching qend.
(b) The appearance of an obstacle set O introduces further constraints in the
geodesic generation procedure as the intersection of the set with the manifold
geometry, in effect, creates a patch that the solutions now have to avoid. (c)
The obstacle set, O, taken into consideration serves to drive the geodesic
trajectory away from the red square obstacle. This is achieved through a
spring-system model that extends the geodesic trajectory generation procedure
and produces solutions that avoid such “no-go” while following the underlying
manifold geometry.

Re-learning a representation that takes account such ran-
domly occurring constraints would be infeasible in continu-
ally changing environments. Instead, our method reuses the
previously learnt unconstrained manifold representations and
incorporates new constraints in the motion planning phase.
Figure 3 provides a sketch of such a scenario. In this setting
we can generate unconstrained trajectories of the learnt skill
manifold as explained previously (Figure 3(a)) but as the
system’s environment changes a set of obstacle points is
introduced. What our method achieves is the generation of
geodesic trajectories that can successfully navigate away from
such an obstacle while not leaving the support of the learnt
manifold, Figure 3(c). This is achieved with a spring-system
model that optimizes geodesic trajectories with respect to
novel constraints. The next subsection describes the procedure
in detail.

1) Constrained geodesic paths: The algorithm presented
in section IV-A2 generates unconstrained geodesic trajectories
that generalize from the solution set presented to the manifold
learning procedure in the training phase. In practice, we often
require more control over the generated trajectories as, often,
the system would need to avoid task space and joint space
obstacles. This is a constrained trajectory generation problem
over the manifold. We now describe a procedure for generating
constrained geodesic paths that avoid “no-go” patches on the
manifold surface. These are defined as sets of obstacle points
O ∈ RD that are uniformly sampled from the “no-go” task
space region and trace the obstacle patch in joint space. For
example such points can be samples from the faces of a cube
shaped obstacle or a set of points sampled from the surface
of a sphere (Figure 3(b)).

The intersection of the manifold set and the obstacle set,
M∩O, is the region that we would like to take into consider-
ation when generating a constrained geodesic path. This point
set would drive the geodesic path away from the patch that

(a) Calculation of forces (b) Manifold projection

Fig. 4. (a) An obstacle point ok affects only the path points that are within
its range (β`) and exerts on them repulsive forces (red). In contrast the path
points can exert repulsive (not shown) and attractive forces (blue) to their
path neighbors. (b) All forces that act on each path point are averaged and
the resulting mean vector is subsequently projected on the learnt manifold
M.

we want to avoid but given the learnt tangent space the path
will not leave the surface of the manifold, thus properties that
the manifold represents are still respected.

We treat the affected consecutive geodesic path points, q, as
a system of springs that can either exert attractive or repulsive
forces to their neighbors. A force fqij , with magnitude∣∣fqij∣∣ = `−

√
(qj − qi)2,

between two consecutive path points qi and qj , is repulsive
if the distance between them is less than `, and attractive if
the distance is greater than `. The distance ` is a metric that
is derived from the manifold learning step and is estimated
directly from data (section IV-A2). The magnitude of the force
is directly proportional to the distance of the points in question.

The obstacle point set, O, exerts repulsive forces to the
path points. The area of effect of the obstacle point set is also
defined relative to `; each obstacle point, ok exerts a force foik,
of magnitude

|foik| = β × `−
√

(qi − qo)2,

to every path point, qi, within a hypersphere of radius set to
β`. The area of effect of O can be increased or decreased
by tuning the scalar β ∈ (1,+∞) with obstacle clearance in
mind, i.e. a small β will result in trajectories that evolve close
to the obstacle set while a large β has the opposite effect.

We calculate all forces that act on each affected path point
and compute a mean force vector for each point,

f̄i =
1

k

k∑
foik +

1

j

j∑
fqij , (∀j ∈ {neigh(i)}).

This vector is then projected onto the manifold, fMi =

f̄iHqθH
q′

θ , and each point is moved by a small step, γ,
accordingly. In our formulation γ is statically defined in
the interest of simplicity. Established numerical optimization
methods (Nocedal and Wright, 2006) exist that can vary γ,
thus achieving faster convergence, e.g a line-search step can be
performed to compute the optimal step size for every iteration.
Figure 4(b) provides a sketch of the average force projection
step. In effect this makes the points take small geodesic steps
away from the obstacle while not leaving the support of the
manifold. We repeat the procedure until all path points have
cleared obstacle points (O = {�}) or the algorithm has
converged.

9

Algorithm 2 Constrained Geodesic Trajectory Generation
INPUT: M, qstart, qend, O
OUTPUT: q ≡ {qstart, . . . , qi, qend}
q← Optimal Geodesic Path(qstart, qend)
repeat
dO ← Compute Distances(q, O)
[foik, f

q
ij]← Calculate Spring Forces(q, dO)

f̄i ← foi. + fqi.
f̄Mi ← f̄iHq

θH
q
θ
′

q← q + γf̄Mi
Ci ← ∂q2/∂s2 {Curvature}
C̄ ← 1/n

∑
Ci

C̄Mi ← (C̄ − Ci)Hq
θH

q
θ
′

q← q + γC̄Mi
δ ← q− qold

until dO = {�} or δ ≤ 10−6

2) Curvature smoothing: The above procedure only acts on
the geodesic path points that are in the area of effect (distance
< β`) of obstacle points. This tends to lead to trajectories
that are not smooth when only small portions of the paths are
considered. To alleviate this, we introduce a step that considers
the full set of path points and interplays with the constraint
optimization.

We use the path curvature as a measure for smoothing
the generated geodesic paths in a structured fashion. We
calculate the curvature, C, over the discrete geodesic points,
q = q1, . . . , qn as

Ci =
∂q2

∂s2
, i = 1, . . . , n− 2,

where s is the distance between two consecutive points. We
calculate the mean curvature C̄ and the error gradient C̄ − Ci
(vector), for each triple of path points. Each point is then
moved by a small step along the error gradient and pro-
jected on the manifold tangent space. In general the curvature
smoothing step is not mandatory but rather complementary
to our obstacle avoidance formulation. The entire constrained
geodesic trajectory generation procedure is summarized in
Algorithm 2.

C. Control on and to a skill manifold

In the previous subsections we concentrated our efforts on
solutions that restrain the system’s state to evolve on the learnt
skill manifold hypersurface. The intuition is that the set of
solutions used as examples to our manifold learning phase,
imply that the manifold geometry is indeed the set of desired
states. Such a measure of “value” can be sometimes difficult to
explicitly encode in terms of an analytical cost function, and
in practice may encode task specifications, system constraints
and general costs.

In effect, we demonstrated how a trajectory can be opti-
mized to follow the manifold geometry from start to goal in
a manner similar to a vector field on the learnt hypersurface.
Perturbations that make the system’s state jump to different
points that belong to the manifold can be lazily handled with
straightforward replanning, utilizing the tools presented earlier.

(a) Unforeseen perturbation. (b) State projection.

(c) On-manifold replanning.

Fig. 5. A sketch of an example where the ability to project would be
necessary. (a) The system executes a geodesic trajectory when an unforeseen
perturbation drives the state of the system to an off-manifold point. The
remaining trajectory points are discarded. (b) Replanning from an off-manifold
point would be insensible to the desired state evolution. Instead, we find the
projection of the off-manifold state on the underlying geometry. This is the
closest point that we then control for in a reactive manner. (c) A new geodesic
trajectory is replanned, starting from the projection state and reaching to the
goal state.

Imagine a scenario where a mobile manipulator would need
to transfer a tray with drinks. The task manifold in such a case
would include all these poses that keep the tray in a horizontal
configuration and consequently the set of joint states that result
in such an end-effector configuration. If the manipulator gets
perturbed, e.g. a push from a guest who is not careful while
the robot passes by, then the state of the system is likely to
reach a point that lies beyond the support of the task manifold,
i.e. the tray is tilted. In this case first our framework needs to
recognize that the state has deviated from the nominal planned
path and a reactive control input would serve to lead the state
back to the desired manifold. The straightforward choice of
action would serve to minimize the time that the state is in
off-manifold space, thus would follow the shortest path to the
manifold geometry.

It is often the case that perturbations will cause the state
to leave the manifold (Figure 5(a)). Replanning from an off-
manifold state would then be infeasible as the set of desired
states is the manifold itself. A sensible choice is to find the
closest on-manifold point and try to reach this in a reactive
manner (Figure 5(b)). Once the state has returned to the
manifold hypersurface, it becomes possible to replan as before
(Figure 5(c)).

This empowers our framework with a global behaviour
that covers the ambient space of the system in its entirety
and enables us to reason quantitatively about the value (or
cost) of off-manifold states. It can be viewed as endowing
the space around the learnt hypersurface with a vector field
controller that reactively seeks to return the state on the
manifold should a perturbation occur. This is achieved via a
projection operation as detailed in the following subsection.

1) Projection of states on manifold: We are given a learnt
manifold model, Hθ, and a point q that belongs to the ambient
space of the system. We seek a point q′ that minimizes
the distance between q and q′, while q′ must belong to the
subspace that the manifold represents, i.e. q′ is the closest

10

point on the manifold.
The projection of q on to the manifold Hθ cannot be

computed in closed form. Instead a gradient descent approach
is utilized to find a new point q′ on H that minimizes the
distance, d = ‖q − q′‖22 . First we need to initialize the
procedure with an on-manifold point. One can use q′ to be the
nearest point in the training data or, in a control setting to the
last state space point of a tracked trajectory, i.e. the point that
the perturbation occurs and state of the system left the support
of the manifold. Note that the distance formulation is not
limited to the Euclidean norm as above. It can be substituted
with any continuous and consistent distance metric.

Since Hθ is defined over the whole RD we calculate the
orthonormalized tangent space at q′, H ′ ≡ orth(Hθ(q′)), and
H ′H ′T the corresponding projection matrix. We follow the
gradient to the local minima on the manifold, using the update
rule for q′:

q′ ← q′ + αH ′H ′T (q − q′),

with α being a step size. The resulting q′ is an on-manifold
state that is closest, in a local sense, to the off-manifold state
q.

D. Benefits of manifold control

Our primary objective in this setting is to devise a vector
field in the configuration or joint space of the robot that
enforces convergence to the skill manifold and approximately
optimal evolution along the skill manifold. Beginning on the
skill manifold, if the system were asked to achieve a goal that
is infeasible (as indicated by the data), then one should be able
to compute and execute a ‘next-best’ trajectory consisting of
convergence to the desired subspace and subsequent evolution
along it. So, the problem is essentially one of using the learnt
structure to define an appropriately structured error function
for control purposes.

Since all trajectories subject to the task specifications must
lie on the manifold, the desired movement from off-manifold
points is along the projection back to the manifold. Note
that the precisely optimal corrective path segment may well
be slightly different from this projection, depending on the
specific nature of the overall task specification. However, this
true underlying specification could not be known from data
alone. So, the projection on to the manifold is the logical
choice under this level of information. Deviations along the
manifold, either due to dynamic obstacles or due to unforeseen
perturbations, may be dealt with differently. Along the mani-
fold, even if one were pushed away from the originally planned
trajectory, one is still assured that the system is performing
a reasonable movement subject to specifications. So, these

Fig. 6. A diagrammatic outline of the proposed control strategy utilizing the
learnt manifold.

