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Abstract

While many multiagent algorithms are designed
for homogeneous systems (i.e. all agents are iden-
tical), there are important applications which re-
quire an agent to coordinate its actions without
knowing a priori how the other agents behave.
One method to make this problem feasible is to as-
sume that the other agents draw their latent policy
(or type) from a specific set, and that a domain ex-
pert could provide a specification of this set, albeit
only a partially correct one. Algorithms have been
proposed by several researchers to compute poste-
rior beliefs over such policy libraries, which can
then be used to determine optimal actions. In this
paper, we provide theoretical guidance on two cen-
tral design parameters of this method: Firstly, it is
important that the user choose a posterior which
can learn the true distribution of latent types, as
otherwise suboptimal actions may be chosen. We
analyse convergence properties of two existing
posterior formulations and propose a new poste-
rior which can learn correlated distributions. Sec-
ondly, since the types are provided by an expert,
they may be inaccurate in the sense that they do
not predict the agents’ observed actions. We pro-
vide a novel characterisation of optimality which
allows experts to use efficient model checking al-
gorithms to verify optimality of types.

1 INTRODUCTION

Many multiagent algorithms are developed with a homoge-
neous setting in mind, meaning that all agents use the same
algorithm and are a priori aware of this fact. However, there
are important applications for which this assumption may
not be adequate, such as human-machine interaction, robot
search and rescue, and financial markets. In such problems,
it is important that an agent be able to effectively coordinate
its actions without knowing a priori how the other agents

behave. The importance of this problem has been discussed
in works such as [Albrecht and Ramamoorthy, 2013, Stone
et al., 2010, Bowling and McCracken, 2005].

This problem is hard since the agents may exhibit a large
variety of behaviours. General-purpose algorithms for mul-
tiagent learning are often impracticable, either because they
take too long to produce effective policies or because they
rely on prior coordination of behaviours [Albrecht and Ra-
mamoorthy, 2012]. However, it has been recognised (e.g.
[Albrecht and Ramamoorthy, 2013, Barrett et al., 2011]) that
the complexity of this problem can often be reduced by as-
suming that there is a latent set of policies for each agent
and a latent distribution over these policies, and that a do-
main expert can provide informed guesses as to what the
policies might be. (These guesses could also be generated
automatically, e.g. using some machine learning method on
a corpus of historical data.)

One algorithm that takes this approach is Harsanyi-Bellman
Ad Hoc Coordination (HBA) [Albrecht and Ramamoorthy,
2013]. This algorithm maintains a set of user-defined types
(by “type”, we mean a policy or programme which specifies
the behaviour of an agent) over which it computes posterior
beliefs based on the agents’ observed actions. The beliefs
are then used in a planning procedure to compute expected
payoffs for all actions (a procedure combining the concepts
of Bayesian Nash equilibrium and Bellman optimality) and
the best action is chosen. HBA was implemented as a rein-
forcement learning procedure and shown to be effective in
both simulated and human-machine problems [Albrecht and
Ramamoorthy, 2013]. Similar algorithms were studied in
[Barrett et al., 2011, Carmel and Markovitch, 1999].

While works such as [Albrecht and Ramamoorthy, 2013,
Barrett et al., 2011, Carmel and Markovitch, 1999] demon-
strate the practical usefulness of such methods, they provide
no theoretical guidance on two central design parameters:
Firstly, one may compute the posterior beliefs in various
ways, and it is important that the user choose a posterior for-
mulation which is able to accurately approximate the latent
distribution of types. This is important as otherwise the ex-
pected payoffs may be inaccurate, in which case HBA may
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choose suboptimal actions. In this paper, we analyse the con-
vergence conditions of two existing posterior formulations
and we propose a new posterior which can learn correlated
type distributions. These theoretical insights can be applied
by the user to choose appropriate posteriors.

Secondly, since the types are provided by the user (or gen-
erated automatically), they may be inaccurate in the sense
that their predictions deviate from the agents’ observed ac-
tions. This raises the need for a theoretical analysis of how
much and what kind of inaccuracy is acceptable for HBA to
be able to solve its task, by which we mean that it drives the
system into a terminal state. (A different question pertains to
payoff maximisation; we focus on task accomplishment as
it already includes many practical problems.) We describe
a methodology in which we formulate a series of desirable
termination guarantees and analyse the conditions under
which they are met. Furthermore, we provide a novel char-
acterisation of optimality which is based on the notion of
probabilistic bisimulation [Larsen and Skou, 1991]. In ad-
dition to concisely defining what constitutes optimal type
spaces, this allows the user to apply efficient model checking
algorithms to verify optimality in practice.

2 RELATED WORK

Opponent modelling methods such as case-based reason-
ing [Gilboa and Schmeidler, 2001] and recursive modelling
[Gmytrasiewicz and Durfee, 2000] are relevant to the extent
that they can complement the user-defined types by creating
new types (the opponent models) on the fly. For example,
[Albrecht and Ramamoorthy, 2013] used a variant of case-
based reasoning and [Barrett et al., 2011] used a tree-based
classifier to complement the user-defined types.

Plays and play books [Bowling and McCracken, 2005] are
similar in spirit to types and type spaces. However, plays
specify the behaviour of an entire team, with additional struc-
ture such as applicability and termination conditions, and
roles for each agent. In contrast, types specify the action
probabilities of a single agent and do not require commit-
ment to conditions and roles.

Plans and plan libraries [Carberry, 2001] are conceptually
similar to types and type spaces. However, the focus of plan
recognition has been on identifying the goal of an agent (e.g.
[Bonchek-Dokow et al., 2009]) and efficient representation
of plans (e.g. [Avrahami-Zilberbrand and Kaminka, 2007]),
while types are used primarily to compute expected payoffs
and can be efficiently represented as programmes [Albrecht
and Ramamoorthy, 2013, Barrett et al., 2011].

