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Abstract

Many multiagent applications require an agent to learn
quickly how to interact with previously unknown other
agents. To address this problem, researchers have studied
learning algorithms which compute posterior beliefs over
a hypothesised set of policies, based on the observed ac-
tions of the other agents. The posterior belief is comple-
mented by the prior belief, which specifies the subjective
likelihood of policies before any actions are observed. In
this paper, we present the first comprehensive empirical
study on the practical impact of prior beliefs over poli-
cies in repeated interactions. We show that prior beliefs
can have a significant impact on the long-term perfor-
mance of such methods, and that the magnitude of the
impact depends on the depth of the planning horizon.
Moreover, our results demonstrate that automatic meth-
ods can be used to compute prior beliefs with consis-
tent performance effects. This indicates that prior beliefs
could be eliminated as a manual parameter and instead
be computed automatically.

1 Introduction
Much research in AI has focused on innovative applications
such as adaptive user interfaces, robotic elderly assistance,
and autonomous trading agents. A key technological chal-
lenge in these applications is that an agent (virtual or physical)
has to be able to learn quickly how to interact effectively with
previously unknown other agents. For example, an adaptive
user interface should be able to adapt effectively within min-
utes rather than hours. However, users may change frequently
and we may not necessarily know how they behave.

Unfortunately, current methods for multiagent learning do
not solve this challenge because they require long learning
periods, often in the order of thousands of trials even for the
simplest tasks (e.g. Claus and Boutilier 1998). A common
approach to accelerate the learning process is to introduce
assumptions about the behaviour of other agents, but this may
severely limit the applicability of the method. To address this
limitation, researchers have studied learning systems which
can utilise multiple sets of assumptions rather than relying
on one set of assumptions. The basic idea is to filter out bad
assumptions based on the agents’ observed behaviours.
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To illustrate this idea, imagine you are playing a game of
Rock-Paper-Scissors against a stranger. Our experience tells
us that there is a specific set of policies which the other player
could be using, such as “play previous action of opponent”,
“play action that would have won in last round”, etc. The idea,
then, is to compare the predictions of these policies with the
observed actions of the player, and to plan our own actions
with respect to those policies which most closely match the
player’s actions. There is a growing body of work showing
that this method can quickly learn effective behaviours while
maintaining great flexibility as to the kinds of agents it can
coordinate with (Albrecht and Ramamoorthy 2013; Barrett,
Stone, and Kraus 2011; Bowling and McCracken 2005).

A central component of this method is the posterior belief,
which often takes the form of a probability distribution de-
scribing the relative likelihood that the agents use any of the
considered policies, based on their past actions. Consequently,
much research focused on the computation of posterior be-
liefs and convergence guarantees (Albrecht and Ramamoor-
thy 2014; Gmytrasiewicz and Doshi 2005).

The posterior belief is complemented by the prior belief,
which describes the subjective likelihood of policies before
any actions are observed. However, in contrast to posterior
beliefs, there are currently no systematic studies on the impact
of prior beliefs in the AI literature, and it is common to use
uniform priors in experiments. A reason for this may be the
fact that beliefs can change rapidly after a few observations,
which could suggest that prior beliefs have negligible effect.

On the other hand, there is a substantial body of work in
the game theory literature arguing the importance of prior
beliefs over policies, or types, e.g. (Dekel, Fudenberg, and
Levine 2004; Kalai and Lehrer 1993; Jordan 1991). However,
these works are of a theoretical nature, in the sense that they
are interested in the impact of prior beliefs on equilibrium
attainment. In contrast, our interest is in the practical impact
of prior beliefs, i.e. payoff maximisation. Moreover, the game
theory literature on this subject almost always assumes that
all players use the same Bayesian reasoning over types, while
we make no such assumption.

Thus, we are left with the following questions: Do prior
beliefs have an impact on the long-term payoff maximisa-
tion of the considered method? If so, how? And, importantly,
can we automatically compute prior beliefs with the goal of
improving the long-term performance?