(a) RBF metric. (b) Manifold metric.

Fig. 7. a) Volumetric plot of the distance metric that can be evaluated directly
from the model. The metric breaks down as the distance to the manifold
geometry get smaller, leading to overestimation of the true distance. Black
dots represent RBF centers, over which the evaluation is based. b) Volumetric
plot of metric derived from our model. The metric evaluates the distance to
the modeled surface and we see that it smoothly surrounds the underlying
manifold. Distances range from dark blue (small) to red (large), while the
closest distances are completely transparent for clarity.

two types of corrections may be handled differently, e.g. with
different levels of stiffness.

Figure 6 outlines a controller architecture that achieves this
type of behaviour. Geodesic paths along the manifold pro-
vide the feedforward component. Feedback corrects deviations
along and away from the manifold - with different levels of
gain. For sufficiently large perturbations away from the desired
paths (such as in examples to follow), it may be more desirable
to replan, in a receding horizon sense.

In addition, the feedback gain KM(q) is state dependent
and serves to scale the control input with respect to the
systems distance from the desired manifold2. This coupling
yields a system that is compliant with respect to on-manifold
perturbations, that are in a sense indifferent to the task cost,
but stiffens-up against perturbations that drive the state to cost-
expensive parts of the space.

A key benefit of the manifold representation (as opposed to,
say, a probabilistic model of possible velocities at each state) is
that it provides a clear notion of deviation from skill sets and
deviations within that set. With this, control is conceptually
no more complicated than a simple proportional-derivative
scheme but implemented in terms of a more sophisticated
notion of ‘error’.

In the absence of the manifold representation, one could
still have implemented alternate error metrics such as, for
instance, based on distances to centers of clusters of demon-
strated data points. Stated in terms of our model, this is
similar to defining errors in terms of the centers of RBFs
used in our approximation. However, such a metric would
yield suboptimal and non-smooth behaviours depending on
parameters of the statistical model such as the number of
clusters. We illustrate the behaviour of this metric within a
bounded volume surrounding the desired subspace in Figure

2 In the simplest case KM(q) can be equal to the manifold metric. As with
any feedback gain, this can be appropriately scaled for faster/slower system
response.

11

7(a)3. What is plotted is the distance to the shortest kernel
center, distances range from deep blue to red while the lower
spectrum of blue is completely transparent for clarity. This
results essentially in a number of low-distance spheres around
the centers of the model. The metric becomes smoother as
distances become larger but, on a local scale - which is the
one of real interest for control purposes, such a metric would
overestimate the distance to the manifold and be undesirably
non-smooth. In contrast, by considering the distance to the
modeled subspace directly we can get an accurate and smooth
metric, that captures the distance accurately as shown in Figure
7(b).

An interesting possibility that arises from this (to be ex-
plored in future work) is that one could devise planning
schemes based on variants of the A* algorithm, as the cost
defined using the manifold is admissible - strictly less than
or equal to the true cost of the underlying function. This
property would not be present in the previous naive metric,
which is prone to producing overestimates. In turn, the use of
an admissible cost guarantees that A* (and variants) returns
a path that is optimal and in practice greatly reduces running
time.

In the following sections, we demonstrate the utility of these
ideas for practical applications. The first example presents
experiments on a simulated 3-link arm where both the man-
ifold and the learnt model can be visualized. For the second
example, we use the Kuka LWR anthropomorphic robot arm,
with which we demonstrate how our method scales to more
complex systems and more challenging tasks. Last, we present
an example on the Nao humanoid robot, generating motions
that stand stably on one leg.

V. EXPERIMENTS WITH A THREE LINK ARM

A. Reaching with a robotic arm

Our first set of experiments are designed to elucidate
the basic concepts underlying our approach. We use a 3-
link planar arm where we can explicitly visualize both the
configuration space and the optimization manifold (surface
that corresponds to a specific redundancy resolution strategy),
along with possible obstacle points. The arm is a series of three
rigid links, of 1/3 length, that are coupled with hinge joints,
producing a redundant system with 3 degrees of freedom
(DoFs) that is constrained to move on a 2 dimensional plane
(task space).

1) Reaching examples: We start with a 21 × 31 grid in
task space and compute the joint positions for each goal point
with an iterative optimization procedure detailed below. We
subsample 100 grid points to get a random permutation for
learning, as in Figure 8(a). We have chosen to start with train-
ing data that follow a grid in task space in order to visualize
the corresponding geometry in the system’s joint space. This
structure arises from the optimization procedure that resolves
the system’s redundancy, i.e. a different redundancy resolution
strategy would shape the state space geometry differently.

3The example here is based on our experiments with the 3-link arm. The
gray trimesh represents the surface geometry generated by a minimum angles
reaching behaviour. The details are clarified in the following sections.

−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(a) Task space

−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(b) Neighborhood graph

0
0.2

0.4
0.6

0.8
1

0.8

1

1.2

1.40.6

0.8

1

1.2

q
2

q
1

q 3

(c) Joint space

0
0.2

0.4
0.6

0.8
1

0.8

1

1.2

1.40.6

0.8

1

1.2

q
2

q
1

q 3

(d) Tangent space

Fig. 8. Learning the optimality manifold of a 3-link arm. (a) The planar
task space of the arm and subsampled points (blue) used for leaning. (b)
The neighborhood graph used for learning a manifold. (c) The optimality
manifold that we wish to learn. Light gray points are not used for learning
but are plotted to give a better estimate of the geometry of the manifold. Note
that the manifold is not planar in the ambient space but twist and turns as we
move down the q3 axis. (d) The learnt tangent space model. Blue and green
arrows are basis vectors evaluated at points that correspond to the original
grid.

−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(a) Interpolation

−0.5 0 0.5 1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

y

(b) Extrapolation

(c) Generalization errors (d) Time

Fig. 9. Results of the 3-link arm experiments. Novel task space trajectories
produced with random start and end points where (a) demonstrates gener-
alization within the region of support of the data, while (b) demonstrates
generalization beyond the region of support of the training data. (c) RMSE
error of generated trajectories against ground truth for the two cases. In the
interpolation scenario the error is practically zero (y axis in log-scale). (d)
Absolute planning time for the two cases. Note that in the interpolation case
the length of the paths is consistently low.

12

In our experiment, we first have to choose a redundancy
resolution strategy, which implicitly specifies the manifold that
we will subsequently learn. Here, we choose the joint space
configuration, q, that minimizes the distance to a convenience
(robot default or minimum strain) pose, qc. Formally,

min ‖q− qc‖2 , (12)
subject to f(q)− x = 0, (13)

where f is the forward kinematics and x is the goal endpoint
position on the plane.

The resulting q’s trace a smooth nonlinear manifold in joint
space, depicted in Figure 8(c). We note that the manifold does
not lie on a plane but on a convex strip that twists clockwise
and tightens as we travel down the q3 axis. Also different
redundancy resolution strategies would produce different op-
timality manifolds. We note that, in general, this kind of
information may not be explicitly known (in the case of human
demonstration) or visualizable for more complex problems.

2) Implementation: The first step in data-driven learning
of the desired manifold is to compute the neighborhood graph
of the training data. We evaluate the task space distances to
compute the neighborhood graph with the constraint that the
graph contains a single connected component. In practice we
gradually increase the neighborhood distance until all points
are connected, as in Figure 8(b).

The tangent space that we wish to learn is inherently two
dimensional. We learn a model of Hθ with 10 RBF’s and 100
points, the blue points in Figure 8(c). We can subsequently
evaluate Hθ at any point in our joint space. Figure 8(d) shows
the tangent bases evaluated at every point of the previously
generated grid. Note that the basis vectors are aligned and
vary smoothly, i.e. we obtain a good generalization within the
region of support of the data.

3) Generation of novel reaching solutions: For measuring
the goodness of our learnt manifold, we use two metrics.
Central to our aims is the generalization ability of the model.
Thus we quantitatively evaluate the error of planned motions
against the poses that the original optimization procedure
would produce. We distinguish between two scenarios for our
motion planning. The first evaluates the model’s interpolation
ability, generating trajectories that in task space lie within the
grid from which 100 points have been sampled for learning.
The second case evaluates the extrapolation ability of the
model by generating trajectories, the endpoints of which lie
outside the original grid. In both cases start and endpoint
positions in task space were random, while results are averaged
over 10 trials for each scenario.

We create 50 optimal geodesic paths, with random start and
end points for each case, with the method detailed in section
IV-A2. Samples of such paths for both generalization cases
are depicted in Figure 9(a) and (b) (grid points in light gray
for comparison).

We then collect all the intermediate points and compute
the optimal solutions of their forward kinematics with the
redundancy resolution algorithm detailed in section V-A1, as
ground truth. We compute the RMSE, for each trial and for
each case, between ground truth and prediction of model, for
a total of 10 trials.

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

Manifold surface

q
1
(rad)

q 3(r
ad

) −0.5 0 0.5

0.2
0.4
0.6
0.8

x(m)

y(
m

)

Samples

(a) Samples.

0
1

2 0
1

2

0

0.5

1

1.5

2

2.5

q
2
(rad)

Tangent space basis

q
1
(rad)

q 3(r
ad

) −0.5 0 0.5

0.2
0.4
0.6
0.8

x(m)

y(
m

)

Neighborhood graph

(b) Learnt manifold.

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

Geodesic paths

q
1
(rad)

q 3(r
ad

) −0.5 0 0.5

0.2

0.4

0.6

0.8

x(m)

y(
m

)

Task space

(c) Generated geodesic paths.

Fig. 10. The manifold learning and usage for the 3link arm example. a)
Starting with 100 datapoints in joint space, that correspond to task space
coordinates as in the inset plot. b) The neighborhood graph in task space (inset
plot), and the learnt tangent space that the model predicts for the RBF centers
in the high dimensional space. c) Randomly sampled optimal (unconstrained)
geodesic paths and corresponding task space trajectories in the inset plot.
The thin gray trimesh is a densely sampled reconstruction of the underlying
surface, used only for comparison and as a visualization aid.

The averaged errors are depicted in Figure 9(c). Note that
the RMSE axis is in log-scale while the difference of the two
bars is of 2 orders of magnitude. To be precise the average
RMSE for paths generated within the region of support of
the data is 1.8935× 10−4 ± 3.6013× 10−5(practically zero),
while beyond the support of the data the average RMSE is
6.84×10−2±2.19×10−2. In addition, computing the optimal
geodesic paths takes less time on average (Figure 9(d)) in both
cases.

B. Constrained reaching on a robotic arm

Following the preliminary evaluation of the previous sec-
tion, we show that the method can handle a more interesting
redundancy resolution strategy. To demonstrate this we begin
with another reaching example where we also visualise the
generated trajectories in the configuration space of the system.

1) Reaching examples: We randomly sample 100 Cartesian
points from the top semicircle of the task space of the system.
The dataset is 100 points of x and y pairs, where

x =

{
x ∈ [−1, 1]
y ∈ [0, 1]

(14)

13

We run the task space dataset through an iterative optimization
procedure detailed below and get the corresponding joint space
datapoints, q = (q1, q2, q3). A set of 100 such points is
depicted in Figure 10(a)), as black dots in joint space and
task space plots.

We densely sample the space with 900 more points that
are used solely for visualization purposes and play no further
part in the learning procedure. For visualization purposes,
we use all 1000 points to compute a Delaunay triangulation
of the joint space structure as sampled, and then plot the
trimesh (triangle mesh) for comparison with the paths that
our algorithm produces. This trimesh surface is depicted in all
figures with thin gray edges.