I-POMDPs [Gmytrasiewicz and Doshi, 2005] and I-DIDs
[Doshi et al., 2009] are related to our work since they too
assume that agents have a latent type. These methods are
designed to handle the full generality of partially observ-
able states and latent types, and they explicitly model nested

beliefs. However, this generality comes at a high computa-
tional cost and the solutions are infeasible to compute in
many cases. In contrast, we remain in the setting of fully ob-
servable states, and we implicitly allow for complex beliefs
within the specification of types. This allows our methods
to be computationally more tractable.

To the best of our knowledge, none of these related works di-
rectly address the theoretical questions considered in this pa-
per. While our results apply to [Albrecht and Ramamoorthy,
2013, Barrett et al., 2011, Carmel and Markovitch, 1999], we
believe they could be generalised to account for some of the
other related works as well. This includes the methodology
described in Section 5.

3 PRELIMINARIES

3.1 MODEL

Our analysis is based on the stochastic Bayesian game [Al-
brecht and Ramamoorthy, 2013]:

Definition 1. A stochastic Bayesian game (SBG) consists of

• discrete state space S with initial state s0 ∈ S and
terminal states S̄ ⊂ S

• players N = {1, ..., n} and for each i ∈ N :
– set of actions Ai (where A = A1 × ...×An)
– type space Θi (where Θ = Θ1 × ...×Θn)
– payoff function ui : S ×A×Θi → R
– strategy πi : H×Ai ×Θi → [0, 1]

• state transition function T : S ×A× S → [0, 1]

• type distribution ∆ : Θ→ [0, 1]

where H contains all histories Ht = 〈s0, a0, s1, a1, ..., st〉
with t ≥ 0, (sτ , aτ ) ∈ S ×A for 0 ≤ τ < t, and st ∈ S.

Definition 2. A SBG starts at time t = 0 in state s0:

1. In state st, the types θt1, ..., θ
t
n are sampled from Θ with

probability ∆(θt1, ..., θ
t
n), and each player i is informed

only about its own type θti .

2. Based on the history Ht, each player i chooses an action
ati ∈ Ai with probability πi(Ht, ati, θ

t
i), resulting in the

joint action at = (at1, ..., a
t
n).

3. The game transitions into a successor state st+1 ∈ S
with probability T (st, at, st+1), and each player i re-
ceives an individual payoff given by ui(st, at, θti).

This process is repeated until a terminal state st ∈ S̄ is
reached, after which the game stops.

3.2 ASSUMPTIONS

We make the following general assumptions in our analysis:

Assumption 1. We control player i, by which we mean that
we choose the strategies πi (using HBA). Hence, player i
has only one type, θi, which is known to us.



We sometimes omit θi in ui and πi for brevity, and we use j
and −i to refer to the other players (e.g. A−i = ×j 6=iAj).
Assumption 2. Given a SBG Γ, we assume that all elements
of Γ are known except for the type spaces Θj and the type
distribution ∆, which are latent variables.

Assumption 3. We assume full observability of states and
actions. That is, we are always informed of the current his-
tory Ht before making a decision.

Assumption 4. For any type θj and history Ht, there exists
a unique sequence (χaj )aj∈Aj

such that πj(Ht, aj , θj) =
χaj for all aj ∈ Aj .

We refer to this as external randomisation and to the oppo-
site (when there is no unique χaj ) as internal randomisation.
Technically, Assumption 4 is implied by the fact that πj is a
function, which means that any input is mapped to exactly
one output. However, in practice this can be violated if ran-
domisation is used “inside” a type implementation, hence it
is worth stating it explicitly. Nonetheless, it can be shown
that under full observability, external randomisation is equiv-
alent to internal randomisation. Hence, Assumption 4 does
not limit the types we can represent.

Example 1. Let there be two actions, A and B, and let the
expected payoffs for agent i be E(A) > E(B). The agent
uses ε-greedy action selection [Sutton and Barto, 1998] with
ε > 0. If agent i randomises externally, then the strategy πi
will assign action probabilities 〈1− ε/2, ε/2〉. If the agent
randomises internally, then with probability ε it will assign
probabilities 〈0.5, 0.5〉 and with probability 1 − ε it will
assign 〈1, 0〉, which is equivalent to external randomisation.

3.3 ALGORITHM

Algorithm 1 gives a formal definition of HBA (based on
[Albrecht and Ramamoorthy, 2013]) which is the central al-
gorithm in this analysis. (Section 1 provides an informal
description.) Throughout this paper, we will use Θ∗j and
Prj , respectively, to denote the user-defined type space and
posterior for player j, where Prj(θ∗j |Ht) is the probability
that player j has type θ∗j ∈ Θ∗j after history Ht. Further-
more, we will use Pr to denote the combined posterior, with
Pr(θ∗−i|Ht) =

∏
j 6=i Prj(θ∗j |Ht), and we sometimes refer

to this simply as the posterior.

Note that the likelihood L in (1) is unspecified at this point.
We will consider two variants for L in Section 4. The prior
probabilities Pj(θ∗j ) in (1) can be used to specify prior be-
liefs about the distribution of types. It is convenient to spec-
ify Prj(θ∗j |Ht) = Pj(θ

∗
j ) for t = 0. Finally, note that (2)/(3)

define an infinite regress. In practice, this may be imple-
mented using stochastic sampling (e.g. as in [Albrecht and
Ramamoorthy, 2013, Barrett et al., 2011]) or by terminating
the regress after some finite amount of time. In this analysis,
we assume that (2)/(3) are implemented as given.

