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ABSTRACT
Despite recent advances in 3-D motion capture, the problem
of simultaneously tracking human posture and position in
an unconstrained environment remains open. Optical sys-
tems provide both types of information, but are confined
to a restricted area of capture. Inertial sensing alleviates
this restriction, but at the expense of capturing only rela-
tive (postural) and not absolute (positional) information. In
this paper, we propose an algorithm combining the relative
merits of these systems to track both position and posture
in challenging environments. Offline, we combine an optical
(Kinect) and an inertial sensing (Orient-4) platform to learn
a mapping from posture variations to translations, which we
encode as a translation manifold. Online, the optical source
is removed, and the learned mapping is used to infer posi-
tions using the postures computed by the inertial sensors.
We first evaluate our approach in simulation, on motion se-
quences with ground-truth positions for error estimation.
Then, the method is deployed on physical sensing platforms
to track human subjects. The proposed algorithm is shown
to yield a lower average cumulative error than comparable
position tracking methods, such as double integration of ac-
celerometer data, on both simulated and real sensory data,
and in a variety of motions and capture settings.

Categories and Subject Descriptors
H.4.0 [Information Systems Applications]: General
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Wearable inertial sensors, optical motion capture, transla-
tion models, manifold learning

1. INTRODUCTION
Many information processing applications deal with the

analysis of human motion, as captured by an ensemble of
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sensor devices. In this context, it is often essential to de-
termine both the absolute position of tracked subjects, as
well as finer-grained information on their body posture, such
as arm movements or gait patterns. Furthermore, it is of-
ten required that motion be captured in challenging, un-
constrained areas, for example, a large office with multiple
rooms and corridors, or an open outdoor environment.

The problem of simultaneous posture and position track-
ing is of interest to a wide range of motion capture ap-
plications. One notable domain is tracking in construc-
tion and fire-fighting missions, which requires monitoring of
the deployed responders in challenging and potentially un-
known environments. Position tracking systems that have
been considered in this domain (e.g. indoor global posi-
tioning sensor (GPS) systems, ultra-wide bands [12], radio-
frequency identification tags [11]) typically require an in-
frastructure that requires detailed knowledge of the envi-
ronment (e.g. placing signal receivers at known positions),
while also suffering from line-of-sight constraints. Address-
ing these needs is a challenging task when the environment
is difficult to negotiate or cannot be accessed by the system
designers. Furthermore, these systems cannot monitor pos-
ture, which is often important in order to determine and as-
sess the actions performed by the deployed subjects. Similar
needs arise in application areas such as physical gaming [18]
and human-robot interaction in rescue missions [6], where
human position and posture must also be captured in un-
constrained settings. Existing techniques in these domains
are similarly restricted to either providing only part of the
required data, or requiring special infrastructure in order to
be deployed. The above issues raise the need for tracking
systems that can produce position and posture from a single
set of sensory devices, which are not sensitive to the mor-
phology of the capture environment, and which do not rely
on synchronisation between multiple heterogeneous sources.

Despite recent advances in motion capture and sensing
technologies, fulfilling the above requirements in a robust
manner is a challenging task. For instance, optical motion
capture systems can capture both positional and postural
data, but only within contained environments limited to a
small area of capture. Inertial sensing systems allow for
greater flexibility in the capture environment, as they are
not restricted by line-of-sight constraints between the sens-
ing devices and the tracked subject. However, they do so at
the expense of not yielding absolute positions, as their calcu-
lations are based on relative rotational estimates, e.g. gyro-
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Figure 1: Overall structure of the proposed system. An inertial sensing and an optical source are synchronised
and jointly used to learn generative models of whole-body translations in an offline phase. These translations
are encoded as linear regression-based mappings from projected latent representations of posture differences,
as detected from the inertial source, and positional variations, as detected from the optical source. Online,
the optical source is removed, and the learned model is used to predict translations for the tracked subject.

scope readings. Similarly, general-purpose GPS sensors can
compute absolute positions, but at a coarse level of preci-
sion and without supplying postural information, while also
having limited applicability in indoor environments. Other
motion capture technologies, e.g. magnetic systems, also
suffer from one or multiple of the above limitations.