We choose a different redundancy resolution strategy, im-
plicitly specifying the geometry of the manifold (Figure 10(a),
thin gray mesh). Here, we choose the joint space configuration,
q, that minimizes the absolute sum of joint angles, in a
different view it minimizes the distance to a convenience
(robot default or minimum strain) pose, qc = (0, 0, 0), with
an additional weighting on the cost of each joint movement,
wi. Formally,

min ‖wq− qc‖2 , (15)
subject to f(q)− x = 0, (16)

where w is a weighting vector, f is the forward kinematics
and x is the goal endpoint position on the plane. We set w =
(4, 2, 1), which means that the cost of the first joint offset
will be four times as significant as the last joints angle, thus
penalizing more any motion of the first link. Such weighting
is often used in robotics as, in a physical setting, moving the
last link only is much more energy efficient than moving the
first link, as the first link will have to move the rest of the
system’s weight as well.

The resulting q’s trace a smooth nonlinear manifold in joint
space, depicted in Figure 10(a). We note that the manifold
surface resembles a convex strip that bends backwards towards
the edges, much like a section cut of a bent tube. This is the
surface that points of the specific optimality criterion trace.
Also different redundancy resolution strategies would produce
different optimality manifolds. We note that, in general, this
kind of information is not explicitly known (in the case of
human demonstration) or even visualizable, for many complex
problems.

2) Implementation: As before we compute the neighbor-
hood graph of the dataset and then learn the manifold model,
Hθ (Figure 10(a) and 10(b)). We can subsequently evaluate
Hθ at any point in our joint space. For example Figure 10(b)
shows the tangent basis evaluated at the centers of the RBFs
used. Note that the basis vectors are aligned and vary smoothly,
i.e. we obtain good generalization within the region of support
of the data. This way, in order to “walk” on the manifold we
need to evaluate the learned tangent basis and follow each
local frame for each consecutive step, in other words follow
the blue and green arrows of Figure 10(b) for each point in
question.

3) Generation of constrained reaching motions: Once we
have learnt a model of the manifold tangent basis we have

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

 #3

Constrained geodesic paths

q
1
(rad)

 #2

 #1

q 3(r
ad

)

−0.4−0.2 0 0.2 0.4 0.6

0.4

0.6

 #1

 #2
 #3

x(m)

y(
m

)

Task space avoidance

Fig. 11. Example geodesic trajectories that avoid point set obstacles on the
learnt manifold. The unconstrained geodesic trajectories in red are the initial
estimates that either collide or come unsuitably close to the obstacle points.
The blue trajectories are the outcome of optimizing these geodesic trajectories
with the constrained geodesic trajectory generation procedure that allows to
avoid smoothly novel obstacle points in the system’s state space. The inset
plot demonstrates how the joint space trajectories are appear in the system’s
task space. See text for details.

access to the geometric properties of the surface. Subse-
quently the geometry of the manifold can be used to generate
optimal geodesic paths. The procedure for generating these
unconstrained paths was described in section IV-A2, and
the key advantage is that the generated paths will be of
shortest distance and adhere to the manifold geometry. Optimal
geodesic paths generated from randomly sampled start and
end points are depicted in Figure 10(c), where the manifold
geometry is also plotted (thin gray trimesh) for comparison.
Note how the generated paths trace the underlying manifold
geometry while also minimizing the deviation from a straight
line connecting start and end points (non-geodesic minimum
distance). The resulting task space trajectories –the geodesic
paths run through forward kinematics– are also displayed in
the inset plot at the same figure. Note that the resulting task
space trajectories are curved, an observation discussed in the
next subsection.

In most realistic scenarios, we need more control over
the geodesic paths that we generate. We would like to be
able to specify patches on the manifolds that we would like
the generated paths to avoid, while preserving their geodesic
properties. This is accomplished by the procedure detailed in
section IV-B1, and results are depicted in Figure 11. We start
with a set of random start and end points and pick a list of
obstacle points that intersect the manifold. In Figure 11 the
points to be avoided appear as red circles, and effectively
trace a patch that can be viewed as a “no-go” region on
the manifold. The red lines are the predicted geodesic paths
that travel through the obstacle regions. The blue lines are the
constrained geodesic paths that are optimized with the obstacle
patches in consideration. The resulting task space behaviour
for this set of examples is visualized in the inset plot of the
same picture.

4) Remarks: One observation, regarding the shape of the
task space trajectories generated by geodesic paths, is that

14

the shortest path in the 3 dimensional joint space would be a
straight line connecting the start and end points. The optimal
geodesic paths are the joint space trajectories that connect start
and end points and minimize the deviation from a straight line
with respect to the manifold geometry. Now, the manifold is
the surface defined as the union of all joint space paths that
are optimal with respect to a specific redundancy resolution
strategy. These are shortest paths that satisfy the optimality
requirements implicitly encoded. In our scenario, the predicted
trajectories would be composed of a series of points that
minimize the weighted sum of joint angles, thus the task space
trajectories would be subsequently optimized with respect to
minimum angular change.

Another point is that the generation of geodesic paths is
more efficient – and much faster (∼ 1 sec vs. ∼ 3 sec) – than
numerical optimization as described in section V-B1, while
achieving (practically) equal results (approximation RMSE
∼ 10−3). In other words we are able to approximate the
solution set of the costly optimization with an approximation
that is able to generate accurate solutions in a fraction of the
computational cost. In addition we are able to lazily add novel
constraints and take them into account in the motion generative
process without impacting the optimality with respect to the
manifold hypersurface.

C. Manifold control on the 3-link arm
Firstly, we encode the task in a skill manifold, a subspace,

in the underlying state space that is defined by the equivalence
class of trajectories corresponding to various instances of
the general task. Then, we define cost hypersurfaces that
penalize deviations from this subspace of states within the
ambient space. For instance, if a task is defined by the need
to gyrate ones body in a certain style of configurations then
all variations on that style are captured as trajectories along
the skill manifold. Then, deviations from that style of gyration
(i.e., away from the set of all feasible trajectories) would be
penalized according to the specific structure of the task - by
defining cost hypersurfaces with respect to that underlying
skill manifold. This yields a vector field in the ambient space
that constitutes both a basic plan from an initial condition and
a controller to counteract perturbations, as also discussed in
section II-A.

1) Implementation: We use the implementation that we
presented previously in section V-B2.

2) Evaluation: To evaluate the accuracy of the model we
randomly pick 100 start and end points and plan a trajectory
between them, first with our method and second, with a
naive quintic polynomial method as in Craig (1989) - our
chosen benchmark. We distinguish two cases; an unperturbed
trajectory, and a random perturbation occurring at t = 0.25
(Figure 13). We calculate the average cost per trajectory and
average over the results for each case (Table I). The evaluation
shows that with the use of the manifold controller we achieve
consistently lower cost trajectories, while the difference is
multiplied in the case where a perturbation occurs. The in-
terpretation being that the naive planner is forced to stay in a
high cost patch of the state space while the manifold finds the
appropriate short path to the cost-optimal surface.

0
0.5

1
1.5

2

0
0.5

1
1.5

2

0.5

1

1.5

2

2.5

q
1
(rad)q

2
(rad)

q 3(r
ad

)

0 1 2

0.5

1

1.5

2

2.5

q
1
(rad)

q 3(r
ad

)

Fig. 12. Randomly sampled points in state space (red) and corresponding
manifold projections (green). The inset plot is a different perspective of the
same figure. Note that these projections are indicative of the control action,
i.e., control vector field, which is naturally different in different regions of the
ambient state space. (The thin gray trimesh is a densely sampled reconstruction
of the underlying surface, the extra points being used only for comparison
and as a visualization aid.) A rotating 3D version of the plot is also available
in the accompanying video.

0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

 projection

q
1
(rad)

 start

 end

q 3(r
ad

)

(a) Perturbed geodesic path.

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 start

 end

x(cm)

y(
cm

)
(b) Perturbation example projections.

Fig. 13. A typical trajectory resulting from this method. A geodesic path
from start to end is computed, with a random perturbation occurring at time
t = 0.25 that pushes the state away from the manifold. This new state
is projected back on to the manifold to find the closest feasible state. A
path from the projected point to the goal is then executed before continuing
along. The task space trajectory with perturbation. The dashed blue line is the
initial predicted trajectory while the red line is the motion due to the (severe)
perturbation occurring at the first red star. The state is then pushed away from
the initial trajectory and a new path to the goal is replanned after the novel
state is projected on the learnt manifold.

VI. EXPERIMENTS WITH THE KUKA LIGHTWEIGHT ARM

A. Serving example with the Kuka Lightweight Robot arm

The next set of experiments demonstrates how our method
can scale up to a higher dimensional problem and capture
more interesting behaviours. For this, we use the 7-DOF Kuka
Lightweight Robot (LWR-III), shown in Figure 14(a).

The chosen movement corresponds to that of carrying a
tray (it helps if we imagine that it may be loaded with high
tumblers) from a randomized start position to a randomized
goal position while trying to minimize total joint motion.
This task can be broken down into two costs that need to
be simultaneously optimized. The first of these must penalize
deviation from a flat end-effector configuration, while the
second must minimize the angular displacement.

15

This problem is defined as:

min(J), (17)
subject to f(q)− x = 0, (18)

where the cost, J , can be separated into two factors: J =
J1 + J2, of the form:

J1 = wq2, (19)
J2 = T 2

pitch + T 2
roll. (20)

Where T is the end-effector orientation with respect to the
global frame of reference. As the system is redundant we use
a non-linear optimization method to obtain random training
points.

1) Implementation: As in the 3-link arm example, we start
with the nearest neighbour (NN) graph computation, where
we gradually increase the neighbourhood distance until no
disconnected subsets exist. An NN graph is shown in Figure
14(c), where we plot the end-effector positions that correspond
to the sampled configurations and the graph edges that result
from the computation.

Our training set in this case consists of 100 data points
that have been collected by sampling random end-effector
positions and then optimizing with the procedure described
earlier, Figure 14(b). The dimensionality of the system in this
case is quite high, thus the sampling is necessarily sparse. The
dimensionality of the manifold has been set to 4, while using
20 RBF kernels, as lower dimensional models did not achieve
an acceptable test error.

The dimensionality of the system prevents any meaningful
visualization or qualitative observation about its geometry.
Nonetheless the evaluation presented below reveals that the
learnt manifold is an accurate model of the cost metric present
in the demonstrated data, while planning and replanning with
this model is highly beneficial.

2) Evaluation: The experimental procedure was as follows.
We collect a set of 100 joint space trajectories that are
produced by our method where the start and goal points are
sampled randomly from the reachable space of the system. We
further generate trajectories that correspond to the same start
and goal positions using interpolation with quintic polynomials
as in Craig (1989). We generate a random perturbation at
time t = 0.25 and replan with both methods (Figure 15). We
evaluate the true cost for all sets and compute the average cost
per trajectory.