Algorithm 1 Harsanyi-Bellman Ad Hoc Coordination (HBA)
[Albrecht and Ramamoorthy, 2013]
Input: SBG Γ, player i, user-defined type spaces Θ∗j ,

history Ht, discount factor 0 ≤ γ ≤ 1

Output: Action probabilities πi(Ht, ai)

1. For each j 6= i and θ∗j ∈ Θ∗j , compute posterior probability

Prj(θ∗j |Ht) =
L(Ht|θ∗j )Pj(θ

∗
j )∑

θ̂∗j∈Θ∗j
L(Ht|θ̂∗j )Pj(θ̂∗j )

(1)

2. For each ai ∈ Ai, compute expected payoff Eai
st

(Ht) with

Eais (Ĥ) =
∑
θ∗−i∈Θ∗−i

Pr(θ∗−i|Ht)
∑
a−i∈A−i

Q
ai,−i
s (Ĥ)

∏
j 6=i

πj(Ĥ, aj , θ
∗
j )

(2)

Qas(Ĥ) =
∑
s′∈S

T (s, a, s′)

[
ui(s, a) + γmax

ai
Eais′
(
〈Ĥ, a, s′〉

)]
(3)

where Pr(θ∗−i|Ht) =
∏
j 6=i Prj(θ∗j |Ht) and ai,−i , (ai, a−i)

3. Distribute πi(Ht, ·) uniformly over arg maxai E
ai
st

(Ht)

4 LEARNING THE TYPE
DISTRIBUTION

This section is concerned with convergence and correctness
properties of the posterior. The theorems in this section tell
us if and under what conditions HBA will learn the type
distribution of the game. As can be seen in Algorithm 1, this
is important since the accuracy of the expected payoffs (2)
depends crucially on the accuracy of the posterior (1).

However, for this to be a well-posed learning problem, we
have to assume that the posterior Pr can refer to the same
elements as the type distribution ∆. Therefore, the results in
this section pertain to a weaker form of ad hoc coordination
[Albrecht and Ramamoorthy, 2013] in which the user knows
that the latent type space Θj must be a subset of the user-
defined type space Θ∗j . Formally, we assume:

Assumption 5. ∀j 6= i : Θj ⊆ Θ∗j

Based on this assumption, we simplify the notation in this
section by dropping the * in θ∗j and Θ∗j . The general case in
which Assumption 5 does not hold is addressed in Section 5.

We consider two kinds of type distributions:

Definition 3. A type distribution ∆ is called pure if there
is θ ∈ Θ such that ∆(θ) = 1. A type distribution is called
mixed if it is not pure.

Pure type distributions can be used to model the fact that
each player has a fixed type throughout the game, e.g. as in
[Barrett et al., 2011]. Mixed type distributions, on the other
hand, can be used to model randomly changing types. This



was shown in [Albrecht and Ramamoorthy, 2013], where a
mixed type distribution was used to model defective agents
and human behaviour.

4.1 PRODUCT POSTERIOR

We first consider the product posterior:

Definition 4. The product posterior is defined as (1) with

L(Ht|θj) =

t−1∏
τ=0

πj(H
τ , aτj , θj) (4)

This is the standard posterior formulation used in Bayesian
games (e.g. [Kalai and Lehrer, 1993]) and was used in [Al-
brecht and Ramamoorthy, 2013, Barrett et al., 2011].

It can be shown that, under a pure type distribution and if
HBA does not a priori rule out any of the types in Θ∗j , then it
will learn to make correct future predictions. Let H∞ be an
infinite history with prefix Hτ , and denote by P∆(Hτ,H∞)
and PPr(H

τ,H∞), respectively, the true probability (based
on ∆) and the probability assigned by HBA (based on Pr)
that Hτ will continue as prescribed by H∞.

Theorem 1. Let Γ be a SBG with a pure type distribution ∆.
If HBA uses a product posterior and if the prior probabilities
Pj are positive (∀θ∗j ∈ Θ∗j : Pj(θ

∗
j ) > 0), then:

for any ε > 0, there is a time t from which (τ ≥ t)
PPr(H

τ,H∞)(1−ε) ≤ P∆(Hτ,H∞) ≤ (1+ε)PPr(H
τ,H∞)

for all H∞ with P∆(Hτ,H∞) > 0.

Proof. The proof extends the convergence result of [Kalai
and Lehrer, 1993]. A full proof is provided in the appendix
document [Albrecht and Ramamoorthy, 2014].

Unfortunately, there is a subtle but important asymmetry be-
tween making correct future predictions and knowing the
true type distribution: while the latter implies the former, ex-
amples can be created to show that the reverse is not true in
general. Therefore, while HBA is guaranteed to make cor-
rect future predictions after some time, it is not guaranteed
to learn the type distribution of the game.

Note that Theorem 1 pertains to pure type distributions only.
The following example shows that the product posterior may
fail in SBGs with mixed type distributions:

Example 2. Consider a SBG with two players. Player 1 is
controlled by HBA using a product posterior while player 2
has two types, θA and θB , which are assigned by a mixed
type distribution ∆ with ∆(θA) = ∆(θB) = 0.5. The type
θA always chooses action A while θB always chooses action
B. In this case, there will be a time t after which both types
have been assigned at least once, and so both actions A and
B have been played at least once by player 2. This means
that from time t and all subsequent times τ ≥ t, we have
Pr2(θA|Hτ ) = Pr2(θB |Hτ ) = 0 (that is, Pr2 is undefined),
and HBA will fail to make correct future predictions.