In order to address the challenges of simultaneous pos-
ture and position capture in unconstrained environments,
one would need to combine the relative strengths of these
heterogeneous systems in a principled manner. In this pa-
per, we propose a hybrid position and posture tracking algo-
rithm (Figure 1), which jointly uses an inertial and an optical
motion capture system to learn local models of translation
for a given human subject. The algorithm consists of an
offline learning and online generation phase. In the offline
phase, body posture data collected from the inertial sen-
sors are synchronised with position data captured from the
optical source and aggregated into a single dataset. Due to
their high dimensionality, the posture data are projected and
clustered on a low-dimensional manifold, which captures the
salient kinematic structure of the dataset. For each cluster,
the projected data are used to learn a mapping from local
posture differences to whole-body translations through linear
regression. In the online phase of the algorithm, the optical
source is removed, and the learned models are used to gen-
erate translation vectors from estimated posture differences.
By iteratively applying these translations, the proposed sys-
tem can track both the position and the posture of a subject
performing motions similar to those captured in the offline
phase, thus overcoming the main limitation of inertial sys-
tems discussed above. Moreover, due to the removal of the
optical source in the online phase, the system is not affected
by the morphology of the capture environment.

In the remainder of this paper, we first review related mo-
tion capture technologies, explaining how our approach com-
bines their relative strengths (Section 2). Then, we describe
our method for posture and position tracking, distinguish-
ing between the translation learning and generation phases
(Section 3). In Section 4, our approach is evaluated in sim-
ulations and physical experiments; first, on data from the
Carnegie Mellon Motion Capture Database [3], which are
annotated with ground-truth positions, and then, on a hu-
man motion capture environment, where we use the Kinect
and the Orient platform as sensing systems (Figure 2). Our
algorithm is shown to yield a lower overall position error

than the related established tracking method of acceleration
integration. Furthermore, in the physical experiments, we
demonstrate examples of successful position tracking in a
challenging office environment, where existing motion cap-
ture technologies cannot be applied in isolation. We review
the key features of our work in Section 5.

(a) Microsoft Kinect. (b) Orient-4 device.

Figure 2: Motion tracking platforms. (a): Opti-
cal source – Kinect device with two cameras and
a depth-finding sensor. (b): Inertial measurement
unit – Orient-4 device with tri-axial gyroscopes, ac-
celerometers, and magnetometers.

2. BACKGROUND AND RELATED WORK
Traditional optical motion capture systems, e.g. [4], use

an ensemble of high-resolution cameras to track the loca-
tions of a set of reflective markers placed on the body of a
subject. The marker positions are used to compute the full
pose (position and posture) of the subject. However, optical
systems suffer from a number of drawbacks that impact their
applicability. First, motion capture must be carried out in
dedicated studios, which are often expensive to set up and
maintain. Second, the total area of capture is limited to
a small volume, and subjects cannot be tracked outside its
boundaries. Thus, optical systems cannot be used to track
subjects interacting outside the studio, e.g. moving in and
out of rooms, or navigating along corridors in a building.
Third, occlusion problems impact the ability of these sys-
tems to track subjects consistently and reliably.

A recent development has been the creation of devices
combining stereo cameras and depth-estimating sensors, no-
tably the Kinect [1] (Figure 2(a)). The output of these sen-
sors is used to generate a three-dimensional point cloud,



which can then be analysed to determine the pose of a
tracked subject, or fit the data to a skeleton model [16].
These stereo-camera devices are significantly cheaper than
traditional optical systems, and remove the need for markers
on the subject’s body. Furthermore, the portability of the
sensors allows for anyplace motion capture. However, like
traditional optical systems, these devices must remain fixed
during tracking, and the volume of capture is limited to ap-
proximately 15m3. This makes them unsuitable for tracking
subjects in large or unconstrained spaces.

An alternative to optical systems are wireless inertial sens-
ing platforms, such as the Orient interface [21] (Figure 2(b)).
Inertial sensing systems collect data from an ensemble of
sensor nodes placed on the subject’s body. Each device typ-
ically consists of 3-axis inertial sensors such as gyroscopes,
accelerometers, and magnetometers. These sensors jointly
estimate the rotation of the body part the device is placed
on, relative to a fixed point on the subject’s body. Data
from the different body parts are transmitted wirelessly to
a base station and aggregated to determine the overall pos-
ture of the subject. Alternatively, data can also be stored on
the devices and analysed offline at a later time. The latter
feature makes these devices suitable for motion capture and
processing in environments impacted by communication and
data transmission constraints.