By comparing the resulting average costs we can see that
our method produces significantly lower cost trajectories, i.e.
the deviation from a flat end-effector configuration is lower
while the angular displacement cost is also lower. The resulting
benefit is magnified in the case where the trajectories are
perturbed as the resulting average costs show (Table I), where
the naive method on average tilts the end-effector (tray) by
0.55rad, which would be considered a task failure. This occurs
because in our method the system seeks to return to the
space of the demonstration data as soon as the perturbation
ceases and replans thereafter while following the manifold of
(approximately) optimal cost. The naive method seeks to reach

(a) Robot.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

x(m)y(m)

z(
m

)

XYZ

(b) Samples.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

x(m)y(m)

z(
m

)

(c) Neighborhood graph.

Fig. 14. The redundant Kuka Lightweight Arm. (a) Picture of the robot.
(b) The kinematic model of the Kuka LightWeight Arm along with 100
randomly sampled joint space endpoint positions. (c) The neighborhood graph
that results from the sampled joint space points.

−0.6
−0.4

−0.2
0

−0.6

−0.4

−0.2

0

0.2

0.4

−0.2

0

0.2

0.4

0.6

x(m)
y(m)

z
(m
)

start

e nd
XY

Z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

time(sec)

q
1
:7
(r
a
d
)

Fig. 15. An example planned trajectory. The unperturbed trajectory appears
as a dashed line. The perturbation pushes the state away from the planned
trajectory (red line). The solid blue line, originating at the point when the
perturbation ceases (red star), is the replanned trajectory that extends from
the projected state point and ends at the goal position. Inset plot: Example
joint space trajectories including a large perturbation.

the goal without considering the underlying cost-optimal sub-
structure thus is prone to spend the remaining time in a non-
optimal part of the state space. In table I the evaluated cost
for the predicted trajectories is also broken down to its two
components, the average angular displacement (J1) and the
average displacement from a flat end-effector configuration
(J2). Both metrics assert that the manifold method provides
superior results regarding the underlying cost metrics.

Figure 15 shows a typical run of the control strategy.
Random start and end points are selected and we use our
manifold-based method to generate a trajectory that reaches
the goal while satisfying the learnt cost (dashed blue line). At

16

Fig. 16. Two examples of perturbed trajectories with the Kuka LWR arm.
The red line traces the path of the end-effector (the perturbation is seen as
the discontinuity in this trace). Time flows from left to right. Also available
in the accompanying video.

time t = 0.25, a random perturbation occurs that pushes the
state of the system away from the planned path. The controller
recognizes the discrepancy between the planned and current
state and computes the projection of the new state space onto
the manifold, along a direction that is orthogonal to cost
hypersurface. In other words, the system moves back towards
the closest point that satisfies the learnt cost modeled by the
manifold. A new path is replanned from this state towards
the goal, the solid blue line originating from the red star and
reaching the goal. Figure 16 contains snapshots from example
trajectories on a realistic simulator4. See accompanying video
for further examples.

The computational cost of the proposed procedure scales
linearly with the size of the model, i.e. the complexity is
coupled with the number of RBF kernels used. Planning a
trajectory on average requires less than 0.1sec while projec-
tions from random state space points on the learnt manifold on
average require 0.09± 0.05sec, on standard commodity hard-
ware running not particularly optimized code. This suggests
that manifold (re)planning can be a viable solution for online
usage.

As a final remark regarding evaluation, we note that our
manifold learning algorithm was provided with data from
analytically optimized trajectories rather than human demon-
stration. We choose to do this with the aim of having precisely
controlled experiments with clear ground truth. So, we are able
to make concrete statements about the ability of our methods
to recover the ‘correct’ solutions. As such there would be
no difference if we replace these trajectories by, e.g. motion
capture data, although we wouldn’t be in a position to make
similarly quantitative statements regarding performance.

VII. EXPERIMENTS WITH THE NAO HUMANOID ROBOT

This section presents how our framework can be used with
a humanoid robot. We show that we are able to learn, from
a limited number of stepping examples, a representation that
captures an approximately complete set of quasi-static walking
motions. Furthermore, the produced motions can accommo-
date novel starting positions and goals while producing good
(stable) generalizations of the examples provided.

4The simulator is developed in SLMC and uses a rigorous analytical model
of the robot’s dynamics. Note that the dynamics model is used for physically
realistic simulation but is not available to the learning, planning or control
algorithms.

TABLE I
MEAN COSTS EVALUATED AGAINST THE TRUE COST FUNCTIONS. THE

RESULTS ARE MEAN±STANDARD DEVIATION OVER SETS OF 100 RANDOM
SAMPLED TRIALS.

System Method Unperturbed Perturbed
traj. cost traj. cost

3-link naive 0.9239± 0.1799 1.401± 0.3610
manifold 0.8724± 0.1723 1.214± 0.2597

Kuka naive (J1) 0.7952± 0.0713 0.8173± 0.1215
manifold (J1) 0.6719± 0.0777 0.6862± 0.1317

naive (J2) 0.0154± 0.0082 0.5546± 0.1199
manifold (J2) 0.0119± 0.0072 0.0785± 0.0160

(a) Robot

−20246

−5
0

5
10

15

0

10

20

30

40

50

xy

z

(b) Model

Fig. 17. The Nao humanoid robot used, (a) physical robot and (b) skeleton
model.

Our experiments are based on the Nao (Figure 17) humanoid
robot, popularly known as the chosen robot for the Standard
Platform League in RoboCup. The Nao is approximately half
a meter tall and weights 4.3kg. It has an 500MHz AMD Geode
processor onboard, running Linux. It has 25 DoFs and a variety
of sensors. From the point of view of motion synthesis, it is an
inherently unstable system, with an elevated center of mass.

A. Walking with NAO humanoid robot

We do not have an analytical model of the dynamics of the
system. Even if we were to develop an approximate model,
it would need to account for varying model parameters, e.g.
change in the motor behaviour as the battery gets depleted or
motor temperatures vary. Such effects are very hard to capture
analytically, although they do matter in practice as we find
from extensive experience within our laboratory. So, we prefer
to work directly from experimental data. However, we do use a
model of the robot kinematics for calculating the relevant foot
and pelvic positions in global coordinates. It is worth noting
that the kinematic model is used in a black-box manner and
only for the evaluation of poses - it is not used by the learning,
planning or control methods that we describe in this work.

We focus on the task of walking, with the aim of generating
a motion synthesis strategy that achieves full coverage of a
reasonably large interval in step length, width and height. In
effect, the optimality surface would be the set of all solutions
to all possible task space queries, thus a tangent space point
would have a local coordinate frame that guides the path in
that particular neighborhood. We begin with a redundancy

17

resolution strategy that would yield walking examples as
training data for manifold learning.

1) Quasi-static walking examples: We frame the redun-
dancy resolution strategy as a constrained nonlinear optimiza-
tion problem. Algorithmically, we use a sum of squares (SoS)
approach that uses the trust-region-reflective algorithm.

The optimization problem is of the form,

min
q
J (q), (21)

J = J1(q) + . . .+ Jn(q), (22)
subject to f(q)− x = 0, (23)

where J is the cost function that is composed of a number
of cost factors Jn, f is the forward kinematics and x is goal
task space positions. The cost function is a mixture of task
constraints and stability constraints. The cost function we used
for data generation evaluates:
• the task space distance between swing foot and sampled

goal
• the alignment between swing foot and x/y versors, that

keeps the swing foot flat with respect to the ground plane
• the deviation in pelvis position from the support polygon

that the stance foot provides
• the alignment between waist and z versor, pushing the

pose to an upright position.
The initial pose for the numerical optimization algorithm is

a default robot initialization pose with slightly bent knees.
To generate a walking trajectory we start with the desired

task space path of the swing leg and the position of the pelvis,
and discretize to 10 points. The swing foot trajectories are
straight lines from start to goal points while the height of the
foot is regulated with a sinusoid with varying apex height.
In practice we set the position of the pelvis to be over the
support foot and perform a double support weight shift step
once the swing leg has reached the goal position. Lastly, we
run the optimization procedure described earlier, and get the
joint space trajectory of the leg swing and the weight swift
phases for each complete task space step path.

The optimization results are approximately constant speed
quasi-static trajectories, in the sense that inertial effects are
negligible. We collected 50, full body, joint space trajectories
for stepping with the right leg and the same amount for

−5

0

5

−12−11
−10

0

1

2

3

4

5

6

7

y(cm)
x(cm)

z
(c
m
)

−5
0

5
−12−11−10

0

2

4

6

y(cm)x(cm)

z
(c
m
)

(a) Right foot training set

−5

0

5

10 11
12

0

1

2

3

4

5

6

7

y(cm)
x(cm)

z
(c
m
)

−5
0

5
101112

0

2

4

6

y(cm)x(cm)

z
(c
m
)

(b) Left foot training set

Fig. 18. The neighborhood graph, computed for a dataset of 500 points for
each swing leg. Both plots show the swing foot midpoint position in task
space. The inset plots show the corresponding continuous trajectories in task
space.

−5

0

5
−12

−10

0

1

2

3

4

5

y(cm)
x(cm)

z
(c
m
)

(a) Generated right foot traj.

−5

0

5

10
12

0

1

2

3

4

5

y(cm)
x(cm)

z
(c
m
)

(b) Generated left foot traj.

Fig. 19. Generated (unconstrained) task space trajectories from randomly
sampled start and end points. The trajectories correspond to swing foot
midpoint trajectories in task space and are stable on the robot.

stepping with the left leg. Start and goal points of every step
have been randomized within a reasonable reaching distance.
The inset plots of Figure 18(b) and 18(a) show the task space
trajectories of each swing leg foot midpoint, by running the
datasets through the forward kinematics of the system.

2) Implementation: Compared to our previous examples,
this is a higher dimensional space and sampling is necessarily
somewhat sparse. Of the 25 DoFs of the robot, we focus on the
12 DoFs for legs and hips, keeping the arm and head joints at
a constant pose. Furthermore we separate each footstep into a
swing phase and a weight shift phase. This way we divide the
learning process into two components, leg swing manifold and
support weight shift manifold - as the measure of optimality
is essentially different for each phase.

We begin with the same neighbourhood graph computation
procedure where we gradually increase the neighbourhood
distance until the graph is not disconnected (Figure 18(b) and
18(a)). We set the dimensionality of the manifolds to be 4, with
a simple cross validation step that penalizes model complexity
while producing stable and reasonable results. In all learnt
manifolds we used models with 20 RBFs, and 500 data points
that belong to 25 random task space trajectories as described
in the previous section.

3) Generation of novel walking solutions: The learnt mani-
folds are able to produce smooth walking trajectories that sat-
isfy the optimization criteria used to produce the training data.
Moreover, trajectories are produced approximately within one
to two seconds, in contrast to the numerical optimization used
to generate the data which required on average approximately
45 seconds per trajectory (Figure 20), both with reasonable
code and on commodity hardware. The computation time of
the former increases with the dimensionality of the manifold.

The procedure is able to produce stable walking in the
continuum of the reachable space of the robot as depicted in
Figure 19(a) and 19(b) for right and left swings accordingly.
One interesting observation is that the robot manufacturer
in the accompanying software for walking, specifies that the
stepping space of the feet cannot extend more than 9cm.
With our manifold trajectory generation we are able to step
further and reach stably up to 12cm, nonetheless most of our
experimental sampling was constrained to be up to 10cm.