This paper sets out to answer these questions. We present
a comprehensive empirical study on the practical impact of
prior beliefs over policies in repeated interactions. The study
compares 10 automatic methods to compute prior beliefs in a
range of repeated matrix games, using three different classes
of automatically generated adaptive policies. Our results show
that prior beliefs can indeed have a significant impact on the
long-term performance of the described method. Moreover,
we show that the depth of the planning horizon (i.e. how far
we look into the future) plays a central role for the magnitude
of the impact, and we explain how it can both diminish and
amplify the impact. Finally, and perhaps most intriguingly,
we show that automatic methods can compute prior beliefs
that consistently optimise specific metrics (such as our own
payoffs) across a variety of scenarios. An implication of this
is that prior beliefs could be eliminated as a manual parameter
and instead be computed automatically.

2 Related Work
The general idea described in the previous section has been
investigated by a number of researchers. As a result, there
exist several models and algorithms.

Perhaps the earliest formulation was by Harsanyi (1967)
in the form of Bayesian games. Several works analyse the
dynamics of learning in Bayesian games, e.g. (Dekel, Fuden-
berg, and Levine 2004; Kalai and Lehrer 1993; Jordan 1991).
The empirical study by Cox, Shachat, and Walker (2001) is
close in spirit to our work. However, their focus is on equilib-
rium attainment rather than payoff maximisation.

Albrecht and Ramamoorthy (2013) presented an algorithm,
called HBA, which utilises a set of hypothesised types (or
policies) in a planning procedure to find optimal responses.
Related algorithms were studied by Barrett, Stone, and Kraus
(2011) and Carmel and Markovitch (1999).

Gmytrasiewicz and Doshi (2005) study types under par-
tially observable system states, in a model called I-POMDP.
Their type specifications include additional structure such as
complex nested beliefs and subjective optimality criteria.

Bowling and McCracken (2005) describe an algorithm
which uses “play books” to plan its actions. Each “play” in a
play book specifies a complete team policy, with additional
structure such as roles for each agent in the team.

Many algorithms for plan recognition use a similar concept
in the form of “plan libraries” (Carberry 2001; Charniak and
Goldman 1993). The idea is to learn the goal of an agent by
comparing its actions with the plans in the library.

All of these methods use some form of a prior belief over
action policies. Our work can be viewed as complementing
these works by showing how prior beliefs can affect the long-
term performance of such methods.

Finally, there is a substantial body of work on “uninformed”
priors (e.g. Bernardo (1979), Jaynes (1968), and references
therein). The purpose of such priors is to express a state of
complete uncertainty, whilst possibly incorporating subjec-
tive prior information. (What this means and whether this is
possible has been the subject of a long debate, e.g. De Finetti
2008.) This is different from our priors, which are shaped
with the goal of payoff maximisation rather than expressing
uncertainty or incorporating prior information.

3 Experimental Setup
This section describes the experimental setup used in our
study. All parameter settings can be found in an appendix
document (Albrecht, Crandall, and Ramamoorthy 2015).

3.1 Games
We used a comprehensive set of benchmark games introduced
by Rapoport and Guyer (1966), which consists of 78 repeated
2× 2 matrix games (i.e. 2 players with 2 actions). The games
are strictly ordinal, meaning that each player ranks each of
the 4 possible outcomes from 1 (least preferred) to 4 (most
preferred), and no two outcomes have the same rank. Further-
more, the games are distinct in the sense that no game can
be obtained by transformation of any other game, which in-
cludes interchanging the rows, columns, and players (and any
combination thereof) in the payoff matrix of the game.

The games can be grouped into 21 no-conflict games and
57 conflict games. In a no-conflict game, the two players have
the same most preferred outcome, and so it is relatively easy
to arrive at a solution that is best for both players. In a conflict
game, the players disagree on the best outcome, hence they
will have to find some form of a compromise.

3.2 Performance Criteria
Each play of a game was partitioned into time slices which
consist of an equal number of consecutive time steps. For each
time slice, we measured the following performance criteria:

Convergence: An agent converged in a time slice if its ac-
tion probabilities in the time slice did not deviate by more
than 0.05 from its initial action probabilities in the time
slice. Returns 1 (true) or 0 (false) for each agent.

Average payoff: Average of payoffs an agent received in the
time slice. Returns value in [1, 4] for each agent.

Welfare and fairness: Average sum and product, respec-
tively, of the joint payoffs received in the time slice. Re-
turns values in [2, 8] and [1, 16], respectively.

Game solutions: Tests if the averaged action probabilities
of the agents formed an approximate stage-game Nash
equilibrium, Pareto optimum, Welfare optimum, or Fair-
ness optimum in the time slice. Returns 1 (true) or 0 (false)
for each game solution.