Due to the wireless transmission and capture of data, iner-
tial sensing avoids the occlusion problems arising in optical
systems. More importantly, as no fixed tracking source is
required, subjects can be tracked in a greater variety of en-
vironments and in larger areas than with optical systems.
The main drawback of inertial sensing is the relative rota-
tional nature of estimates, which means that only postures
can be determined directly. Unfortunately, this approach
does not extend to absolute spatial positions, as computa-
tions are performed relative to a stationary reference point.

Position tracking using inertial measurement units has
been the subject of several studies, most following a model-
based approach, where measurements are filtered through
a position model to predict the most likely translation of
the tracked subject. Employed models range from Kalman
[20, 8, 10] and particle filters [13], to alternative heuristic
approaches based on gait event detection [15, 22, 9].

Our approach is different in being a model-free method
with respect to the measurement units and their output
data, where no assumptions are made on the placement of
the sensors or the nature of the motion being performed.
Instead, the aggregated sensory data is treated as a single
feature vector, from which a mapping to whole-body transla-
tions is learned. This leads to an unsupervised method that
can learn a model of translation without the incorporation
of additional knowledge on the problem. However, the lack
of a specific model also means that the quality of the learned
mappings inevitably depends on the quality and variability
of the training examples. In later sections of this paper, we
provide illustrations of how the accuracy of our approach is
affected by the provided data.

Motivated by the above features, in our experimental eval-
uation we compare against the established model-free method
of double integration of accelerometer data. This method re-
lies on the integration of data coming from a single sensor
in order to track position over time, without having an in-
ternal model on the placement of that sensor. In Section
4, we show that using multiple sensors in conjunction with

a learning algorithm can lead to better tracking of whole-
body positions, in both simulated and physical experiments.
Furthermore, our approach can also be combined with exist-
ing models, where the generated translations can be treated
as predictive estimates for a filter. Integration with model-
based filtering methods is an area of future work for us.

Dimensionality reduction has been used in inertial sensor
networks as a discriminative model for activity recognition
and gait phase detection [19, 17]. In our work, we extend
this notion by using low-dimensional subspaces as gener-
ative models for translations. In this generative context,
learned manifolds have been used in robotics, in order to
facilitate imitation of human gaits by humanoid robots [14,
7]. By adopting this flexible representation, our objective is
to similarly approximate a wide variety of motion dynamics.

3. METHOD

3.1 Sensory device outputs

3.1.1 Kinect

Figure 3: Body contour tracking using the Kinect.
The tracking software automatically detects the out-
line of a human body, and tracks it as a cloud of
points (shown as a blue blob).

We use the OpenNI body tracking interface [2] to detect
and track the position of human subjects (Figure 3). The
software automatically detects the outline of a human body,
and tracks it as a collection of NI image point coordinates,
~B = {(x1, y1), . . . , (xNI , yNI )}. The absolute position of
the tracked body is approximated as the centroid of these
points as computed through image moments.

Let W , H be the width and height (in pixels) of the cam-
era image, and let I be a 2-D array, such that

I(a, b) =

{
1, (xa, yb) ∈ ~B

0, (xa, yb) /∈ ~B
, (1)

where 1 ≤ a ≤ W, 1 ≤ b ≤ H. The raw image moments,
Mij are defined as

Mij =

W∑
a=1

H∑
b=1

xia · yjb · I(a, b). (2)

Based on these definitions, the image coordinates of the
centroid of the tracked body, C

.
= (x̄, ȳ) are given by

(x̄, ȳ) = ( round(M10/M00), round(M01/M00) ). (3)



The depth of each image pixel (with respect to the device)
is measured by the range-finding sensor of the Kinect. This
information is used to convert the computed image centroid,
(x̄, ȳ), to the centroid of the body surface that is visible to
the Kinect. These coordinates approximate to the absolute
positional coordinates of the tracked body,

p = (xB , yB , zB). (4)

3.1.2 Orient inertial measurement units
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Figure 4: Posture estimation using the Orient de-
vices. (a): 3-D model of the tracked body. Each
device is mapped to a different limb. (b): Orien-
tation estimation. Quaternions are computed from
raw sensor data and converted to Euler angles. (c):
Example of angles produced by an Orient device.