4.2 SUM POSTERIOR

We now consider the sum posterior:

Definition 5. The sum posterior is defined as (1) with

L(Ht|θj) =

t−1∑
τ=0

πj(H
τ , aτj , θj) (5)

The sum posterior was introduced in [Albrecht and Ra-
mamoorthy, 2013] to allow HBA to recognise changed types.
In other words, the purpose of the sum posterior is to learn
mixed type distributions. It is easy to see that a sum posterior
would indeed learn the mixed type distribution in Example 2.
However, we now give an example to show that, without ad-
ditional requirements, the sum posterior does not necessarily
learn any (pure or mixed) type distribution:

Example 3. Consider a SBG with two players. Player 1 is
controlled by HBA using a sum posterior while player 2
has two types, θA and θAB , which are assigned by a pure
type distribution ∆ with ∆(θA) = 1. The type θA always
chooses action A while θAB chooses actions A and B with
equal probability. While product posterior converges to the
correct probabilities ∆, the sum posterior converges to prob-
abilities 〈 23 ,

1
3 〉, which is incorrect.

Note that this example can be readily modified to use a
mixed type distribution, with similar results. Therefore, we
conclude that, in general, the sum posterior does not neces-
sarily learn any type distribution.

Under what condition is the sum posterior guaranteed to
learn the true type distribution? Consider the following two
quantities, which can be computed from a given history Ht:

Definition 6. The average overlap of player j in Ht is

AOj(Ht) =
1

t

t−1∑
τ=0

[
|Λτj | ≥ 2

]
1

∑
θj∈Θj

πj(H
τ , aτj , θj) |Θj |−1

(6)
Λτj =

{
θj ∈ Θj |πj(Hτ , aτj , θj) > 0

}
where [b]1 = 1 if b is true, else 0.

Definition 7. The average stochasticity of player j in Ht is

ASj(Ht) =
1

t

t−1∑
τ=0

|Θj |−1
∑
θj∈Θj

1− πj(Hτ , âτj , θj)

1− |Aj |−1
(7)

where âτj ∈ arg maxaj πj(H
τ , aj , θj).

Both quantities are bounded by 0 and 1. The average overlap
describes the similarity of the types, where AOj(Ht) = 0
means that player j’s types (on average) never chose the
same action in history Ht, whereas AOj(Ht) = 1 means
that they behaved identically. The average stochasticity de-
scribes the uncertainty of the types, where ASj(Ht) = 0
means that player j’s types (on average) were fully de-
terministic in the action choices in history Ht, whereas



ASj(Ht) = 1 means that they chose actions randomly with
uniform probability.

We can show that, if the average overlap and stochasticity of
player j converge to zero as t→∞, then the sum posterior
is guaranteed to learn any pure or mixed type distribution:

Theorem 2. Let Γ be a SBG with a pure or mixed type dis-
tribution ∆. If HBA uses a sum posterior, then, for t → ∞:
If AOj(Ht) = 0 and ASj(Ht) = 0 for all players j 6= i,
then Pr(θ−i|Ht) = ∆(θ−i) for all θ−i ∈ Θ−i.

Proof. Throughout this proof, let t → ∞. The sum poste-
rior is defined as (1) where L is defined as (5). Given the
definition of L, both the numerator and the denominator in
(1) may be infinite. We invoke L’Hôpital’s rule which states
that, in such cases, the quotient u(t)

v(t) is equal to the quo-
tient u

′(t)
v′(t) of the respective derivatives with respect to t. The

derivative of L with respect to t is the average growth per
time step, which in general may depend on the history Ht

of states and actions. The average growth of L is

L′(Ht|θj) =
∑
aj∈Aj

F (aj |Ht)πj(H
t, aj , θj) (8)

where

F (aj |Ht) =
∑
θj∈Θj

∆(θj)πj(H
t, aj , θj) (9)

is the probability of action aj after history Ht, with ∆(θj)
being the marginal probability that player j is assigned
type θj . As we will see shortly, we can make an asymp-
totic growth prediction irrespective of Ht. Given that
AOj(Ht) = 0, we can infer that whenever πj(Ht, aj , θj) >
0 for action aj and type θj , then πj(Ht, aj , θ

′
j) = 0 for all

other types θ′j 6= θj . Therefore, we can write (8) as

L′(Ht|θj) = ∆(θj)
∑
aj∈Aj

πj(H
t, aj , θj)

2 (10)

Next, given that ASj(Ht) = 0, we know that there exists
an action aj such that πj(Ht, aj , θj) = 1, and therefore
we can conclude that L′(Ht|θj) = ∆(θj). This shows that
the history Ht is irrelevant to the asymptotic growth rate
of L. Finally, since

∑
θj∈Θj

∆(θj) = 1, we know that the
denominator in (1) will be 1, and we can ultimately conclude
that Prj(θj |Ht) = ∆(θj).

Theorem 2 explains why the sum posterior converges to the
correct type distribution in Example 2. Since the types θA
and θB always choose different actions and are completely
deterministic (i.e. the average overlap and stochasticity are
always zero), the sum posterior is guaranteed to converge
to the type distribution. On the other hand, in Example 3
the types θA and θAB produce an overlap whenever action
A is chosen, and θAB is completely random. Therefore, the
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Figure 1: Example run in random SBG with 2 players, 10 ac-
tions, and 100 states. Player j has 3 reinforcement learning types
with ε-greedy action selection (decreasing linearly from ε = 0.7
at t = 1000, to ε = 0 at t = 2000). The error at time t is∑
θj
|Prj(θj |Ht)−∆(θj)| where Prj is the sum posterior.

average overlap and stochasticity are always positive, and
an incorrect type distribution was learned.

The assumptions made in Theorem 2, namely that the av-
erage overlap and stochasticity converge to zero, require
practical justification. First of all, it is important to note that
it is only required that these converge to zero on average as
t→∞. This means that in the beginning there may be arbi-
trary overlap and stochasticity, as long as these go to zero
as the game proceeds. In fact, with respect to stochasticity,
this is precisely how the exploration-exploitation dilemma
[Sutton and Barto, 1998] is solved in practice: In the early
stages, the agent randomises deliberately over its actions in
order to obtain more information about the environment (ex-
ploration) while, as the game proceeds, the agent becomes
gradually more deterministic in its action choices so as to
maximise its payoffs (exploitation). Typical mechanisms
which implement this are ε-greedy and Softmax/Boltzmann
exploration [Sutton and Barto, 1998]. Figure 1 demonstrates
this in a SBG in which player j has 3 reinforcement learning
types. The payoffs for the types were such that the average
overlap would eventually go to zero.