Precise formal definitions of these performance criteria
can be found in (Albrecht and Ramamoorthy 2012).

3.3 Algorithm
We used Harsanyi-Bellman Ad Hoc Coordination (HBA)
(Albrecht and Ramamoorthy 2014) as a canonical example of
the idea outlined in Section 1. In the following, HBA controls
player i while j denotes the other player. HBA uses a set Θ∗j
of types which can be provided by a human expert or, as we
do in this work, generated automatically (see Section 3.4).
We assume that the true type of player j is always included
in Θ∗j , but we do not know which type in Θ∗j it is.

Each type θ∗j ∈Θ∗j specifies a complete action policy for
player j. We write πj(Ht, aj , θ

∗
j ) to denote the probability

that player j chooses action aj if it is of type θ∗j , given the



history Ht of previous joint actions. HBA computes the pos-
terior belief that player j is of type θ∗j , given Ht, as

Prj(θ∗j |Ht) = η Pj(θ
∗
j )

t−1∏
τ=0

πj(H
τ, aτj , θ

∗
j )

where η is a normalisation constant and Pj(θ∗j ) denotes the
prior belief that player j is of type θ∗j .

Using the posterior Prj , HBA chooses an action ai which
maximises the expected payoff Eaih (Ht), defined as

Eaih (Ĥ) =
∑
θ∗j∈Θ∗j

Prj(θ∗j |Ht)
∑
aj∈Aj

πj(Ĥ, aj , θ
∗
j )Q

(ai,aj)
h−1 (Ĥ)

Q
(ai,aj)
h (Ĥ) = ui(ai, aj)+

{
0 if h = 0, else
maxa′i E

a′i
h

(
〈Ĥ, (ai, aj)〉

)
where ui(ai, aj) is player i’s payoff if joint action (ai, aj)
is played, and h specifies the depth of the planning horizon
(i.e. HBA predicts the next h actions of player j). Note that
Ht is the current history of joint actions while Ĥ is used to
construct all future trajectories in the game.

3.4 Types
We used three methods to generate parameterised sets of types
Θ∗j for a given game. The generated types cover a reason-
able spectrum of adaptive behaviours, including deterministic
(CDT), randomised (CNN), and hybrid (LFT) policies.

Leader-Follower-Trigger Agents (LFT) Crandall (2014)
described a method to automatically generate sets of “leader”
and “follower” agents that seek to play specific sequences of
joint actions, called “target solutions”. A leader agent plays
its part of the target solution as long as the other player does.
If the other player deviates, the leader agent punishes the
player by playing a minimax strategy. The follower agent
is similar except that it does not punish. Rather, if the other
player deviates, the follower agent randomly resets its posi-
tion within the target solution and continues play as usual. We
augmented this set by a trigger agent which is similar to the
leader and follower agents, except that it plays its maximin
strategy indefinitely once the other player deviates.

Co-Evolved Decision Trees (CDT) We used genetic pro-
gramming (Koza 1992) to automatically breed sets of deci-
sion trees. A decision tree takes as input the past n actions
of the other player (in our case, n = 3) and deterministically
returns an action to be played in response. The breeding pro-
cess is co-evolutional, meaning that two pools of trees are
bred concurrently (one for each player). In each evolution, a
random selection of the trees for player 1 is evaluated against
a random selection of the trees for player 2. The fitness cri-
terion includes the payoffs generated by a tree as well as its
dissimilarity to other trees in the same pool. This was done
to encourage a more diverse breeding of trees, as otherwise
the trees tend to become very similar or identical.

Co-Evolved Neural Networks (CNN) We used a string-
based genetic algorithm (Holland 1975) to breed sets of artifi-
cial neural networks. The process is basically the same as the

one used for decision trees. However, the difference is that
artificial neural networks can learn to play stochastic strate-
gies while decision trees always play deterministic strategies.
Our networks consist of one input layer with 4 nodes (one
for each of the two previous actions of both players), a hid-
den layer with 5 nodes, and an output layer with 1 node. The
node in the output layer specifies the probability of choos-
ing action 1 (and, since we play 2 × 2 games, of action 2).
All nodes use a sigmoidal threshold function and are fully
connected to the nodes in the next layer.