The posture of the tracked subject is computed by the
Orient devices. Each device is placed on a limb of the sub-
ject’s body (Figure 4(a)). The raw data from the device’s
sensors (triaxial gyroscope, accelerometer, and magnetome-
ter) computes a quaternion representing the orientation at
that limb, which is in turn converted into three-dimensional
Euler angles (Figure 4(b)) based on a pre-specified rotation
order. Due to this convention, an Euler angle can repre-
sent the orientation more succinctly than the corresponding
quaternion, thus reducing the size of our feature set. An
example of the angles output by an Orient is given in Fig-
ure 4(c). By aggregating the angles computed by all devices
placed on the subject’s body, we obtain the posture vector

π = {(θx1 , θy1 , θ
z
1), . . . , (θxND

, θyND
, θzND

)}, (5)

where ND is the number of deployed units, and (θxi , θ
y
i , θ

z
i )

are the angles computed by the i-th unit.

3.2 Learning translation manifolds

3.2.1 Offline learning phase
In the offline phase, Kinect positions are synchronised

with data from the Orient devices. From this data, a map-
ping from posture variations, as computed by the Ori-

ent devices, to translations, as computed by the Kinect, is
learned through local linear regression.

Let {(p1, π1, t1), . . . , (pτ+1, πτ+1, tτ+1)} be a set of recorded
synchronised training data, comprising (τ+1) absolute posi-
tion and posture pairs, along with the times t at which each
pair was recorded. By taking the difference of successive
instances, we obtain a training data set of τ unnormalised
translations (i.e. position differences), posture variations1,
and time differences,

D̃ = {(d̃p1, d̃π1, dt1), . . . , (d̃pτ , d̃πτ , dtτ )} = {(p2 − p1,
π2 − π1, t2 − t1), . . . , (pτ+1 − pτ , πτ+1 − πτ , tτ+1 − tτ )}.

(6)

At this stage, translations d̃p = (d̃x, d̃y, d̃z) do not account
for the absolute orientation of the subject’s body. To address
this problem, we assume that at least one inertial measure-
ment unit, ū, is placed on a point where it can measure the
subject’s absolute orientation, θ̄, with respect to the trans-
verse plane of motion. We focus on this single angle (instead
of computing three-dimensional absolute orientations) be-
cause it is closely correlated with most turning movements
that occur during walking motion sequences. Thus, by nor-
malising with respect to θ̄, we can compensate for turns and
changes of direction in the motion of the subject. We take
ū to be the device placed on the subject’s waist or hips as a
represantative location for this purpose. The required angle
θ̄ is computed through ū’s magnetometers, which measure
absolute orientations using Earth’s magnetic field. Thus,
the unnormalised translation components on the transverse

plane, (d̃x, d̃y), can be normalised through the rotation(
d̃x

d̃y

)
=

(
cos(−θ̄) − sin(−θ̄)
sin(−θ̄) cos(−θ̄)

)
·

(
d̃x

d̃y

)
. (7)

We also normalise translations and posture differences with
respect to their recorded time intervals. Thus, the nor-
malised training data set is given by

D = {(dp1, dπ1), . . . , (dpτ , dπτ )} =

{(d̃p1/dt1, d̃π1/dt1), . . . , (d̃pτ/dtτ , d̃πτ/dtτ )}.
(8)

-Dimensionality reduction: The size of each posture varia-
tion vector, dπ, is D = 3·ND, where ND is the number of de-
ployed devices. Even if ND is not particularly large, it may
be difficult to learn a direct mapping to associated trans-
lations, due to the different modalities of the posture data.
To overcome this problem, we project posture variations to
a latent space, from which a mapping can be learned more
efficiently. We use Principal Component Analysis (PCA),
which embeds data into a low-dimensional linear manifold
by maximising their variance [5]. Thus, this method seeks
to preserve the high-dimensional structure of the data in the
projected space. We review the key features of PCA below.

Let {dπi}, 1 ≤ i ≤ τ be the set of posture variation vec-
tors, each having dimensionality D. The mean, dπ, and
covariance matrix, S, of these vectors are given by

dπ =
1

τ

τ∑
i=1

dπi, S =
1

τ

τ∑
i=1

(dπi − dπ)(dπi − dπ)T , (9)

1Angle differences are constrained to lie in [−π,+pi).



respectively. Now let d be the target dimensionality of the
low-dimensional latent space, where d < D. We obtain the
d eigenvectors (or principal components) of S, u1, . . . , ud,
each of dimensionality D, corresponding to the d largest
eigenvalues, λ1, . . . , λd of this matrix. These vectors are set
as the columns of a D × d matrix

M =

u1,1 · · · ud,1
...

