Diversity-Aware Recommendation for
Human Collectives

Pavlos Andreadis and Sofia Ceppi and Michael Rovatsos and Subramanian Ramamoorthy !

Abstract.

Sharing economy applications need to coordinate humans, each
of whom may have different preferences over the provided service.
Traditional approaches model this as a resource allocation problem
and solve it by identifying matches between users and resources.
These require knowledge of user preferences and, crucially, assume
that they act deterministically or, equivalently, that each of them is
expected to accept the proposed match. This assumption is unrealistic
for applications like ridesharing and house sharing (like airbnb), where
user coordination requires handling of the diversity and uncertainty in
human behaviour.

We address this shortcoming by proposing a diversity-aware recom-
mender system that leaves the decision-power to users but still assists
them in coordinating their activities. We achieve this through taxation,
which indirectly modifies users’ preferences over options by imposing
a penalty on them. This is applied on options that, if selected, are
expected to lead to less favourable outcomes, from the perspective
of the collective. The framework we used to identify the options to
recommend is composed by three optimisation steps, each of which
has a mixed integer linear program at its core. Using a combination
of these three programs, we are also able to compute solutions that
permit a good trade-off between satisfying the global goals of the
collective and the individual users’ interests. We demonstrate the
effectiveness of our approach with two experiments in a simulated
ridesharing scenario, showing: (a) significantly better coordination
results with the approach we propose, than with a set of recommen-
dations in which taxation is not applied and each solution maximises
the goal of the collective, (b) that we can propose a recommendation
set to users instead of imposing them a single allocation at no loss to
the collective, and (c) that our system allows for an adaptive trade-off
between conflicting criteria.

1 Introduction

Sharing economy applications constitute an interesting domain for
multi-agent resource allocation and coalition formation. In these ap-
plications, users act as producers and consumers of resources, aiming
to find peers to share the resources with, while a platform supports
them during peer discovery and resource sharing. These fundamental
aspects of sharing applications highlight how the decisions of the col-
lective of users lead to a globally desirable outcome, while the choices
of a single user alone have no such power. However, the services the
sharing applications provide should leave the decision-making power
to each user in order to allow her to express her preferences and satisfy

1 School of Informatics, University of Edinburgh, United Kingdom, email:
p.andreadis @sms.ed.ac.uk, sceppi @inf.ed.ac.uk, mrovatso@inf.ed.ac.uk,
sramamoo @staffmail.ed.ac.uk

her individual needs. Consequently, instead of facing the problem of
identifying a solution for the collective of users, the platform needs
to help them in coordinating their individual choices in such a way
that the goal of the collective can still be achieved. In this work, we
tackle this issue by providing a recommender system that accounts
for user preferences and facilitates the coordination among users, in
scenarios where users perform joint tasks in subgroups consisting of
the members of a larger collective. In the example of a ridesharing
application, each user could be aiming to achieve the best fit between
his schedule and the planned ride. However, since rides cannot be
achieved without the collaboration of multiple users, the collective
goal of facilitating as many users as possible will come into conflict
with this individual preference.

Many multi-agent applications face the problem of coordinating
autonomous agents that aim to share resources, which can be seen as
a resource allocation problem. Traditional approaches to this problem
typically express a degree of centralised control in order to provide
functional, viable solutions to most, if not all, participating users. In
particular, several algorithms have been designed that identify stable
matches between users and resources [14, 18, 9]. However, users
cannot affect the algorithm. The most flexible approaches proposed
in the literature make use of sequential mechanisms that allow users
to accept or reject the solution currently proposed to them [11, 1]. Fi-
nally, some of the existing approaches assume that the system knows
the complete preference ordering of users over, e.g., other users [8].
The crucial drawback of this type of work is that it focuses on prob-
lems like how to assign children to schools, how to allocate students
to shared rooms, and how to match donors with patients in the kid-
ney exchange market. In these scenarios, the possibility that users
might prefer not to be allocated, rather than be to allocated as pre-
scribed by the algorithm, is not considered. However, this assumption
makes the adoption of such algorithms unrealistic for several sharing
applications, e.g. ridesharing and joint event planning.

Indeed, these approaches lack a crucial characteristic that systems
that mediate between humans should have: the ability to model human
diversity and consider the uncertainty of human behaviour. Indeed,
human decision making is affected by multiple factors: social, cul-
tural, psychological, personal, and available information [16], that are
unique for each individual. These create variations among individuals
in terms of preferences over given characteristics of the peers and
resources, leading to diversity across users. Moreover, the variabil-
ity of these factors adds complexity to the decision-making process
within each individual, to the extent that near identical situations may
lead to significantly different behaviour. This leads to uncertainty re-
garding user behaviour. Crucially, a sharing application that does not
account for diversity and the uncertainty of human behaviour is likely
to fail in supporting large-scale coordination within human collectives

effectively.