One point to note is that the shape of the generated
trajectories in task space is qualitatively different from the
training data. The training data is generated by point-by-point

18

0

5

10

15

20

25

30

35

40

45

50

T
im

e
(s

ec
)

Manifold generation

Numerical optimization

Fig. 20. Results averaged over 25 random start–to–end trajectories. The
manifold representation can stepping trajectories that generalize from the
numerical optimization examples in significantly less time. This way the
manifold can been employed in an online scenario while producing trajectories
that, with a numerical approach, would take close to a minute to compute.

kinematic optimization of an artificially imposed sinusoidal
sequence of task space points. By fitting the tangent space of
the manifold to the collection of all such data points, and
making all local frames consistent, we extract a manifold
that indeed traces the true underlying geometry that the
optimization procedure sculpts in the robot joint space.

Fig. 21. An example of a generated walk from random feet start and end–
point positions. The generated walk is stable and relatively fast while the
possible reach of the steps is greater than the canned walking motions that
comes preprogrammed with the robot. Additionally the motion generation is
fast and can be employed in an online motion planner.

B. Constrained stepping with the Nao humanoid

Again, we focus on the task of walking, with the aim
of generating a motion synthesis strategy that achieves full
coverage of a reasonably large interval in step length, width
and height. In effect, the optimality surface would be the
set of all solutions to all possible task space queries, thus
a tangent space point would have a local coordinate frame
that guides the path in that particular neighborhood. We begin
with a redundancy resolution strategy that would yield walking
examples as training data for manifold learning.

1) Implementation: Identical to section VII-A2.
2) Generation of constrained walking motions: The learnt

manifolds are able to produce smooth walking trajectories that
satisfy the optimization criteria used to produce the training

−5

0

5

−14
−12

−10

0

1

2

3

4

y(cm)

Constrained right step examples

x(cm)

z(
cm

)

−5 0 5
0

2

4

x(cm)

z(
cm

)

−8
−6

−4
−2

0
2

4
6

8 1010.51111.5

0

1

2

3

4

5

y(cm)

x(cm)

Constrained left step examples

z
(c

m
)

−5 0 5
0

2

4

x(cm)

z
(c

m
)

Fig. 22. Generated constrained task space trajectories from randomly
sampled start and end points. The red trajectories correspond to the original
unconstrained foot midpoint that collide with the obstacle (red circle). The
resulting optimized constrained task space trajectories plotted in blue. Inset
plots are side views of the identical trajectories. (Note that learning and
generation of the geodesic trajectories takes place in the high dimensional joint
space while the figures portray the outcome through the forward kinematics.)

data. Moreover, trajectories are produced approximately within
1.5 seconds, in contrast to the numerical optimization used to
generate the data which required on average approximately
45 seconds per trajectory, both with reasonable code and on
commodity hardware. The computation time of the former
increases with the dimensionality of the manifold.

We collect all the generated trajectories and compared with
the ground truth data, i.e. the trajectories that the optimization
procedure would have generated. We average over 50 trials
and achieve an RMSE of 0.1 at a tiny fraction of the compu-
tational cost (2%). This way we can replace the computational
expensive procedure with our manifold representation and be
able to generate cheaply, equally accurate walking solutions.

As with the 3-link arm example we randomly pick a set
of start and end points in task space, generate a trajectory
as a geodesic path on the learnt skill manifold and insert
an obstacle near the trajectory. Examples of this process are
depicted on Figure 22 for right and left foot midpoint task
space trajectories. Note that the dashed red lines correspond
to the unconstrained predictions that collide with the perceived
obstacles, that appear as red circles.

The efficacy of such an additional degree of control is
obvious. To provide a concrete example we have used the
constrained geodesic trajectory generation for random obstacle
avoidance, staying away from regions in task space that might
interfere with the swing trajectory. In the case of going up or
down a step, it is often the case that the foot collides with the
previous or next step’s edge. When such a collision occurs, the
robot loses its balance and falls down. Now, we can detect this
collision and set this point to be a “no-go” point in a point
set. In the same state the robot will then skillfully avoid the
colliding pose and successfully negotiate the step. Snapshots
of such behaviour are shown in Figure 23 and 24.

C. Standing on one leg with the Nao humanoid

Consider the task of standing on one leg while moving the
other freely around. You will soon realize that balancing on
one leg is not a trivial task while it will become clear that
there is a certain area that your free leg can cover, after which
stabilization efforts would be in vain. Capturing this region of
stability of a humanoid system performing such a task is the
focus of this section.

19

Fig. 23. Nao executing of a planned motion. Top; the unconstrained stepping
trajectory that hits an obstacle (the ball). Bottom; the constrained optimized
trajectory where the swing path avoids the obstacle, the ball.

Fig. 24. Detail of a left foot swing. Top; the original trajectory that provides
minimal foot clearance (approx. 2cm on apex). Bottom; adding a obstacle
close to the original trajectory pushes the optimization to higher stepping
trajectories (here approx. 5cm on apex).

We consider a more elaborate example with Nao humanoid
robot. We show that by utilizing a learnt skill manifold we
can capture the subspace of the configuration space of the
system that consists of the set of poses that stably balance
the humanoid on one leg. This skill manifold is learnt from a
set of example data that we arrive at through numerical pose
optimization of a variety of costs as explained later below. We
show that we can successfully generate paths on such manifold
as well as project random pose samples that are unstable to
their closest stable pose, thus ensure the stability of the system.

1) Implementation: For this example we use the Nao hu-
manoid robot and, as previously, we focus on the 12 DoFs of
the lower body, hip and legs. These are the DoFs that are most
relevant to the stability of the plant as the arms and the heads
have little impact on the stability of the pose, even though their
use can make a big difference in more dynamic situations.

We begin by randomly sampling points in the task space of
the robot in the interval;

x =

 x ∈ [−20, 20]
y ∈ [−20,−5]
z ∈ [0, 15]

(24)

This covers a large volume of the reachable set of the free
swing leg (Figure 25). Nonetheless this sampling produces
points that are not reachable without taking an extra step

−15
−10

−5
0

5
10

15

−15

−10

−5

0
0

5

10

x(cm)
y(cm)

z(
cm

)

Stance foot position

Swing foot endpoint

Fig. 25. Task space samples drawn from a standard uniform distribution
on the interval in Eq. 24. Unreachable samples are discarded through the
numerical optimization step. The red dot signifies the position of the stance
foot while the blue dots represent the midpoint of the foot that moves freely.

TABLE II
EVALUATION TABLE. THE PROJECTED STATES RMSE IS EVALUATED

AGAINST GROUND TRUTH DATA THAT IS GENERATED FROM THE
NUMERICAL OPTIMIZATION PROCEDURE. RESULTS ARE AVERAGED OVER

50 TRIALS.

Time RMSE Unstable Stable
Numerical optimization 38.35sec – 2 48†
Random state samples – – 50 0

Projected states 1.707sec 0.01 3 47‡
Geodesic trajectories 0.0254sec – 8 42‡

† Trials for samples that did not converge where not included in the count.
† ‡ 12 of the 13 unstable poses pass model evaluation but fail on the physical
plant due to self collision.

or might collide with the robot geometry. The former will
be discarded after the optimization technique, explained in
the next subsection. Weeding out the latter would require
a collision detection step that is beyond the scope of the
experiment. Many of such samples require the robot to reach
close to the boundary of its stability and this is exactly what we
are interested in capturing. Once a random task space sample
is drawn we pass it to the numerical optimization method that
would return an optimized pose. Each pose consists of the 12
DoFs for the legs that are optimized, plus the head and arm
DoFs set to a standard constant position.

2) Numerical optimization: Mapping from a 3 dimensional
task position to a 12 dimensional pose is a general redundancy
resolution problem. Since the mapping is not unique we treat
it as a constrained nonlinear optimization problem. We used
the approach detailed in VII-A1, evaluating a number of cost
factors Jn. The search space q is also subject to inequality
constraints that keep all produced configurations within the
joint limits of the humanoid.

The cost function is a mixture of task constraints and
stability constraints. There are cases when the goal position is
outside the reachable area of the humanoid or the optimization
suffers from a bad local minima, leading to a solution pose
far from the task specifications. In practice, bad samples
are seldom encountered and are easily characterized by the
final optimization cost. Optimization results that achieve a
suboptimal final cost are discarded.

20

−30
−20

−10
0

10 −10
0

10

0

10

20

30

40

50

yx

z

−20
−10

0
−10

0
10

0

10

20

30

40

50

y
x

z

−20
−10

0
10

−10
0

10
20

0

10

20

30

40

yx

z

0
5

10 −20
−10

0
10

0

10

20

30

40

50

y

x

z

−20
−10

0
10

−10
0

10
20

0

10

20

30

40

50

yx

z

−20
−10

0
10

−10
0

10

0

10

20

30

40

50

yx

z

0
10

20 −10
0

10

0

10

20

30

40

50

y
x

z

−10
0

10 −10
0

10

0

10

20

30

40

50

yx

z

−10
0

10
−10

0
10

0

10

20

30

40

50

y
x

z

−20
−10

0
10 −10

0
10

20

0

10

20

30

40

50

y
x

z

Fig. 26. The skeleton model of the Nao humanoid performing a number of
poses that balance on one leg. The gray skeleton represents the random pose
sample that has been sampled within the space of kinematic constraints of
the system. The black skeleton is the projection of the previously randomly
sampled pose on the stable configuration manifold. The snapshots on Figure 27
correspond to the same sequence of poses. Also available in the accompanying
video.

3) Evaluation: The evaluation of the method is multi-fold.
First, a good metric is to compare against the poses that
the computational optimization method would produce. The
error between such predictions and ground truth can give a
reliable estimate of the accuracy of the approximation that
the manifold method provides. This way we compute the
RMSE of poses produced by the projection operation against
the outcome of the numerical optimization given the same
query. Averaged over 50 samples we achieve an RMSE of
0.01, meaning that our representation approximates the true
underlying geometry closely.

Next, we compare the time that it would take to produce
such predictions, through both the optimization process and
the manifold projection, as well as how much time it would
take to generate a full geodesic trajectory given the current and
goal states. On average the numerical optimization procedure
requires more than 35 seconds per point. Projecting a random
point requires 1.7 seconds on average, depending on the initial
estimate and step size. Producing a geodesic path given start
and goal points requires just 0.02 seconds. All evaluations
where carried out on commodity hardware with reasonable
MATLAB code5. This points out the immediate benefit that one
can enjoy from using such a skill manifold representation.

Finally, we evaluate the stability of the initial random poses,
the subsequent projections of the random poses on the learnt
manifold, and the geodesic paths that are produced to reach
the sequence of poses. Almost all poses, except from the
random state samples, are stable with a little variation between
cases. In addition almost all unstable outcomes are due to self-
collisions, something present in the training data, the removal
of which is not the objective of our experiment. An overview
of aforementioned evaluations is available in Table II.

Figure 26 and Figure 27 provide an example of state pro-
jection with the Nao humanoid. Random poses are generated
in the system’s state space. All these are unstable poses that

5Porting all code to mex files would in principle provide a great speed-up
but is beyond the scope of this work.

Fig. 27. Snapshots of the video that demonstrates how the Nao humanoid
can move through the poses presented in Figure 26. The motions from one
pose to the next is a geodesic path on the stable configuration manifold. Also
available in the accompanying video.

are only restricted to be within the robots joint limits. These
poses are then projected on the learnt manifold and a new
pose q′ is found. This pose is the closest state to the random
state that belongs to the manifold hypersurface, i.e. q′ is the
projection of the random pose onto the manifold hypersurface.
We then generate the geodesic trajectory that originates from
the current pose of the robot to the projected state. A set of
10 such poses are demonstrated in Figure 26 while Figure 27
shows the poses on the physical Nao humanoid. A video of
this sequence is also available as accompanying material.