. . .
...

u1,D · · · ud,D

 (10)

The latent representation of a D-dimensional posture varia-
tion vector dπ is given by

φ = dπ ·M. (11)

We refer to the manifold projections φ as the feature vectors
of our translation learning algorithm. In both simulated and
physical experiments (Section 4), we set the target subspace
dimensionality to d = 3.
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Figure 5: Feature vector clustering example. (a):
Projected points. (b): Division in 100 clusters, each
represented by a different colour.

-Feature vector clustering: In a given set of training ex-
amples, there may be groups of similar posture variations
leading to related translation vectors. To exploit this simi-
larity, we group the projected feature vectors into clusters of
related data points, and learn a separate translation map-
ping for each cluster (instead of a single mapping for the
whole dataset). We use the k-means clustering algorithm,
which groups input points into a specified number of k dis-
tinct clusters [5]. As we use clustering in a learning context,
we use small (with respect to the size of the dataset) values
of k to avoid overfitting the training data; in our experi-
ments, this value does not exceed 2% of the overall number
of training points. Despite the need for this manually speci-
fied parameter, k-means clustering has the advantage that it
does not make assumptions about cluster structure (whereas
distribution methods such as expectation-maximisation [5]
assume a Gaussian form), while also favouring clusters of
approximately equal sizes.

Figure 5 illustrates an example of clustering on a set of
three-dimensional points. When applied on a dataset of τ
feature vectors, the algorithm returns the set of clusters C =
{c1, . . . , ck}, with centres ~µ = {c1.µ1, . . . , ck.µk}, where each
cluster ci, 1 ≤ i ≤ k, consists of a set of Ni feature vectors

ci = {φi1, . . . , φiNi
}. (12)

-Translation mapping learning: For each data cluster ci =
{φi1, . . . , φiNi

}, we learn a mapping from its constituent fea-

ture vectors to the corresponding translations, T c = {dpi1,

. . . , dpiNi
}. We learn a separate mapping for each direction

of motion (x, y, z) through linear regression on the training
points. In other words, we represent each translation com-
ponent as a linear function of the projected feature vectors.

To learn these mappings, we collect all feature vectors of
a cluster as a Ni × d design matrix,

X =

 φi1,1 · · · φi1,d
...

. . .
...

φiNi,1
· · · φiNi,d

 . (13)

Furthermore, we define three observation vectors, one for
each of the directions of motion, such that

x =

 dxi1
...

dxiNi

 , y =

 dyi1
...

dyiNi

 , z =

 dzi1
...

dziNi

 . (14)

For each observation vector v, we learn a linear mapping
from the design matrix X using least squares approximation,
represented by a set of d weights w:

w = (XTX)−1XTv . (15)

By applying this procedure to all three observation vectors,
x, y, z , we obtain the linear mapping weights for cluster
ci, wi

x,w
i
y,w

i
z, respectively. These can be collectively rep-

resented as the cluster translation mapping

Wi =

wi
x,1 · · · wi

x,d

wi
y,1

. . . wi
y,d

wi
z,1 · · · wi

z,d

 , (16)

with a different Wi computed for each cluster. Thus, the
latent space becomes a translation manifold that can gen-
erate translations from given feature vectors.

3.2.2 Online translation generation
Learned mappings can be applied to novel instances of

posture variations and predict whole-body translations. As-
suming a known initial estimate of position, (x0, y0, z0) and
orientation, θ0, predicted translations can be chained to-
gether to track position over time.