Ideally, a system could address user diversity and provide a
very personalised service by eliciting information from users and
understanding their general preferences over some defined char-
acteristics of the services. In the literature, there is ample work
providing techniques for learning user preferences in an accurate
way [17,7,4, 12, 10, 5, 13, 21, 15] and that focuses on delivering per-
sonalised services [2, 10, 19, 6]. However, apart from the tricky task
of eliciting information from users and understanding how any given
factors affect user preferences, a system has to deal with the problem
of understanding which factors affect human behaviour. This is a
currently open problem that is attracting attention from researchers
interested in, e.g., social computation and psychology. Given this,
a sharing application should account for uncertainty in human be-
haviour. In particular, in designing such an application, the designer
has to (i) pay attention to the type of interaction between the system
and the users (both individually as a collective) and (ii) allow for
flexibility such that it can adapt to unforeseen behaviour. In this work,
in order to provide such flexibility, instead of offering users a single
option computed with the techniques discussed above, we focus on
the problem of recommending multiple options to users.

The allocation problem faced by sharing applications, whose users
aim to find peers to share a resource or a task with, is of a combina-
torial nature. As such, when a system offers multiple options, all the
users assigned to a task have to agree to it, i.e. they have to choose the
task for it to happen. Since there is no guarantee that users’ indepen-
dent choices are consistent with one another, the system has to provide
a coordination mechanism. This problem can be seen as a coalition
formation problem [20] in which incentives to stay in a suggested
coalition may be provided to users who would otherwise reject it.
Cost of stability [3] and taxation [23] are two techniques proposed to
provide such incentives and achieve the desired effect by artificially
modifying users’ preferences. In this work, instead of using explicit
coordination techniques that require communication with users, we
provide an indirect coordination mechanism, based on the techniques
used in coalition formation problems. More specifically, we introduce
a taxation mechanism in the options computation process.

Note that a sharing application that aims to adapt to the user col-
lective but also wants to account for the interests of individual users,
faces a multi-criteria optimisation problem [17]. Indeed, the interest
of the collective (that requires users’ collaboration) is in conflict with
the interest of individual users whose aim is to obtain what is the best
option for themselves. The approach we propose allows the sharing
application to specify to which extent it wants to account for indi-
vidual users’ interests and identify options that achieve the desired
trade-off between conflicting interests.

The three main contribution of this work are:

e A formulation of the user coordination problem faced by sharing
economy applications, in such a way that it allows for the explicit
representation of the diversity and uncertainty in human behaviour;

e A diversity-aware system for the coordination of users in shar-
ing economy applications that does not require communication
between users;

e Experimental evidence for the necessity of taking human diversity
and uncertainty into account when coordinating such applications.
Specifically, we demonstrate that we can replace direct allocations
with recommendation sets at no cost, while also allowing for adap-
tively trading-off between various criteria of optimality.

The remainder of this paper is organised as follows. In Section 2,
we provide a formal description of the allocation problem that charac-

terises sharing applications, propose a diversity-aware approach that
aims to account for diversity and uncertainty of human behaviour, and
describe our framework. Section 4 proposes a detailed description
and formulation of the mixed integer linear programs used in our
optimisation framework. The experimental evaluation and obtained
results are described in Section 5. Finally, Section 6 concludes the

paper.

2 Formal Model

In this section, we formalise the resource allocation problem that
characterises sharing economy applications.

Consider a set of tasks J = {1,...,|J|}. Each task j € J is
associated with one and only one user who owns the task, for example,
the user is the owner of the resource that will be shared, or whoever
initiated a concrete sharing task. Since we assume that each owner has
one and only one task associated with her, for the sake of simplicity,
we interchangeably refer to j € J as both the task and its owner. Let
I ={1,...,|I|} be the set of users who do not own a task, and K
the set of all users, i.e. K = I U J. Each owner j € J aims to find
non-owners to share her task with and each non-owner ¢ € I aims
to find one task to join. All users have requirements and preferences
about tasks and users to share a task with.

Let x = {1‘1717 e T Ty DI - ‘x\IMJ\} € X define
which non-owner joins each task, i.e., x is an allocation of non-owners
to tasks, where X is the set of allocations. In particular, if 7 is allocated
to task j then x; ; = 1, otherwise z; ; = 0.

The preferences of each user k € K are represented by a utility
function uy : X — R which provides a complete ranking over poten-
tial allocations x € X. Similarly, the system-level utility function is
defined as Us : X — R.