Regarding the average overlap converging to zero, we be-
lieve that this is a property which should be guaranteed by
design, for the following reason: If the user-defined type
space Θ∗j is such that there is a constantly high average over-
lap, then this means that the types θ∗j ∈ Θ∗j are in effect very
similar. However, types which are very similar are likely
to produce very similar trajectories in the planning step of
HBA (cf. Ĥ in (2)) and, therefore, constitute redundancy in
both time and space. Therefore, we believe it is advisable to
use type spaces which have low average overlap.

4.3 CORRELATED POSTERIOR

An implicit assumption in the definition of (1) is that
the type distribution ∆ can be represented as a product
of n independent factors (one for each player), so that
∆(θ) =

∏
j ∆j(θj). Therefore, since the sum posterior is

in the form of (1), it is in fact only guaranteed to learn in-
dependent type distributions. This is opposed to correlated



type distributions, which cannot be represented as a product
of n independent factors. Correlated type distributions can
be used to specify constraints on type combinations, such
as “player j can only have type θj if player k has type θk”.
The following example demonstrates how the sum posterior
fails to converge to a correlated type distribution:

Example 4. Consider a SBG with 3 players. Player 1 is
controlled by HBA using a sum posterior. Players 2 and
3 each have two types, θA and θB , which are defined
as in Example 2. The type distribution ∆ chooses types
with probabilities ∆(θA, θB) = ∆(θB , θA) = 0.5 and
∆(θA, θA) = ∆(θB , θB) = 0. In other words, player 2 can
never have the same type as player 3. From the perspective
of HBA, each type (and hence action) is chosen with equal
probability for both players. Thus, despite the fact that there
is zero overlap and stochasticity, the sum posterior will even-
tually assign probability 0.25 to all constellations of types,
which is incorrect. This means that HBA fails to recognise
that the other players never choose the same action.

In this section, we propose a new posterior which can learn
any correlated type distribution:

Definition 8. The correlated posterior is defined as

Pr(θ−i|Ht) = η P (θ−i)

t−1∑
τ=0

∏
θj∈θ−i

πj(H
τ , aτj , θj) (11)

where P specifies prior probabilities (or beliefs) over Θ−i
(analogous to Pj) and η is a normalisation constant.

The correlated posterior is closely related to the sum poste-
rior. In fact, in converges to the true type distribution under
the same conditions as the sum posterior:

Theorem 3. Let Γ be a SBG with a correlated type distri-
bution ∆. If HBA uses the correlated posterior, then, for
t→∞: If AOj(Ht) = 0 and ASj(Ht) = 0 for all players
j 6= i, then Pr(θ−i|Ht) = ∆(θ−i) for all θ−i ∈ Θ−i.

Proof. Proof is analogous to proof of Theorem 2.

It is easy to see that the correlated posterior would learn
the correct type distribution in Example 4. Note that, since
it is guaranteed to learn any correlated type distribution, it
is also guaranteed to learn any independent type distribu-
tion. Therefore, the correlated posterior would also learn the
correct type distribution in Example 2. This means that the
correlated posterior is complete in the sense that it covers the
entire spectrum of pure/mixed and independent/correlated
type distributions. However, this completeness comes at a
higher computational complexity. While the sum posterior is
in O(nmaxj |Θj |) time and space, the correlated posterior
is in O(maxj |Θj |n) time and space. In practice, however,
the time complexity can be reduced drastically by comput-
ing the probabilities πj(Hτ , aτj , θj) only once for each j
and θj ∈ Θj (as in the sum posterior), and then reusing
them in subsequent computations.

5 INACCURATE TYPE SPACES

Each user-defined type θ∗j in Θ∗j is a hypothesis by the user
regarding how player j might behave. Therefore, Θ∗j may
be inaccurate in the sense that none of the types therein
accurately predict the observed behaviour of player j. This
is demonstrated in the following example:

Example 5. Consider a SBG with two players and actions
L and R. Player 1 is controlled by HBA while player 2
has a single type, θLR, which chooses L,R,L,R, etc. HBA is
provided with Θ∗j = {θ∗R, θ∗LRR}, where θ∗R always chooses
R while θ∗LRR chooses L,R,R,L,R,R etc. Both user-defined
types are inaccurate in the sense that they predict player 2’s
actions in only ≈ 50% of the game.

Two important theoretical questions in this context are how
closely the user-defined type spaces Θ∗j have to approximate
the real type spaces Θj in order for HBA to be able to (1)
solve the task (i.e. bring the SBG into a terminal state), and
(2) achieve maximum payoffs. These questions are closely
related to the notions of flexibility and efficiency [Albrecht
and Ramamoorthy, 2013] which, respectively, correspond
to the probability of termination and the average payoff per
time step. In this section, we are primarily concerned with
question 1, and we are concerned with question 2 only in so
far as that we want to solve the task in minimal time. (Since
reducing the time until termination will increase the average
payoff per time step, i.e. increase efficiency.) This focus is
formally captured by the following assumption, which we
make throughout this section:

Assumption 6. Let player i be controlled by HBA, then
ui(s, a, θi) = 1 iff. s ∈ S̄, else 0.