Let d̆πt be the subject’s estimated posture variation at
time t, and let θ̄t be the subject’s absolute orientation at
that time. Furthermore, let dtt be the length of the time
interval over which d̆πt was recorded. The projection of d̆πt
on the translation manifold, φ̆t, is computed as φ̆t = d̆πt ·M,
where M is the learned projection mapping from the high-
dimensional to the latent low-dimensional space. The cluster
nearest to φ̆t is given by

c∗ = arg min
ci∈C

δ(φ̆t, ci.µi) (17)

where δ(·, ·) is the Euclidean distance between two points.
Then, if W∗ is the cluster translation mapping for c∗, our
model predicts a normalised translation for φ̆t as

d̂pt
.
= (d̂x, d̂y, d̂z) = W∗ · φ̆Tt (18)

The updated predicted position at time t, x̃t, ỹt, z̃t, is ob-

tained by applying the orientation θ̄t to d̂pt, scaling it by dtt
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(c) Fast walk
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(e) Walk with turn
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Figure 6: Cumulative translation errors,12 CMU database motions. Red: Learned translation manifold
trained on given motion sequence. Blue: Double integration of root joint acceleration.

to reflect the length of the current time interval, and adding
it to the previously estimated position, (x̃t−1, ỹt−1, z̃t−1):

x̃tỹt
z̃t

 =

x̃t−1

ỹt−1

z̃t−1

+ dtt

cos(θ̄t) − sin(θ̄t) 0
sin(θ̄t) cos(θ̄t) 0

0 0 1


d̂xd̂x
d̂z

 ,

(19)

starting at the position (x̃t−1, ỹt−1, z̃t−1) = (x0, y0, z0).
Our method can generate translations from novel instances

of feature vectors, and track the position of a subject without
an optical source. This property is important in complex un-
constrained environments, where optical systems cannot be
directly applied. As joint angles are inherently supplied by
the inertial devices, our approach can simultaneously track
both position and posture from a single set of sensors.

4. RESULTS

4.1 Simulation results
The learning framework was first evaluated on sequences

from the Carnegie Mellon University (CMU) Database [3].
Motions in this dataset were captured using an optical sys-
tem that tracks reflective body markers. Posture vectors
were formed by aggregating the marker positions for the
lower body joints (thighs, shins, ankles, feet). Note that
this is a slightly different representation to the one given

in Section 3, where posture vectors consisted of joint an-
gles, not joint positions. However, this differentiation does
not impact the applicability of our algorithm, which has no
internal model of the nature of the supplied feature vectors.

The position of the root joint, at the subject’s hips, was
taken as the absolute position of the body. This was used
as a ground-truth benchmark, against which the iteratively
predicted positions were checked.

We compared against a related open-loop position gener-
ation technique, the double integration of acceleration. This
method similarly generates local translations that can be
chained together to compute positions. As the CMU dataset
does not explicitly provide acceleration data, we simulated
this information by extracting accelerations from successive
positions at the subject’s root joint, and integrating them
twice to generate translations.

We first assessed the ability of translation manifolds to re-
produce translations on the datasets they are trained on. To-
wards this end, we trained the learning algorithm on several
different motion sequences. We then compared the similar-
ity of the generated translations to the ground-truth trans-
lations, as estimated by differences of consecutive root joint
positions. Our metric is the cumulative translation error,
obtained by iteratively summing the Euclidean distance of
each generated vector from the corresponding ground truth.

The results for 12 distinct motion sequences, ranging from
simple straight walking to running with turns, are shown
in Figure 6. In all cases, the translations generated by the
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Figure 7: Overall position error estimation for 12 novel instances of unseen motion sequences. Red: Trajec-
tories estimated by learned translation manifold. Black: Ground-truth trajectories.

learned manifold yield a lower cumulative error than the cor-
responding double integration ones. For the simpler walking
motions, the discrepancy between the two methods is shown
to increase over time, thus suggesting that the translation
manifold is more effective at capturing motion dynamics.

The true potential of learned translation manifolds can
be fully assessed when applied on novel instances of pre-
viously unseen motions. In our second simulated experi-
ment, we trained our model on a dataset consisting of 11
different motions by the same subject: a straight walk, two
straight walks followed by a 90◦ left/right turn, two walks
with a left/right veer, a fast straight walk, a straight run,
two straight runs followed by a 90◦ left/right turn, and two
runs with a left/right veer. The total duration of these cap-
tures is 114 seconds, with walking-type and running-type
motions accounting for 86 and 28 seconds, respectively. By
including different types of motions, our aim was to model
a wide range of posture variation-translation pairs, and im-
prove generalisation to novel motion instances.

The learned mapping was applied on 12 new motion se-
quences of various types. For these motions, we measured
the discrepancy between the trajectories predicted by the
manifold, and the ground-truth trajectories. The resulting
trajectories are demonstrated in Figure 7. As previously,
our algorithm is shown to reproduce accurate positions for
normal walks, with the error increasing for running-type mo-
tions. This increase is partly explained by the larger number

of walking motion data points in the training set, which bi-
ases the manifold towards translations of smaller magnitude.