Crucially, in sharing economy applications, single users and the
collective of users have conflicting interests. While a user ¢ aims
to maximise her utility u;(+), the interest of the collective of users,
represented by the system-level utility function Us(+), is related to
the overall benefit the users can achieve. For example, Us(-) may
consider the sum of the user utility or the number of users that are
allocated to tasks. Given this, it is obvious that the maximisation of
Us(-) provides no guarantee to individual users in terms of achieved
utility. In order to provide such a guarantee, the application designer
should, e.g., maximise the fairness of the solutions (i.e., minimise the
difference between the utility achieved by every user) or maximise
the minimum single user utility. However, in this case, no guarantee
is given in terms of system-level utility.

The aim of the application is to aid users in finding compatible
peers by suggesting allocations while accounting for this conflict of
interest. However, it is fundamental to highlight that not all allocations
are guaranteed to occur. Indeed, each user & € K selects an allocation
from a set R or recommended solutions independently and without
direct coordination with other users, according to a user response
model. The three user response models typically used in the literature
are [21]:

e noiseless response model: each user acts deterministically and al-
ways selects the solution that would maximise her utility. Formally,
if x € R is such that ug(x) > ux(x'),Vx' € R then pi(x) = 1
otherwise py(x) = 0 forall k € K, where py (x) is the probability
with which user £ € K chooses solution x.

e constant noise response model: each user selects the solution that
would maximise her utility the majority of the time irrespective
of the utility of other solutions. Each of the remaining solutions

is chosen with a equal small probability. Formally, if x € R is

such that u(x) > uk(x’),Vx' € R then py(x) = a otherwise

pr(x) = fwitha >> Fand Y . pr(x) =1forallk € K.
e Jogit response model: each user selects an allocation from the

set R proportionally to its utility value. Formally, px(x) =

u X

sl Yk € K.

Given that with each of these response models, every user selects
a solution without reasoning about other users’ choices but, rather,
makes her decisions by exclusively considering her utility over each
allocation, in order for a task to occur, all the users, owner and non-
owners, allocated to that task in a given allocation x have to select x.
For example, if allocation x assigns to task j the subset of non-owners
I C I, then, in order for task j to occur, all non-owners ¢ € I must
select allocation x.

3 Diverse Aware Approach

The problem described in the previous section can be approached as a
resource allocation problem, in which users are implicitly assumed
to be compliant with any solution proposed to them, and are there-
fore not afforded any alternatives. The results of such an approach
are constrained to that of a matching between users and resources.
Consequently, there is no consideration of the inherent uncertainty in
user behaviour, or the fact that users could simply refuse to participate
in systems that do not satisfy their needs. A system that realistically
addresses human diversity and the uncertainty in human behaviour
requires an explicit representation of user preferences and their re-
sponses to different decision scenarios. Furthermore, the decision sce-
nario needs to be formulated so that it allows for the recommendation
of solutions to users, while accounting for their possible deviations
from expected behaviour.

In this section, we will provide a detailed framework for the rep-
resentation of the diversity and uncertainty in user behaviour, and
outline our approach that focuses on the problems of recommending
alternatives and facilitating the coordination of users. In particular, our
system intends to present a set of allocations R = {x1,X2, ..., X|g|}
of fixed size |R).

To achieve this goal we need to deal with two issues. The first of
these is the multi-criteria optimisation problem in which we have to
balance the conflicting interests of each single user (represented by
her utility function u;(-)) and the interest of the collective of users
(represented by the system-level utility function U, (-)). We overcome
this problem by computing solutions that guarantee a minimum level
of system utility and maximise, e.g. the fairness of the solution with
respect to the allocated resources. The second is that the uncoordinated
selection of allocations done by the users, along with their diversity in
preferences, makes it unlikely that users will select allocations such
that the task can actually occur. In order to help the system in the
process of coordinating users’ selections, we introduce a taxation
mechanism, so as to influence user selection behaviour by artificially
modifying the utility they have for the recommended solutions, i.e. by
modifying their preferences. Effectively, taxation allows the system
to impose a penalty on allocations users are better of not selecting.
Generally, the tax imposed is different for each user and for each
allocation, and must guarantee that users still have multiple options
(e.g. the system cannot impose an infinite tax). We develop a different
taxation mechanism for each of the user response models described
in Section 2.

Crucially, these two problems must be tackled simultaneously,
otherwise properties that are satisfied when the first issue is solved,

e.g. fairness, may not hold anymore if taxation is applied in a separate
step. The reason behind this is that both the problems and the solution
to these problems are related to the function, i.e. user utility.

Now, we describe our approach that aims to optimise the recom-
mendation set R while simultaneously dealing with the problems due
to user’s and collective’s conflicting interests, and the lack of coordi-
nation in user selection. In order to handle this problem, we iteratively
construct the recommendation set by sequentially executing three
Mixed Integer Linear Programs (MILPs), each of them guarantee-
ing different solution properties. In this way we can deal with both
the multi-criteria optimisation and the computational complexity of
finding an exact solution.