3.5 Prior Beliefs
We specified a total of 10 different methods to automatically
compute prior beliefs Pj for a given set of types Θ∗j :

Uniform prior The uniform prior sets Pj(θ∗j ) = |Θ∗j |−1

for all θ∗j ∈ Θ∗j . This is the baseline prior against which the
other priors are compared.

Random prior The random prior specifiesPj(θ∗j ) = .0001
for half of the types in Θ∗j (selected at random). The remain-
ing probability mass is uniformly spread over the other half.
The random prior is used to check if the performance differ-
ences of the various priors may be purely due to the fact that
they concentrate the probability mass on fewer types.

Value priors Let U tk(θ∗j ) be the expected cumulative pay-
off to player k, from the start up until time t, if player j (i.e.
the other player) is of type θ∗j and player i (i.e. HBA) plays
optimally against it. Each value prior is in the general form
of Pj(θ∗j ) = η ψ(θ∗j )b, where η is a normalisation constant
and b is a “booster” exponent used to magnify the differences
between types θ∗j (in this work, we use b = 10). Based on
this general form, we define four different value priors:

• Utility prior: ψU (θ∗j ) = U ti (θ
∗
j )

• Stackelberg prior: ψS(θ∗j ) = U tj (θ
∗
j )

• Welfare prior: ψW (θ∗j ) = U ti (θ
∗
j ) + U tj (θ

∗
j )

• Fairness prior: ψF (θ∗j ) = U ti (θ
∗
j ) ∗ U tj (θ∗j )

Our choice of value priors is motivated by the variety of
metrics they cover. As a result, these priors can produce
substantially different probabilities for the same set of types.

LP-priors LP-priors are based on the idea that optimal
priors can be formulated as the solution to a mathematical
optimisation problem (in this case, a linear programme). Each
LP-prior generates a quadratic matrix A, where each element
Aj,j′ contains the “loss” that HBA would incur if it planned
its actions against the type θ∗j′ while the true type of player
j is θ∗j . Formally, let U tk(θ∗j |θ∗j′) be like U tk(θ∗j ) except that
HBA thinks that player j is of type θ∗j′ instead of θ∗j . We
define four different LP-priors:

• LP-Utility: Aj,j′ = ψU (θ∗j )− U ti (θ∗j |θ∗j′)

• LP-Stackelberg: Aj,j′ = ψS(θ∗j )− U tj (θ∗j |θ∗j′)

• LP-Welfare: Aj,j′ = ψW (θ∗j )− [U ti (θ
∗
j |θ∗j′)+U tj (θ

∗
j |θ∗j′)]

• LP-Fairness: Aj,j′ = ψF (θ∗j )− [U ti (θ
∗
j |θ∗j′) ∗ U tj (θ∗j |θ∗j′)]
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Figure 1: Prior beliefs can have significant impact on long-term performance. Plots show average payoffs of player 1 (HBA).
X(h)–Y–Z format: HBA used X types and horizon h, player 2 was controlled by Y, and results are averaged over Z games.

The matrix A can be fed into a linear program of the form
minc c

Tx s.t. [z,A]x ≤ 0, with n = |Θ∗j |, c = (1, {0}n)T ,
z = ({−1}n)T , to find a vector x = (l, p1, ..., pn) in which
l is the minimised expected loss to HBA when using the
probabilities p1, ..., pn (one for each type) as the prior belief
Pj . In order to avoid premature elimination of types, we
furthermore require that pv > 0 for all 1 ≤ v ≤ n.

While this is a mathematically rigorous formulation, it is
important to note that it is a simplification of how HBA really
works. HBA uses the prior in every recursion of its planning
procedure, while the LP formulation implicitly assumes that
HBA uses the prior to randomly sample one of the types
against which it then plans optimally. Nonetheless, this is
often a reasonable approximation.

3.6 Experimental Procedure
We performed identical experiments for every type generation
method described in Section 3.4. Each of the 78 games was
played 10 times with different random seeds, and each play
was repeated against three opponents (30 plays in total):

1. (RT) A randomly generated type was used to control
player 2 and the play lasted 100 rounds.

2. (FP) A fictitious player (Brown 1951) was used to control
player 2 and the play lasted 10,000 rounds.

3. (CFP) A conditioned fictitious player (which learns action
distributions conditioned on the previous joint action) was
used to control player 2 and the play lasted 10,000 rounds.