4.2 Experimental results
In the physical experiments, we evaluated the translation

learning algorithm on sensory data obtained from physical
devices, using the Kinect as the optical and the Orient plat-
form as the inertial sensing source. In the training phase,
synchronised data from the two sources were used to learn
translation manifolds. An important restriction in this case
was the small capture volume of the Kinect (approximately
15m3), which limited the variety of motions that could be
performed by the subject. Thus, our framework is evaluated
mainly on walking motions which require less physical space.

4.2.1 Constrained environment experiments
The learning algorithm was first compared with the accel-

eration integration method against ground-truth positions
estimated by the Kinect. Unlike simulation experiments, ac-
celerations were now directly supplied by the accelerometers
of Orient devices, so translations were generated through
double integration of this data.

We captured 18 motion sequences of variable length, rang-
ing from 20 to 180 seconds. We used a total of 4 Orient de-
vices, placed on the subject’s waist (root joint), right thigh,
left thigh, and left ankle. Motions were captured in an of-
fice environment, which impacted the quality of the sen-
sory readings, especially magnetometers, due to metal in
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Figure 8: Cumulative generated translation errors for 6 novel motion sequences. The learning algorithm
was trained on 12 sequences of varying length and motion composition. Top of each subfigure: Ground-truth
positions computed by the body tracking interface. Bottom: Cumulative errors. Red: Learned translation
manifold. Blue: Double integration of the acceleration of the root joint.

the building structure. For each capture, the subject was
allowed to perform any sequence and combination of walk-
ing and standing, provided s/he remained within the capture
area of the Kinect.

We selected 12 of the captured sequences as the training
set, and we used the remaining 6 as novel instances for eval-
uation. As with simulation experiments, we first compared
the cumulative error of translations generated by the learned

manifold, and translations from double integration of root
joint accelerations.

Figure 8 illustrates this comparison, along with the cor-
responding ground-truth positions captured by the Kinect.
In all 6 trials, the subject was observed to repeatedly move
around the capture area in a loop. Although in some cases
the cumulative error generated by the double integration
method was initially lower, in all trials the learning method
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(a) 1 sequence (369 points)
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(b) 2 sequences (675 points)
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(c) 3 sequences (945 points)
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(d) 5 sequences (1,741 points)
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(e) 10 sequences (3,127 points)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

Time (s)

C
um

ul
at

iv
e 

er
ro

r 
(m

)

 

 

Learned Translation
Manifold
Hip Accelerometer
Double Integration

(f) 12 sequences (4,357 points)

Figure 9: Effect of training data set size on generated translations. The cumulative error is shown to decrease
as the number of training motion sequences (and training data points) increases.

(a) (b) (c)

Figure 10: Unconstrained environment illustration. (a): Office room and corridor. (b): Illustration of the
approximate trajectory followed by the subject, starting and ending at the same point. (c): Approximate
dimensions of the trajectory.

had a considerably lower error at the end of the sequence.
This superior performance was achieved despite some irreg-
ularities in the captured positional data, as, for example,
in Figures 8(b) and 8(c). This demonstrates that our ap-
proach can learn a robust translation model from noisy sen-
sory data, which can yield more accurate translations than
methods operating directly on raw data.

The error of the translation manifold algorithm inevitably
depends on the size and quality of the training data set. To
better understand this effect, we assessed the performance
of the algorithm on the last trial of Figure 8 under varying
training sets. The results are shown in Figure 9, where we
start with just one training sequence, comprising only a few
data points, and progressively increase this number. It can
be seen that when only one short sequence is supplied, the
performance is considerably worse than the double integra-
tion method. However, as more motion instances are added

to the training set, the error is shown to decrease signifi-
cantly over time. This indicates that the learning model re-
lies on a good coverage of the posture and translation space,
in order to be able to generalise effectively to novel instances.
Thus, when recording data, it is important to ensure that
the tracked subjects perform a wide range of motions, in-
cluding various combinations of different motion types (e.g.
straight walks and turns).