Overall the evaluation shows that the manifold representa-
tion is a close approximation of the solution space that the
demonstrated solution set derives from. The key advantage is
that such an encoding has far superior computational efficiency
while also allows the utilization all the tools that we have
presented in previous sections. In essence it gives us the ability
to arrive at novel solutions that are optimal with respect to the
presented examples at computational cost that allows on-line
deployment.

VIII. COMPARISON TO LEARNING BY DEMONSTRATION

In the preceding sections we proposed a framework for
motion planning and control based on a manifold learning
approach which encodes a solution set derived from example
data in a model free manner. We have seen how such a
representation can be used to, on the one hand, answer novel
planning queries and, on the other hand, control the execution
of planned trajectories on-line in a reactive fashion.

In this section we evaluate our framework against a state
of the art imitation learning approach. We demonstrate that
our approach provides superior generalization and stability
characteristics, as well as a far greater ease of re-targeting,
both with respect to initial and goal positions.

For each scenario we change the start position, or goal
respectively, of the task by first a small and then a large
offset. We evaluate both learning frameworks on these sets of
novel planning queries. We provide evidence of consistently
good behaviour of the trajectories generated by our manifold
framework.

A. Learning by demonstration
Learning by Demonstration (LbD) is a state of the art

Imitation Learning approach. LbD uses a statistical approach

21

to estimate the underlying dynamics of a, generally small
(< 10), set of example trajectories. After the learning phase,
the model is used to predict a velocity vector given the state
of the system. This is in turn integrated to the system’s state
and the procedure is repeated until the state has converged to
an attractor point of the approximated dynamics. The next
subsection provides a more detailed overview of the LbD
framework.

1) The LbD approach: LbD is a two phase framework,
consisting of a leaning phase, carried out off-line, and a
generative phase, that can be used on-line. The learning phase
utilizes the Gaussian Mixture Model (GMM) approach to
model the dynamics of the data generation process. Generation
is done by Gaussian Mixture Regression (GMR), a procedure
that generates samples from a learnt GMM. For a more
detailed presentation of the GMR/GMM framework please
refer to Gribovskaya et al. (2010).

The GMM/GMR framework allows for stability analysis
and empirical determination of the region of stability of the
learned dynamics. Disadvantages include the appearance of
spurious attractors that can trap the evolution of the state of
the system and the inversion of the covariance matrix that
can suffer from singularities. Scaling up to systems with a
high number of DoFs and complex dynamics is one of the
central difficulties of the approach. For that most recent results
consider task space encodings, limited to a 2 or 3 dimensional
Cartesian space (Gribovskaya et al. (2010)), thus requiring an
extra layer of inverse kinematics and dynamics that eventually
computes the actual joint space trajectory that the system
follows.

B. iCub data

The dataset used for the comparison of the two methods
comes from the iCub humanoid robot6. It consists of 5 trajec-
tories, discretized to 100 datapoints. The trajectories represent
the end-effector position and orientation in Cartesian space.
End-effector positions are x = [x, y, z], while the orientations
are in quaternion notation, o = [o1, o2, o3, o4]. In essence the
dataset encodes the task dynamics and not the dynamics of the
robot. The task in this case would be pick-and-place motions.

6The dataset and source code are available at
http://lasa.epfl.ch/sourcecode/index.php, under Learning Position and
Orientation Control.

0
0.05

0.1
0.15

0
0.05

0.1
0.15

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

y
x

z

0

0.05

0.1

0.15

0

0.05

0.1

0.15

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

y
x

z

Fig. 28. (Right) iCub pick-and-place task. The data consists of 5 trajectories
of 100 datapoints each. (Left) The neighbourhood graph that results from the
iCub data.

TABLE III
EVALUATION OF BOTH METHODS WITH REGARDS TO TRAINING AND
GENERATION TIMES. THE RESULTS ARE AVERAGED OVER MULTIPLE

TRIALS (20 AND 27 RESPECTIVELY).

Num. of kernels Training time Generation time
Manifold model 5 1.38sec 0.0817sec

GMM/GMR 5 2.35sec 0.0853sec

All five demonstration trajectories originate approximately
around xstart = [1.8, 1.8,−1.1], while the goal position is the
origin of the axis, xgoal = [0, 0, 0], as plotted on Figure 28.

C. Model comparison

For the comparison we have used the model provided along
with the source code of the implementation. The GMM/GMR
model divides the state of the system in two parts. This
division is further requires two GMM/GMR models, one used
for learning and predicting positions and another for learning
and predicting orientations. The separation of position and
orientation estimates is rather unnatural as, in tasks such
as pick-and-place, these are strongly coupled. We focus our
comparison to the positional part of the task as a poor predic-
tion of position would automatically render any prediction in
orientation futile. The position GMM consists of 5 Gaussian
kernels that encode for a state model of the form:

x = [x, y, z, ẋ, ẏ, ż]T . (25)

Each kernel, Gk=1,...,6, is thus parametrized by µ([6 × 1])
and σ([6 × 6]), while the GMM model also contains a prior
probabilities vector, πk. The aforementioned parameters are
set in the learning phase automatically. The GMM model takes
approximately 2.35 seconds to train from the given data.

For the manifold model we use the position data as de-
scribed earlier. In fairness for the comparison we set the
number of RBFs, k, to 5, but in practice we achieve an
acceptably low model error with 4 kernels. The dimensionality
of the tangent basis, d, is set to 1 in a cross-validation manner,
as this is sufficient to explain the dataset at hand.

We begin with the calculation of the nearest neighborhood
relationships between the datapoints. The constraint that we
impose is that all datapoints should belong to a single con-
nected component and that all consequent datapoints for each
trajectory are connected (temporal relation). The neighborhood
graph that results from this operation is available on Figure 28.
Next we learn a manifold model, M, with the procedure de-
scribed in section III-B. The computation of the neighborhood
graph as well as the manifold learning, requires approximately
1.38 seconds to complete.

D. Results

Having compared the two models on training and generation
times, we now compare the actual trajectories that the two
methods generate. We begin by comparing the predicted
trajectories under a change of the starting position. To do so we
set up a a cube centered at the point chosen in the GMM/GMR

22

0
0.1

0.2 0 0.050.1 0.15

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

y
x

z

(a) Manifold.

−0.2
0

0.2
−0.2

0
0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

yx

z

(b) GMM/GMR.

Fig. 29. Comparison of the two methods by altering the starting positions of
the trajectories. The novel starting positions are chosen on a small (` = 0.02)
cube around a start point of one demonstrated trajectories. (a) Generated
trajectories from the manifold model. All (27) trajectories reach the target
in a manner qualitatively similar to the demonstration data. The blue arrows
are evaluations of the tangent space in the ambient space of the manifold. (b)
Trajectories generated from the GMM/GMR model. Only 12 trajectories reach
the target position, while the rest get trapped to flows of spurious attractors
and fail to converge.

code as the starting position. This point is the initial position
of one of the demonstrated trajectories.

We run two tests on starting positions; one utilizing a cube
of 0.02m edges (small cube) and one where the edges of
the cube measure 0.1m (large cube). We subsequently set as
starting positions the midpoints of the edges of the cube and
the points that are on the corners of each edge. This results to
a set of 27 points that are equally spaced with regards to the
initial point as,

xcube =

 xinit ± 0.01
yinit ± 0.01
zinit ± 0.01

(small cube), (26)

xcube =

 xinit ± 0.05
yinit ± 0.05
zinit ± 0.05

(large cube). (27)

For both cases the target of the trajectories is set to xgoal =
[0, 0, 0]. We run the set of 27 start/end tuples through the
GMM/GMR and manifold trajectory generation procedures,
both for the small and large cube starting positions. The
results of the small cube staring position changes are show in
Figure 29, while the large cube results are plotted in Figure 30.
The varying initial positions are marked with red points, the
points that each trajectory reaches are red ×s, and the goal
position is marked with a red square.

The outcomes of this process are plotted in Figure 29
and Figure 30. We see that in both scenarios the manifold
model can successfully generate trajectories that reach the
goal position. What is more, the generated trajectories are
qualitatively very similar to the demonstrated trajectories. The
trajectories that the GMM/GMR framework generates are very
sensitive to the change of the starting position. This way, in
both scenarios, most of the trajectories quickly fall under the
influence of spurious attractors and are subsequently attracted
away from a desired evolution. This effect becomes stronger

0
0.1

0.2 0
0.1

0.2

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

yx

z

(a) Manifold.

−0.5

0

0.5 −0.20 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

yx

z

(b) GMM/GMR.

Fig. 30. Comparison of the two methods by altering the starting positions of
the trajectories. The novel starting positions are chosen on a large (` = 0.1)
cube around a start point of one demonstrated trajectories. (a) Generated
trajectories from the manifold model. All (27) trajectories reach the target in
a manner qualitatively similar to the demonstration data. The blue arrows are
evaluations of the tangent space in the ambient space of the manifold. (b)
Trajectories generated from the GMM/GMR model. Only 8 trajectories reach
the target position, while the rest get trapped to flows of spurious attractors
and fail to converge.

when we alter the initial position according to the large cube
points (Figure 30(b)). We attribute this effect to the tight
fit of the GMM around the demonstrated data, resulting to
this poor generalization performance. In contrast the manifold
trajectory generation yields very good results, even when we
initialize from the points on the large cube (Figure 30(a)).
We see that the generated trajectories reach the goal position
successfully while also maintain a spatial profile very similar
to the demonstrated trajectories.

Next we present results from the manifold method with
respect to changes of the goal position. We follow the same
approach of creating a small and a large cube around the goal
position and picking points from these geometries. Changing
the goal is a straightforward procedure within our manifold
framework. In contrast, changing the goal of a GMM/GMR
model is not intuitive. The reason is that the GMM model is
grounded on the state space that it represents in an absolute
manner. Thus, a change of goal would require a translation of
the full model in state space, something that would result in
the former initial positions being outside the volume that the
model covers. Intuitively, one would need to scale and translate
the GMM model with the new goals in mind. This becomes
increasingly difficult as the state space contains position and
velocity variables, the coupling of which is sensitive to scaling.
Resolving the model scaling problem is beyond the scope of
this paper, thus we present examples of goal changes only for
the manifold model.

The results of this experiment are available on Figure 31,
both for small and large changes of the goal position. These
show that first; it is easy to change the goal of a planning query
and second; the manifold encoding produces trajectories that
exhibit spatial profiles that are qualitatively very similar to
the original set of examples. A summary of all the trials is
available on Table IV.

1) Manifold metric: It is also interesting to investigate what
the manifold metric, that we introduced in section IV, would

23

0

0.1

0.2 0
0.05

0.1
0.15

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

yx

z

(a) Small change.

0
0.1

0.2 0 0.050.1 0.15

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

yx
z

(b) Large change.

Fig. 31. Change of the goal positions for the manifold generation procedure.
(a) Generated trajectories that reach points on a cube of edge (` = 0.02)
around the former goal position. (b) Generated trajectories that reach points
on a cube of edge (` = 0.1) around the former goal position. The
generated trajectories demonstrate a spatial profile that is very similar to the
demonstrated data.