In each play, we randomly generated 9 unique types and
provided them to HBA along with the true type of player 2,
such that |Θ∗2| = 10. Thus, in each play there was a time after
which HBA knew the type of player 2. To avoid “end-game”
effects, the players were unaware the number of rounds.

We included FP and CFP because they try to learn the
behaviour of HBA. (While the generated types are adaptive,
they do not create models of HBA’s behaviour.) To facilitate
the learning, we allowed for 10,000 rounds. Finally, since
FP and CFP will always choose dominating actions if they
exist (in which case there is no interaction), we filtered out all
games in the FP and CFP plays that had a dominating action
for player 2 (leaving 15 no-conflict and 33 conflict games).

4 Results
All experimental results can be found in the appendix docu-
ment (Albrecht, Crandall, and Ramamoorthy 2015). Based
on this data, we make three main observations:
Observation 1. Prior beliefs can have a significant impact
on the long-term performance of HBA.

This was observed in all classes of types, against all classes
of opponents, and in all classes of games used in this study.
Figure 1 provides three representative examples from a range
of scenarios. Many of the relative differences due to prior
beliefs were statistically significant, based on paired two-
sided t-tests with a 5% significance level.

Our data explain this as follows: Different prior beliefs may
cause HBA to take different actions at the beginning of the
game. These actions will shape the beliefs of the other player
(i.e. how it models and adapts to HBA’s actions) which in turn
will affect HBA’s next actions. Thus, if different prior beliefs
lead to different initial actions, they may lead to different play
trajectories with different payoffs.

Given that there is a time after which HBA will know the
true type of player 2 (since it is provided to HBA), it may
seem surprising that this process would lead to differences in
the long-term. In fact, in our experiments, HBA often learned
the true type after only 3 to 5 rounds, and in most cases in
under 20 rounds. After that point, if the planning horizon of
HBA is sufficiently deep, it will realise if its initial actions
were sub-optimal and if it can manipulate the play trajectory
to achieve higher payoffs in the long-term, thus diminishing
the impact of prior beliefs.

However, deep planning horizons can be problematic in
practice since the time complexity of HBA is exponential in
the depth of the planning horizon. Therefore, the planning
horizon constitutes a trade-off between decision quality and
computational tractability. Interestingly, our data show that
if we increase the depth, but stay below a sufficient depth
(“sufficient” as described above), it may also amplify the
impact of prior beliefs:
Observation 2. Deeper planning horizons can both diminish
and amplify the impact of prior beliefs.

Again, this was observed in all tested scenarios. Figures 2
and 3 show examples in which deeper planning horizons
diminish and amplify the impact of prior beliefs, respectively.
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Figure 2: Deeper planning horizons can diminish impact of prior beliefs. Results shown for HBA with LFT types, player 2
controlled by FP, averaged over no-conflict games. h is depth of planning horizon (i.e. predicting h next actions of player 2).
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Figure 3: Deeper planning horizons can amplify impact of prior beliefs. Results shown for HBA with CNN types, player 2
controlled by RT, averaged over conflict games. h is depth of planning horizon (i.e. predicting h next actions of player 2).

How can deeper planning horizons amplify the impact of
prior beliefs? Our data show that whether or not different prior
beliefs cause HBA to take different initial actions depends
not only on the prior beliefs and types, but also on the depth
of the planning horizon. In some cases, differences between
types (i.e. in their action choices) may be less visible in the
near future and more visible in the distant future. In such
cases, an HBA agent with a myopic planning horizon may
choose the same (or similar) initial actions, despite different
prior beliefs, because the differences in the types may not
be visible within its planning horizon. On the other hand,
an HBA agent with a deeper planning horizon may see the
differences between the types and decide to choose different
initial actions based on the prior beliefs.

We now turn to a comparison between the different prior
beliefs. Here, our data reveal an intriguing property:

Observation 3. Automatic methods can compute prior be-
liefs with consistent performance effects.

Figure 4 shows that the prior beliefs had consistent perfor-
mance effects across a wide variety of scenarios. For exam-
ple, the Utility prior produced consistently higher payoffs for
player 1 (i.e. HBA) while the Stackelberg prior produced con-
sistently higher payoffs for player 2 as well as higher welfare
and fairness. The Welfare and Fairness priors were similar
to the Stackelberg prior, but not quite as consistent. Similar
results were observed for the LP variants of the priors, de-

spite the fact that the LP formulation is a simplification of
how HBA works (cf. Section 3.5).