Assumption 6 specifies that we are only interested in reach-
ing a terminal state, since this is the only way to obtain a
none-zero payoff. In our analysis, we consider discount fac-
tors γ (cf. Algorithm 1) with γ = 1 and γ < 1. While all
our results hold for both cases, there is an important distinc-
tion: If γ = 1, then the expected payoffs (2) correspond to
the actual probability that the following state can lead to (or
is) a terminal state (we call this the success rate), whereas
this is not necessarily the case if γ < 1. This is since γ < 1
tends to prefer shorter paths, which means that actions with
lower success rates may be preferred if they lead to faster
termination. Therefore, if γ = 1 then HBA is solely inter-
ested in termination, and if γ < 1 then it is interested in fast
termination, where lower γ prefers faster termination.

5.1 METHODOLOGY OF ANALYSIS

Given a SBG Γ, we define the ideal process, X , as the pro-
cess induced by Γ in which player i is controlled by HBA
and in which HBA always knows the current and all future
types of all players. Then, given a posterior Pr and user-
defined type spaces Θ∗j for all j 6= i, we define the user
process, Y , as the process induced by Γ in which player i



is controlled by HBA (same as in X) and in which HBA
uses Pr and Θ∗j in the usual way. Thus, the only difference
between X and Y is that X can always predict the player
types whereas Y approximates this knowledge through Pr
and Θ∗j . We write Eaist (Ht|C) to denote the expected pay-
off (as defined by (2)) of action ai in state st after history
Ht, in process C ∈ {X,Y }.

The idea is that X constitutes the ideal solution in the sense
that Eaist (Ht|X) corresponds to the actual expected payoff,
which means that HBA chooses the truly best-possible ac-
tions in X . This is opposed to Eaist (Ht|Y ), which is merely
the estimated expected payoff based on Pr and Θ∗j , so that
HBA may choose suboptimal actions in Y . The methodol-
ogy of our analysis is to specify what relation Y must have
to X to satisfy certain guarantees for termination.

We specify such guarantees in PCTL [Hansson and Jonsson,
1994], a probabilistic modal logic which also allows for the
specification of time constraints. PCTL expressions are in-
terpreted over infinite histories in labelled transition systems
with atomic propositions (i.e. Kripke structures). In order to
interpret PCTL expressions over X and Y , we make the fol-
lowing modifications without loss of generality: Firstly, any
terminal state s̄ ∈ S̄ is an absorbing state, meaning that if a
process is in s̄, then the next state will be s̄ with probability
1 and all players receive a zero payoff. Secondly, we intro-
duce the atomic proposition term and label each terminal
state with it, so that term is true in s if and only if s ∈ S̄.

We will use the following two PCTL expressions:

F≤t�pterm, F
<∞
�p term

where t ∈ N, p ∈ [0, 1], and �∈ {>,≥}.

F≤t�pterm specifies that, given a state s, with a probability
of � p a state s′ will be reached from s within t time steps
such that s′ satisfies term. The semantics of F<∞�p term
are similar except that s′ will be reached in arbitrary but
finite time. We write s |=C φ to say that a state s satisfies
the PCTL expression φ in process C ∈ {X,Y }.

5.2 CRITICAL TYPE SPACES

In the following section, we sometimes assume that the
user-defined type spaces Θ∗j are uncritical:

Definition 9. The user-defined type spaces Θ∗j are critical
if there is Sc ⊆ S \ S̄ which satisfies:

1. For each Ht ∈ H with st ∈ Sc, there is ai ∈ Ai such
that Eaist (Ht|Y ) > 0 and Eaist (Ht|X) > 0

2. There is a positive probability that Y may eventually get
into a state sc ∈ Sc from the initial state s0

3. If Y is in a state in Sc, then with probability 1 it will
always be in a state in Sc (i.e. it will never leave Sc)

We say Θ∗j are uncritical if they are not critical.

Intuitively, critical type spaces have the potential to lead
HBA into a state space in which it believes it chooses the
right actions to solve the task, while other actions are actu-
ally required to solve the task. The only effect that its actions
have is to induce an infinite cycle, due to a critical inconsis-
tency between the user-defined and true type spaces. The
following example demonstrates this:

Example 6. Recall Example 5 and let the task be to choose
the same action as player j. Then, Θ∗j is uncritical because
HBA will always solve the task at t = 1, regardless of the
posterior and despite the fact that Θ∗j is inaccurate. Now, as-
sume that Θ∗j = {θ∗RL} where θ∗RL chooses actions R,L,R,L
etc. Then, Θ∗j is critical since HBA will always choose the
opposite action of player j, thinking that it would solve the
task, when a different action would actually solve it.

A practical way to ensure that the type spaces Θ∗j are (even-
tually) uncritical is to include methods for opponent mod-
elling in each Θ∗j (e.g. as in [Albrecht and Ramamoorthy,
2013, Barrett et al., 2011]). If the opponent models are guar-
anteed to learn the correct behaviours, then the type spaces
Θ∗j are guaranteed to become uncritical. In Example 6, any
standard modelling method would eventually learn that the
true strategy of player j is θLR. As the model becomes
more accurate, the posterior gradually shifts towards it and
eventually allows HBA to take the right action.

5.3 TERMINATION GUARANTEES

Our first guarantee states that if X has a positive probability
of solving the task, then so does Y :

Property 1. s0 |=X F<∞>0 term ⇒ s0 |=Y F<∞>0 term

We can show that Property 1 holds if the user-defined type
spaces Θ∗j are uncritical and if Y only chooses actions for
player i with positive expected payoff in X .

Let A(Ht|C) denote the set of actions that process C may
choose from in state st after history Ht, i.e. A(Ht|C) =
arg maxai E

ai
st (Ht|C) (cf. step 3 in Algorithm 1).