TABLE IV
A SUMMARY OF THE COMPARISON BETWEEN THE MANIFOLD AND THE

GMM/GMR FRAMEWORKS. WITH THE MANIFOLD REPRESENTATION ALL
THE TRAJECTORIES SUCCEEDED IN REACHING THE GOAL POSITION. IN

THE GMM/GMR CASE TRAJECTORIES PROVED TO BE VERY SENSITIVE TO
CHANGES OF THE INITIAL POSITION, LEADING TO POOR PERFORMANCE.

WHAT IS NOT CAPTURED BY THE TABLE IS THE QUALITATIVE BEHAVIOUR
OF THE GENERATED TRAJECTORIES, THAT IN THE CASE OF THE MANIFOLD

ENCODING, IS VERY SIMILAR TO THE DEMONSTRATED EXAMPLES.

Manifold GMM/GMR
Success Failure Success Failure

Change of start Small 27 0 12 15
Large 27 0 8 19

Change of goal Small 27 0 – –
Large 27 0 – –

result in with respect to the demonstrated iCub dataset. In
such a setting this metric would provide us with the means
necessary to perform online feedback control when executing a
planned pick and place trajectory. In essence the metric would
give us a quantitative estimate of the desirability of the states
that populate the off-manifold state space.

When executing a pick-and-place trajectory that is generated
by the manifold representation, as a geodesic path, whenever
an unforeseen perturbation occurs we can quickly compute the
closest-on manifold state and reactively generate a trajectory
to it. This additional benefit of the manifold representation can
be interpreted as a state value, or cost, that forms a “desirable”
tunnel that surrounds the demonstrated trajectories and can be
directly used for reactive feedback control.

Figure 32 presents a volumetric plot of the manifold metric.
The blue lines are the set of demonstrated trajectories, orig-
inating from the red ×s and reaching the goal state marked
by a red square. The distance to the manifold is color-coded,
red being the most distant states and the distance decreasing
towards the blue volume. States that are closer to the manifold
are transparent for clarity. The three Figures are rotated views
of the same plot. Figure 32 demonstrates how the manifold
metric creates a tunnel of desirable states that surround the
demonstrated solution set.

Fig. 32. Volumetric plot of the manifold metric that allows for reactive
feedback control. The color-coding signifies distance to the manifold model,
ranging from red (furthest) to blue. Small distance volumes are transparent for
clarity. All three figures are rotated views of the same plot and demonstrate
how the manifold metric creates a tunnel of desirable states that surround the
demonstrated solution set.

IX. CONCLUSION

We address the problem of encoding skills, including con-
straints and variability implicit in the set of feasible solutions
to an underlying problem (which is typically akin to an optimal
control problem), and using this encoding for the purposes of
trajectory generation in a constrained setting, such as when
novel obstacles must be accounted for. A key feature of our
approach is that we naturally cope with incomplete initial
specifications in that we do not assume an analytical task
specification at the outset. Instead, we learn from data (which
may come from traces of a human expert of a collection of
numerical optimization solutions to instances of the problem
class) to induce a manifold encoding the skill and we devise
algorithms for motion planning on this manifold and reac-
tive control when the system is perturbed, either along the
manifold or, more importantly, away from the manifold. We
discuss many different experiments to elucidate the concepts,
including comparative experiments against a state of the art
imitation learning method - to identify weaknesses of existing
approaches that we are able to circumvent.

We build on many different lines of work. Control the-
orists, especially in the area of geometric control theory,
have long investigated ways to exploit inherent symmetries
in dynamical systems to define control strategies. However,
often, these results have been restricted to a few specific types
of systems and have not yet addressed the rich variety of
robotic motions we wish to implement with modern humanoid
systems. In machine learning, manifold learning is becoming
an established method, although mostly used to define reduced
dimensional coordinates within which visualization or clus-
tering procedures are devised. As we have noted above, this
is quite different from the objective of planning and control
where we need to be able to enforce corrective vector fields
in the ambient space while simultaneously utilizing a low-
dimensional task encoding. This has been the focus of our
work and this viewpoint and use of the underlying tool in a
novel way is an aspect of our novel contributions.

There are many ways in which one could build on the ideas
described above. We have demonstrated our approach on a
number of different robot platforms, to argue for the broader
applicability of the methods. Our approach applies to skills of
varying dimensionality though its computational efficiency is
inversely proportional to the inherent manifold dimensionality.
The class of problems that our approach can best address

24

is that of robotic skills that produce complex but smoothly
varying solution sets, i.e. do not exhibit discontinuous changes
of behaviour. However, we have restricted attention to motion
planning in configuration spaces, involving manifolds in a
state space without higher order terms such as velocities and
accelerations. Incorporating these would be of great interest as
we target more dynamic movements. Also, we have presented
one way to define a corrective vector field in the ambient
space, to compensate for large perturbations. Our construction
is based on the fact that we do not have an explicit task
specification apart from the demonstration traces, so that one
natural solution to the problem of perturbations is to quickly
revert to the feasible subspace. There are clearly going to be
cases where this is suboptimal and a better corrective strategy
is possible. Devising such strategies despite incomplete task
specifications should be of great practical interest within
robotics. More generally speaking, the solution presented in
this paper pertains to one skill, such as stably standing on one
foot. A competent autonomous robot must marshal many such
skills in order to function effectively in the human-competitive
manner we roboticists often envision. This requires methods
to compose skill manifolds, to learn suitable compositions and
to learn to perform motion synthesis in this extended setting.
We anticipate, and hope, that even in this extended setting,
encodings such as ours could provide both conceptual and
computational benefits.

ACKNOWLEDGMENT

This work has taken place in the Robust Autonomy and
Decisions group within the School of Informatics. Research of
the RAD Group is supported by the UK Engineering and Phys-
ical Sciences Research Council (grant number EP/H012338/1)
and the European Commission (TOMSY Grant Agreement
270436, under FP7-ICT-2009.2.1 Call 6).

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
ICML ’04, New York, NY, USA, 2004. ACM.

Dmitry Berenson and Siddhartha Srinivasa. Probabilistically
complete planning with end-effector pose constraints. In
IEEE International Conference on Robotics and Automation
(ICRA ’10), May 2010.

Dmitry Berenson, Siddhartha Srinivasa, David Ferguson, and
James Kuffner. Manipulation planning on constraint man-
ifolds. In IEEE International Conference on Robotics and
Automation (ICRA ’09), May 2009.

Christopher M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer, 1st
ed. 2006. corr. 2nd printing edition, October 2007. ISBN
0387310738.

Sebastian Bitzer, Ioannis Havoutis, and Sethu Vijayakumar.
Synthesising novel movements through latent space mod-
ulation of scalable control policies. In Lecture Notes
in Computer Science, pages 199–209. Springer Berlin /

Heidelberg, 2008. ISBN 978-3-540-69133-4. doi: 10.1007/
978-3-540-69134-1 20.

V. Boor, M.H. Overmars, and A.F. van der Stappen. The gaus-
sian sampling strategy for probabilistic roadmap planners.
IEEE International Conference onRobotics and Automation,
2, 1999.

Matthew Brand. Charting a manifold. In Advances in Neural
Information Processing Systems 15, pages 961–968. MIT
Press, 2003.

Tim Bretl, Sanjay Lall, Jean-Claude Latombe, and Stephen
Rock. Multi-step motion planning for free-climbing robots.
In in Workshop on the Algorithmic Foundations of Robotics
(WAFR), pages 1–16, 2004.

R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential
Composition of Dynamically Dexterous Robot Behaviors.
International Journal of Robotics Research, 18(6):534–555,
1999.

S. Calinon and A. Billard. A probabilistic programming by
demonstration framework handling skill constraints in joint
space and task space. In Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS ’08),
pages 367–372, September 2008.

S. Calinon and A. Billard. Statistical learning by imitation
of competing constraints in joint space and task space.
Advanced Robotics, 23:2059–2076, 2009.

R. Chalodhorn, D.B. Grimes, G.Y. Maganis, R.P.N. Rao, and
M. Asada. Learning humanoid motion dynamics through
sensory-motor mapping in reduced dimensional spaces.
In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA ’06), May 2006.

David C. Conner. Integrating Planning and Control for Con-
strained Dynamical Systems. PhD thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, January 2008.

David C. Conner, Alfred Rizzi, and Howie Choset. Compo-
sition of local potential functions for global robot control
and navigation. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003), volume 4.
IEEE, October 2003.

David C. Conner, Howie Choset, and Alfred Rizzi. Integrated
planning and control for convex-bodied nonholonomic sys-
tems using local feedback. In Proceedings of Robotics:
Science and Systems II, pages 57–64, Philadelphia, PA,
August 2006. MIT Press.

D.C. Conner, H. Choset, and A.A. Rizzi. Flow-through
policies for hybrid controller synthesis applied to fully
actuated systems. IEEE Transactions on Robotics, 25, 2009.

Jose Costa and Alfred O. Hero. Manifold learning with
geodesic minimal spanning trees. Computing Research
Repository (CoRR), 2003.

J. J. Craig. Introduction to Robotics. Addison Wesley, 2nd
edition, 1989.

Chris Dever, Bernard Mettler, Eric Feron, Jovan Popovic’, and
Marc Mcconley. Trajectory interpolation for parametrized
maneuvering and flexible motion planning of autonomous
vehicles. AIAA Guidance, Navigation, and Control Confer-
ence, 2004.

Chris Dever, Bernard Mettler, Eric Feron, Jovan Popovic’,
and Marc Mcconley. Nonlinear trajectory generation for

25

autonomous vehicles via parameterized maneuver classes.
Journal of Guidance, Control and Dynamics, 29:289–302,
2006.

Rosen Diankov, Nathan Ratliff, David Ferguson, Siddhartha
Srinivasa, and James Kuffner. Bispace planning: Concurrent
multi-space exploration. In Robotics: Science and Systems,
June 2008.

P. Dollár, V. Rabaud, and S. Belongie. Learning to traverse
image manifolds. In Neural Information Processing Systems
(NIPS), Dec. 2006.

P. Dollár, V. Rabaud, and S. Belongie. Non-isometric manifold
learning: Analysis and an algorithm. In International
Conference on Machine Learning (ICML), June 2007.

Brian Eriksson and Mark Crovella. Estimating intrin-
sic dimension via clustering. In IEEE Statistical Sig-
nal Processing Workshop (SSP), Ann Arbor, MI, Au-
gust 2012. URL http://www.cs.bu.edu/faculty/crovella/
paper-archive/ssp12-cluster-dimension.pdf.

E. Frazzoli, M. A. Dahleh, and E. Feron. A maneuver-based
hybrid control architecture for autonomous vehicle motion
planning,. In T. Samad and G. Balas, editors, Software
Enabled Control: Information Technology for Dynamical
Systems. Wiley-IEEE Press, 2003.

E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based mo-
tion planning for nonlinear systems with symmetries. IEEE
Trans. on Robotics, 21(6):1077–1091, December 2005.

RJ Full and DE Koditschek. Templates and anchors: neurome-
chanical hypotheses of legged locomotion on land. Journal
of Experimental Biology, 202(23):3325–3332, 1999. URL
http://jeb.biologists.org/cgi/content/abstract/202/23/3325.