We note that none of the prior beliefs, including the Uni-
form prior, produced high rates for the game solutions (i.e.
Nash equilibrium, Pareto optimality, etc.). This is because
we measured stage-game solutions, which have no notion
of time. These can be hard to attain in repeated games, es-
pecially if the other player does not actively seek a specific
solution, as was often the case in our study.

Observation 3 is intriguing because it indicates that prior
beliefs could be eliminated as a manual parameter and instead
be computed automatically, using methods such as the ones
specified in Section 3.5. The fact that our methods produced
consistent results means that prior beliefs can be constructed
to optimise specific performance criteria. Note that this result
is particularly interesting because the prior beliefs have no
influence, whatsoever, on the true type of player 2.

This observation is further supported by the fact that the
Random prior did not produce consistently different values
(for any criterion) from the Uniform prior. This means that
the differences in the prior beliefs are not merely due to the
fact that they concentrate the probability mass on fewer types,
but rather that the prior beliefs reflect the intrinsic metrics
based on which they are computed (e.g. player 1’s payoffs for
Utility prior, player 2’s payoffs for Stackelberg prior, etc.).

How is this phenomenon explained? We believe this may
be an interesting analogy to the “optimism in uncertainty”
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(a) LFT (h=5) – RT – Conflict
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(b) LFT (h=5) – CFP – Conflict
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(c) CDT (h=3) – RT – Conflict
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(e) CDT (h=3) – FP – Conflict
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(f) CNN (h=3) – RT – Conflict
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(g) CNN (h=1) – FP – Conflict
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Figure 4: Automatic prior beliefs have consistent performance effects. Rows show prior beliefs and columns show perfor-
mance criteria. Each element (r, c) in the matrix corresponds to the percentage of time slices in which the prior belief r produced
significantly higher values for the criterion c than the Uniform prior, averaged over all plays in all tested games. All significance
statements are based on paired right-sided t-tests with a 5% significance level. See Figure 1 for X(h)–Y–Z format.

principle (e.g. Brafman and Tennenholtz 2003). The opti-
mism lies in the fact that HBA commits to a specific class
of types – those with high prior belief – while, in truth and
without further evidence, there is no reason to believe that
any one type is more likely than others.

Each class of types is characterised by the intrinsic metric
of the prior belief. For instance, the Utility prior assigns high
probability to those types which would yield high payoffs to
HBA if it played optimally against them. By committing to
such a characterisation, HBA can effectively utilise Observa-
tion 1 by choosing initial actions so as to shape the interaction
to maximise the intrinsic metric. If the true type of player 2
is indeed this class of types, then the interaction will proceed
as planned by HBA and the intrinsic metric will be optimised.
However, if the true type is not in this class, then HBA will
quickly learn the correct type and adjust its play accordingly,
though without necessarily maximising the intrinsic metric.

This is in contrast to the Uniform and Random priors,
which have no intrinsic metric. Under these priors, HBA will
plan its actions with respect to types which are not charac-
terised by a common theme (i.e., all types under the Uniform
prior, and a random half under the Random prior). Therefore,
HBA cannot effectively utilise Observation 1.

5 Conclusion

This paper presents the first comprehensive empirical study
on the practical impact of prior beliefs over policy types in re-
peated interactions. The three messages to take away are: (1)
prior beliefs can have a significant impact on the long-term
performance; (2) deeper planning horizons can both dimin-
ish and amplify the impact; and (3) automatic methods can
compute prior beliefs with consistent performance effects.

It is evident from this research that prior beliefs are a prac-
tically important and useful component of algorithms such as
HBA. We hope that this work spurs further research on prior
beliefs in the context of such algorithms. Specifically, this
empirical study should be complemented with a theoretical
analysis to solidify the observations made in this work.

For example, it is unclear if prior beliefs can be computed
efficiently with useful performance guarantees. The LP-priors
are a first attempt in this direction, since solving a LP-prior
also provides a bound on the expected loss of whichever
intrinsic metric is being optimised. However, as discussed
previously, the LP formulation is a simplification of the true
reasoning of HBA and so the bound may be incorrect.
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