Theorem 4. Property 1 holds if Θ∗j are uncritical and

∀Ht∈ H ∀ai ∈ A(Ht|Y ) : Eaist (Ht|X) > 0 (12)

Proof. Assume s0 |=X F<∞>0 term. Then, we know that X
chooses actions ai which may lead into a state s′ such that
s′ |=X F<∞>0 term, and the same holds for all such states
s′. Now, given (12) it is tempting to infer the same result
for Y , since Y only chooses actions ai which have positive
expected payoff in X and, therefore, could truly lead into a
terminal state. However, (12) alone is not sufficient to infer
s′ |=Y F<∞>0 term because of the special case in which Y
chooses actions ai such that Eaist (Ht|X) > 0 but without
ever reaching a terminal state. This is why we require that the
user-defined type spaces Θ∗j are uncritical, which prevents
this special case. Thus, we can infer that s′ |=Y F<∞>0 term,
and hence Property 1 holds.



The second guarantee states that if X always solves the task,
then so does Y :

Property 2. s0 |=X F<∞≥1 term ⇒ s0 |=Y F<∞≥1 term

We can show that Property 2 holds if the user-defined type
spaces Θ∗j are uncritical and if Y only chooses actions for
player i which lead to states into which X may get as well.

Let µ(Ht, s|C) be the probability that process C transitions
into state s from state st after history Ht, i.e. µ(Ht, s|C) =
1
|A|
∑
ai∈A

∑
a−i

T (st, 〈ai, a−i〉, s)
∏
j πj(H

t, aj , θ
t
j) with

A ≡ A(Ht|C), and let µ(Ht, S′|C) =
∑
s∈S′ µ(Ht, s|C)

for S′ ⊂ S.

Theorem 5. Property 2 holds if Θ∗j are uncritical and

∀Ht∈ H ∀s ∈ S : µ(Ht, s|Y ) > 0⇒ µ(Ht, s|X) > 0
(13)

Proof. The fact that s0 |=X F<∞≥1 term means that,
throughout the process, X only transitions into states s with
s |=X F<∞≥1 term. As before, it is tempting to infer the
same result for Y based on (13), since it only transitions
into states which have maximum success rate in X . How-
ever, (13) alone is not sufficient since Y may choose actions
such that (13) holds true but Y will never reach a terminal
state. Nevertheless, since the user-defined type spaces Θ∗j
are uncritical, we know that this special case will not occur,
and hence Property 2 holds.

We note that, in both Properties 1 and 2, the reverse direction
holds true regardless of Theorems 4 and 5. Furthermore, we
can combine the requirements of Theorems 4 and 5 to ensure
that both properties hold.

The next guarantee subsumes the previous guarantees by
stating that X and Y have the same minimum probability
of solving the task:

Property 3. s0 |=X F<∞≥p term ⇒ s0 |=Y F<∞≥p term

We can show that Property 3 holds if the user-defined type
spaces Θ∗j are uncritical and if Y only chooses actions for
player i which X might have chosen as well.

Let R(ai, H
t|C) be the success rate of action ai, formally

R(ai, H
t|C) = Eaist (Ht|C) with γ = 1 (so that it corre-

sponds to the actual probability with which ai may lead
to termination in the future). Define Xmin and Xmax to
be the processes which for each Ht choose actions ai ∈
A(Ht|X) with, respectively, minimal and maximal success
rate R(ai, H

t|X).

Theorem 6. If Θ∗j are uncritical and

∀Ht∈ H : A(Ht|Y ) ⊆ A(Ht|X) (14)

then

(i) for γ = 1: Proposition 3 holds in both directions

(ii) for γ < 1: s0 |=X F<∞≥p term ⇒ s0 |=Y F<∞≥p′ term

with pmin ≤ q ≤ pmax for q ∈ {p, p′}, where pmin

and pmax are the highest probabilities such that s0 |=Xmin

F<∞≥pmin
term and s0 |=Xmax F

<∞
≥pmax

term.

Proof. (i): Since γ = 1, all actions ai ∈ A(Ht|X) have the
same success rate for a given Ht, and given (14) we know
that Y ’s actions always have the same success rate as X’s
actions. Provided that the type spaces Θ∗j are uncritical, we
can conclude that Property 3 must hold, and for the same
reasons the reverse direction must hold as well.

(ii): Since γ < 1, the actions ai ∈ A(Ht|X) may have
different success rates. The lowest and highest chances that
X solves the task are precisely modelled byXmin andXmax,
and given (14) and the fact that Θ∗j are uncritical, the same
holds for Y . Therefore, we can infer the common bound
pmin ≤ {p, p′} ≤ pmax as defined in Theorem 6.

Properties 1 to 3 are indefinite in the sense that they make
no restrictions on time requirements. Our fourth and final
guarantee subsumes all previous guarantees and states that
if there is a probability p such that X terminates within t
time steps, then so does Y for the same p and t:

Property 4. s0 |=X F≤t≥pterm ⇒ s0 |=Y F≤t≥pterm

We believe that Property 4 is an adequate criterion of op-
timality for the type spaces Θ∗j since, if it holds, Θ∗j must
approximate Θj in a way which allows HBA to plan (al-
most) as accurately — in terms of solving the task — as the
“ideal” HBA in X which always knows the true types.

What relation must Y have to X to satisfy Property 4? The
fact that Y andX are processes over state transition systems
means we can draw on methods from the model checking
literature to answer this question. Specifically, we will use
the concept of probabilistic bisimulation [Larsen and Skou,
1991], which we here define in the context of our work:

Definition 10. A probabilistic bisimulation between X and
Y is an equivalence relation B ⊆ S × S such that

(i) (s0, s0) ∈ B

(ii) sX |=X term⇔ sY |=Y term for all (sX , sY ) ∈ B

(iii) µ(Ht
X , Ŝ|X) =µ(Ht

Y , Ŝ|Y ) for any histories Ht
X , H

t
Y

with (stX , s
t
Y ) ∈ B and all equivalence classes Ŝ under B.