Elena Gribovskaya, Khansari Zadeh, Seyed Mohammad, and
Aude Billard. Learning Nonlinear Multivariate Dynamics
of Motion in Robotic Manipulators. International Journal
of Robotics Research, 2010. ISSN 0278-3649. doi: NA.

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements
of Statistical Learning. Springer, August 2001. ISBN
0387952845.

Ioannis Havoutis and Subramanian Ramamoorthy. Geodesic
trajectory generation on learnt skill manifolds. International
Conference on Robotics and Automation (ICRA), 2010.
Proceedings 2010 IEEE, 15-19, 2010a.

Ioannis Havoutis and Subramanian Ramamoorthy. Constrained
geodesic trajectory generation on learnt skill manifolds.
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS ’10)., October 2010b.

Matthias Hein and Jean-Yves Audibert. Intrinsic dimensional-
ity estimation of submanifolds in rd. In Proceedings of the
22nd international conference on Machine learning, ICML
’05, pages 289–296, New York, NY, USA, 2005. ACM.
ISBN 1-59593-180-5. doi: 10.1145/1102351.1102388. URL
http://doi.acm.org/10.1145/1102351.1102388.

M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dy-
namical system modulation for robot learning via kines-
thetic demonstrations. IEEE Transactions on Robotics,
24(6):1463 –1467, dec. 2008. ISSN 1552-3098. doi:
10.1109/TRO.2008.2006703.

A.J. Ijspeert, J. Nakanishi, and S. Schaal. Trajectory forma-
tion for imitation with nonlinear dynamical systems. In

Intelligent Robots and Systems, 2001. Proceedings. 2001
IEEE/RSJ International Conference on, volume 2, pages
752 –757 vol.2, 2001. doi: 10.1109/IROS.2001.976259.

Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Move-
ment imitation with nonlinear dynamical systems in hu-
manoid robots. In In IEEE International Conference on
Robotics and Automation (ICRA ’02), pages 1398–1403,
2002.

P. Isto and M. Saha. A slicing connection strategy for
constructing prms in high-dimensional cspaces. Proceedings
of the IEEE International Conference on Robotics and Au-
tomation (ICRA ’06)., pages 1249–1254, May 2006. ISSN
1050-4729. doi: 10.1109/ROBOT.2006.1641880.

Odest Chadwicke Jenkins and Maja J Mataric. A spatio-
temporal extension to isomap nonlinear dimension reduc-
tion. In International Conference on Machine Learning
(ICML ’04), pages 441–448, 2004.

Balázs Kégl. Intrinsic Dimension Estimation Using Pack-
ing Numbers. URL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.20.3428.

M. B. Kobilarov and J. E. Marsden. Discrete geometric
optimal control on lie groups. IEEE Transactions on
Robotics, 27(4):641 –655, Aug. 2011. ISSN 1552-3098.
doi: 10.1109/TRO.2011.2139130.

James J. Kuffner, Satoshi Kagami, Koichi Nishiwaki,
Masayuki Inaba, and Hirochika Inoue. Dynamically-stable
motion planning for humanoid robots. Auton. Robots, 12
(1):105–118, 2002. ISSN 0929-5593. doi: http://dx.doi.org/
10.1023/A:1013219111657.

J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient
approach to single-query path planning. Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA ’00), 2:995–1001 vol.2, 2000. doi: 10.1109/ROBOT.
2000.844730.

S. M. LaValle. Planning Algorithms. Cambridge University
Press, Cambridge, U.K., 2006.

Steven M. LaValle and James J. Kuffner. Random-
ized kinodynamic planning. The International Journal
of Robotics Research, 20(5):378–400, 2001. doi: 10.
1177/02783640122067453. URL http://ijr.sagepub.com/cgi/
content/abstract/20/5/378.

Elizaveta Levina and Peter J. Bickel. Maximum Likelihood
Estimation of Intrinsic Dimension. In NIPS, 2004.

William S. Levine. The Control Handbook. IEEE PRESS,
1996.

Andrew D. Lewis. Is it worth learning differential geometric
methods for modeling and control of mechanical systems?
Robotica, 25:765–777, November 2007. ISSN 0263-5747.
doi: 10.1017/S0263574707003815. URL http://portal.acm.
org/citation.cfm?id=1317140.1317151.

Jorge Nocedal and Stephen J. Wright. Numerical Optimiza-
tion. Springer, 2nd edition, 2006.

P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learn-
ing and generalization of motor skills by learning from
demonstration. In International Conference on Robotics and
Automation (ICRA ’09), 2009. URL http://www-clmc.usc.
edu/publications/P/pastor-ICRA2009.pdf.

S. Ramamoorthy and Benjamin J. Kuipers. Trajectory gen-

http://www.cs.bu.edu/faculty/crovella/paper-archive/ssp12-cluster-dimension.pdf
http://www.cs.bu.edu/faculty/crovella/paper-archive/ssp12-cluster-dimension.pdf
http://jeb.biologists.org/cgi/content/abstract/202/23/3325
http://doi.acm.org/10.1145/1102351.1102388
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.3428
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.3428
http://ijr.sagepub.com/cgi/content/abstract/20/5/378
http://ijr.sagepub.com/cgi/content/abstract/20/5/378
http://portal.acm.org/citation.cfm?id=1317140.1317151
http://portal.acm.org/citation.cfm?id=1317140.1317151
http://www-clmc.usc.edu/publications/P/pastor-ICRA2009.pdf
http://www-clmc.usc.edu/publications/P/pastor-ICRA2009.pdf

26

eration for dynamic bipedal walking through qualitative
model based manifold learning. IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 359–366,
May 2008. ISSN 1050-4729. doi: 10.1109/ROBOT.2008.
4543234.

Subramanian Ramamoorthy and Benjamin J. Kuipers. Qual-
itative hybrid control of dynamic bipedal walking. In
Proceedings of Robotics: Science and Systems, Philadelphia,
USA, August 2006.

Carl E. Rasmussen and Christopher Williams. Gaussian
Processes for Machine Learning. MIT Press, 2006. URL
http://www.gaussianprocess.org/gpml/.

S. Rodriguez, Xinyu Tang, Jyh-Ming Lien, and N.M. Amato.
An obstacle-based rapidly-exploring random tree. Proceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA ’06), pages 895–900, 15-19 2006. ISSN
1050-4729.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science, 290(5500):
2323–2326, Dec 2000. doi: 10.1126/science.290.5500.2323.

Alla Safonova, Jessica K. Hodgins, and Nancy S. Pollard.
Synthesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. ACM Transactions
in Graphics, 23(3):514–521, 2004. ISSN 0730-0301. doi:
http://doi.acm.org/10.1145/1015706.1015754.

Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational
approaches to motor learning by imitation. Philosophi-
cal Transactions: Biological Sciences, 358(1431):537–547,
2003. ISSN 09628436.

Bruno Siciliano and Oussama Khatib, editors. Springer
Handbook of Robotics. Springer, 2008. ISBN 978-3-540-
23957-4.

Robert F. Stengel. Optimal control and estimation. John Wiley
& Sons, 2nd edition, 1995.

M. Stilman. Task constrained motion planning in robot joint
space. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’07), pages 3074–3081, 29 2007-
Nov. 2 2007. doi: 10.1109/IROS.2007.4399305.

Russ Tedrake, Ian R. Manchester, Mark Tobenkin, and
John W. Roberts. Lqr-trees: Feedback motion planning
via sums-of-squares verification. The International Jour-
nal of Robotics Research, 29(8):1038–1052, 2010. doi:
10.1177/0278364910369189. URL http://ijr.sagepub.com/
content/29/8/1038.abstract.

Yee Whye Teh and Sam Roweis. Automatic alignment of
local representations. In Advances in Neural Information
Processing Systems 15, pages 841–848. MIT Press, 2003.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A
global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500):2319–2323, Dec 2000. doi:
10.1126/science.290.5500.2319.

S. Thomas, M. Morales, Xinyu Tang, and N.M. Amato.
Biasing samplers to improve motion planning performance.
IEEE International Conference on Robotics and Automation
(ICRA ’07), pages 1625–1630, April 2007. ISSN 1050-
4729. doi: 10.1109/ROBOT.2007.363556.

Emanuel Todorov and Weiwei Li. A generalized iterative LQG
method for locally-optimal feedback control of constrained

nonlinear stochastic systems. In In proceedings of the
American Control Conference, pp 300-306, 2005.

Jakob Verbeek. Learning nonlinear image manifolds by global
alignment of local linear models. IEEE Transactions on
Pattern Analysis & Machine Intelligence, 28(8):1236–1250,
aug 2006. URL http://lear.inrialpes.fr/pubs/2006/Ver06”.

Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. In-
cremental online learning in high dimensions. Neural
Compututation, 17(12):2602–2634, 2005. ISSN 0899-7667.
doi: http://dx.doi.org/10.1162/089976605774320557.

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Gaus-
sian process dynamical models for human motion. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
30(2):283–298, 2008. ISSN 0162-8828. doi: http://dx.doi.
org/10.1109/TPAMI.2007.1167.

Gu Ye and Ron Alterovitz. Demonstration-guided motion
planning. International Symposium on Robotics Research
(ISRR), August 2011.

L. Zhang, S. LaValle, and D. Manocha. Global vector field
computation for feedback motion planning. In IEEE In-
ternational Conference on Robotics and Automation (ICRA
’09), pages 477–482, 2009.

APPENDIX A
INDEX TO MULTIMEDIA EXTENSIONS

Extension Type Description
1 Video Examples of reactive control with learnt

skill manifolds. Examples of manifold pro-
jection and path planning.

http://www.gaussianprocess.org/gpml/
http://ijr.sagepub.com/content/29/8/1038.abstract
http://ijr.sagepub.com/content/29/8/1038.abstract
http://lear.inrialpes.fr/pubs/2006/Ver06"

	Introduction
	Background
	Motivation and comparison to dim. reduction methods

	Manifold learning
	Model formulation
	Formulation of the learning problem
	Learning algorithm
	Intrinsic manifold dimensionality

	Path planning and control with manifolds
	The manifold encoding for robotic skills
	Learning the manifold model
	Optimal geodesic paths
	Geodesic path initialization
	Geodesic path optimization

	Changing environments and dynamic constraints
	Constrained geodesic paths
	Curvature smoothing

	Control on and to a skill manifold
	Projection of states on manifold

	Benefits of manifold control

	Experiments with a three link arm
	Reaching with a robotic arm
	Reaching examples
	Implementation
	Generation of novel reaching solutions

	Constrained reaching on a robotic arm
	Reaching examples
	Implementation
	Generation of constrained reaching motions
	Remarks

	Manifold control on the 3-link arm
	Implementation
	Evaluation

	Experiments with the Kuka Lightweight arm
	Serving example with the Kuka Lightweight Robot arm
	Implementation
	Evaluation

	Experiments with the Nao humanoid robot
	Walking with NAO humanoid robot
	Quasi-static walking examples
	Implementation
	Generation of novel walking solutions

	Constrained stepping with the Nao humanoid
	Implementation
	Generation of constrained walking motions

	Standing on one leg with the Nao humanoid
	Implementation
	Numerical optimization
	Evaluation

	Comparison to Learning by Demonstration
	Learning by demonstration
	The LbD approach

	iCub data
	Model comparison
	Results
	Manifold metric

	Conclusion
	Biographies
	Ioannis Havoutis
	Subramanian Ramamoorthy

	Appendix A: Index to Multimedia Extensions