Another related constraint on the performance of our al-
gorithm is that motions captured during training must be
similar to those executed in the online generation phase. For
example, if a manifold is learned only from walking motions,
it is highly unlikely to yield accurate translations on novel
running motions. Thus, it is essential to capture not only a
significant quantity of data (as shown in Figure 9), but also
representative sequences that will be qualitatively similar to
the motions the system will be tested on when deployed.
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Figure 11: Generated positions for a subject following the trajectory shown in Figure 10, 6 trials. Top
subfigures: Generated positions. Bottom: Cumulative errors and comparison with double integration.

4.2.2 Unonstrained environment experiments
In the second set of physical experiments, we evaluated

the learning method in an unconstrained office environment
(Figure 10). This represents a setting where an optical
source cannot be used to track subjects, due to its larger
area and morphology (doors, corridors). The subject was
asked to follow a trajectory consisting of several landmark
points, located inside an office room and in an adjacent cor-
ridor. There was no restriction on the time given to follow

this trajectory, so the subject was allowed to pause for ar-
bitrary periods of time.

We used the same set of training sequences as in the first
set of physical experiments to learn a translation manifold.
Figure 11 shows the generated trajectories for six distinct
trials of the subject moving along the prescribed path, along
with the corresponding error comparison with the double
integration method. The true precise trajectory followed
in each case was not known, however, the subject always
ended his path at the same point where he started. Thus,



by comparing the difference between the start and end points
of each generated trajectory, we can get an estimate of the
resulting error.

Despite not being aware of the duration and nature of
the motions performed by the subject, the learning algo-
rithm is observed to produce translations that closely follow
the true trajectory. The computed mean error for the fi-
nal position was 1.783m, with the overall sum of distances
between landmark points being about 30m. Furthermore,
as shown in the bottom subfigures of Figure 11, the learn-
ing algorithm maintains the superior performance level over
the double integration method. A common trait of both
sets of physical experiments is that they feature several al-
ternations between straight walking and turning motions,
which are characterised by repeated variations in the veloc-
ity profile of the tracked subject. In this context, the double
integration method initially produces an error comparable
with the learning algorithm, but in both cases the margin
increases exponentially over time. The learning method is
therefore successful in identifying the salient structure of the
high-dimensional data, and using it to learn a mapping that
can be applied to novel motions.

5. CONCLUSIONS
We have presented a method for simultaneous posture

and position tracking in unconstrained environments, based
on learned generative translation manifolds. In an offline
learning phase, two heterogeneous tracking sources, an in-
ertial sensing (Orient-4) and an optical (Kinect) platform,
are jointly used to learn a mapping from posture variations,
as estimated by the former, to whole-body translations, as
estimated by the latter. This mapping is learned through
linear regression on clustered latent representations of pos-
ture variations. Online, the optical source is removed, and
the learned translation manifold is used to generate transla-
tions for novel motion instances. The generative method is
experimentally shown to outperform the related model-free,
dead-reckoning method of acceleration integration, and to
correctly reproduce the structure of previously unseen tra-
jectories in unconstrained environments.

One drawback of our approach is that a different map-
ping must be learned whenever the system is tested on a
new user. This characteristic is due to skeletal morphology
and limb dimension constraints, which vary among differ-
ent subjects. Thus, motion sequences captured on a specific
subject may not adequately cover the posture difference and
translation space for a different subject, thus leading to in-
complete mappings. Nevertheless, one interesting extension
to our work would be to learn translation manifolds from
datasets which contain motions from various subjects with
different characteristics (e.g. short/tall). This extension
would be well-suited to the feature vector clustering proce-
dure described in Section 3.2.1. In this context, we would
employ a hierarchical clustering approach, where the evalu-
ated subject would first be matched to the nearest (in terms
of body morphology) user in the training data set, and then
a translation would be generated based on the learned map-
pings for the matched subject.

A major strength of our approach is that it does not make
assumptions about the nature of the performed motion, the
number and placement of inertial measurement units, or the
morphology of the tracked subject’s body. This property is
advantageous for two reasons. First, our method can be ap-

plied to complex motions spanning all three dimensions (e.g.
forward jumps), where traditional model-based approaches
tracking gait events and foot contacts would fail. Second,
for simpler, planar motion types (e.g. walking sequences),
our method can be used as a predictive step for model-based
filtering approaches, in order to obtain lower positional er-
rors. Extending our work in these directions would further
emphasise the benefits of using machine learning techniques
to exploit the structure of high-dimensional data produced
by physical sensor networks.
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