Intuitively, a probabilistic bisimulation states that X and Y
do (on average) match each other’s transitions. Our defini-
tion of probabilistic bisimulation is most general in that it
does not require that transitions are matched by the same
action or that related states satisfy the same atomic proposi-
tions other than termination. However, we do note that other
definitions exist that make such additional requirements, and
our results hold for each of these refinements.

The main contribution of this section is to show that the



optimality criterion expressed by Property 4 holds in both
directions if there is a probabilistic bisimulation between X
and Y . Thus, we offer an alternative formal characterisation
of optimality for the user-defined type spaces Θ∗j :

Theorem 7. Property 4 holds in both directions if there is a
probabilistic bisimulation between X and Y .

Proof. First of all, we note that, strictly speaking, the stan-
dard definitions of bisimulation (e.g. [Baier, 1996, Larsen
and Skou, 1991]) assume the Markov property, which means
that the next state of a process depends only on the current
state of the process. In contrast, we consider the more gen-
eral case in which the next state may depend on the history
Ht of previous states and joint actions (since the player
strategies πj depend on Ht). However, one can always en-
force the Markov property by design, i.e. by augmenting
the state space S to account for the relevant factors of the
past. In fact, we could postulate that the histories as a whole
constitute the states of the system, i.e. S = H. Therefore,
to simplify the exposition, we assume the Markov property
and we write µ(s, Ŝ|C) to denote the cumulative probability
that C transitions from state s into any state in Ŝ.

Given the Markov property, the fact thatB is an equivalence
relation, and µ(sX , Ŝ|X) = µ(sY , Ŝ|Y ) for (sX , sY ) ∈ B,
we can represent the dynamics of X and Y in a common
graph, such as the following one:

Ŝ0s0 ∈ Ŝ1

Ŝ2

Ŝ3

Ŝ4

Ŝ5

Ŝ6 ≡ S̄

µ01

µ02 µ14

µ13

µ24

µ35

µ41 µ36

µ46

The nodes correspond to the equivalence classes under B. A
directed edge from Ŝa to Ŝb specifies that there is a positive
probability µab = µ(sX , Ŝb|X) = µ(sY , Ŝb|Y ) that X and
Y transition from states sX , sY ∈ Ŝa to states s′X , s

′
Y ∈ Ŝb.

Note that sX , sY and s′X , s
′
Y need not be equal but merely

equivalent, i.e. (sX , sY ) ∈ B and (s′X , s
′
Y ) ∈ B. There is

one node (Ŝ0) that contains the initial state s0 and one node
(Ŝ6) that contains all terminal states S̄ and no other states.
This is because once X and Y reach a terminal state they
will always stay in it (i.e. µ(s, S̄|X) = µ(s, S̄|Y ) = 1 for
s ∈ S̄) and since they are the only states that satisfy term.
Thus, the graph starts in Ŝ0 and terminates (if at all) in Ŝ6.

Since the graph represents the dynamics of both X and Y ,
it is easy to see that Property 4 must hold in both directions.
In particular, the probabilities that X and Y are in node Ŝ
at time t are identical. One simply needs to add the prob-
abilities of all directed paths of length t which end in Ŝ
(provided that such paths exist), where the probability of
a path is the product of the µab along the path. Therefore,

X and Y terminate with equal probability, and on average
within the same number of time steps.

Some remarks to clarify the usefulness of this result: First
of all, in contrast to Theorems 4 to 6, Theorem 7 does not
explicitly require Θ∗j to be uncritical. In fact, this is implicit
in the definition of probabilistic bisimulation. Moreover,
while the other theorems relate Y and X for identical his-
tories Ht, Theorem 7 relates Y and X for related histories
Ht
Y and Ht

X , making it more generally applicable. Finally,
Theorem 7 has an important practical implication: it tells
us that we can use efficient methods for model checking
(e.g. [Baier, 1996, Larsen and Skou, 1991]) to verify opti-
mality of Θ∗j . In fact, it can be shown that for Property 4
to hold (albeit not in the other direction) it suffices that
Y be a probabilistic simulation [Baier, 1996] of X , which
is a coarser preorder than probabilistic bisimulation. How-
ever, algorithms for checking probabilistic simulation (e.g.
[Baier, 1996]) are computationally much more expensive
(and fewer) than those for probabilistic bisimulation, hence
their practical use is currently limited.

6 CONCLUSION

This paper complements works such as [Albrecht and Rama-
moorthy, 2013, Barrett et al., 2011, Carmel and Markovitch,
1999] — with a focus on HBA due to its generality — by
providing answers to two important theoretical questions:
“Under what conditions does HBA learn the type distribution
of the game?” and “How accurate must the user-defined type
spaces be for HBA to solve its task?” With respect to the
first question, we analyse the convergence properties of two
existing posteriors and propose a new posterior which can
learn correlated type distributions. This provides the user
with formal reasons as to which posterior should be chosen
for the problem at hand. With respect to the second question,
we describe a methodology in which we analyse the require-
ments of several termination guarantees, and we provide a
novel characterisation of optimality which is based on the
notion of probabilistic bisimulation. This gives the user a
formal yet practically useful criterion of what constitutes
optimal type spaces. The results of this work improve our
understanding of how a method such as HBA can be used
to effectively solve agent interaction problems in which the
behaviour of other agents is not a priori known.

There are several interesting directions for future work. For
instance, it is unclear what effect the prior probabilities Pj
have on the performance of HBA, and if a criterion for
optimal Pj could be derived. Furthermore, since our con-
vergence proofs in Section 4 are asymptotic, it would be
interesting to know if useful finite-time error bounds exist.
Finally, our analysis in Section 5 is general in the sense
that it applies to any posterior. This could be refined by an
analysis which commits to a specific posterior.
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