In particular, in order to account for this conflict of interest, we
initially construct a program called M I LP¥*'*™ that aims to max-
imise the system utility U, (-) and thus find a solution with the highest
utility V'™ that the system can achieve. A second program called
MILPYt takes V* as input and guarantees that the computed
solution achieves at least a give percentage of V™ in terms of sys-
tem utility, while the objective function of the program is focused
on maximising a different property, e.g. fairness. The advantage of
this approach is that the application controls exactly to which extent
the maximisation of the system-level utility and the fairness are sat-
isfied. The alternative would have been to use a single MILP whose
objective function accounts for both the system utility and the fairness.
However, in this case (i) the best trade-off between the two factors
would have been decided by the program and not by the application
designer, and (ii) it would be possible to obtain solutions completely
unbalanced towards one of the two factors.

To face the lack of coordination among users, we aim to modify
their utility for the recommended allocations such that they all prefer
the same solution, termed sponsored solution. This solution is the one
computed by M ILP7""st and, since is the one we want to sponsor,
we do not alter the utility the users have for it. Instead, we apply taxa-
tion on all other recommended solutions. Since we need to solve the
problem of identifying the solutions with the desired properties and
apply taxation simultaneously (as explained in the previous section),
we design a third program, M ILP°he"* dedicated to this. In partic-
ular, a solution obtained with this program aims to be similar to the
one of MILP7"* in terms of users’ utility, guarantees a minimum
level of system utility, and has taxes computed on the basis of the
specific user response model considered.

Given this, we can view our framework as composed of three
steps. In the first one, M I LP*Y***™ is executed in order to identify
the highest possible system utility achievable, in the second step
MILP?st is used to identify the sponsored solution, and in the
third step all the remaining non-sponsored |R| — 1 solutions are
computed by executing MILP°"*" |R| — 1 times.

Note that, users may have other requirements that the system should
satisfy, for example, they may have constraints regarding the charac-
teristics of users they are willing to share a task with. Thus, all the
MILPs must satisfy these requirements in order to compute a feasible
solution. In the next section, we provide a description of the con-
straints needed to satisfy the properties our framework necessitates
and the different type of user requirements.

4 Optimisation Problem Formulation

In this section we present the details of the Mixed Integer Linear
Programs (MILPs) that compose the framework described in the
previous section. For the sake of clarity and without loss of generality,
we present the MILPs for the ridesharing scenario.

Ridesharing is a sharing application that can be modelled as speci-
fied above. Indeed, a set of passengers I and a set of drivers J aim
to find people to share a ride with. Each driver is the owner of a task,
i.e., a car, and passengers aim to join one car each. We assume that
drivers impose their pick-up point, drop-off point, and time of pick-up
on passengers they are sharing the ride with. Passengers, in turn, have
preferences over the pick-up point and drop-off point, and their utility
decreases with the distance between their preferences and what the
driver they are assigned to imposes on them. The pick-up time does
not affect users’ utility, however the system imposes a threshold on the
maximum difference between the pick-up time desired by a passenger
and the one specified by the driver she is assigned to. Note that this
is a hard requirement and thus no allocation that violates this can be
recommended. Moreover, both passengers and drivers may require to
be in a car without smokers, Finally, they may also require to either
share the ride, or not to be in the same car as another specific user.

The requirements just described for the ridesharing scenario are
examples of three different types of constraints that users of sharing
applications may have. Thus, even if in the following formulations
we focus on ridesharing, the constraints presented can be used for a
wide range of applications. In order to illustrate the expressiveness of
the MILP formulations and the requirements that can be captured, in
what follows we describe the characteristic of each possible type of
constraint and show how to formulate it by using an example.

4.1 Maximising collective-level objectives

The MILP presented in this section is used in the first step of our
framework and aims to compute the maximum system utility achiev-
able without violating any requirements.

We start by defining the utility function u;(x) of a passenger i €
I. Her utility function is affected by how much the allocation x
satisfies her preferences. In particular, here we assume that users have
preferences over two aspects that characterise a task: the pick-up point
and the drop-off point.

Without loss of generality, assume the utility function u;(x) of each
passengers ¢ € I is a sum of partial utility functions c;(x) and §;(x)
as shown in Equation 1. In particular, c;(x) is the contribution to the
utility of agent ¢ that depends on the difference between the pick-up
point of ¢ and the one of the driver assigned to her by allocation x.
Similarly, 3;(x) depends on the difference between their drop-off
point. We assume that these differences are divided into intervals and
that all differences in the same interval affect the user’s utility in the
same way.

ui(x) = ai(x) + Bi(x) M
The utility function of the system is a linear weighted combination
as shown by Equation 2. In this specific case, w1, w2, and w3 are
the weights. The first weight multiplies the sum of passengers utility,
i.e., the social welfare, the second the number of passengers that are
allocated to a car, and the third the number of drivers. The idea is that
the system cares about the sum of the utility achieved by passengers
but also the number of users that have the possibility to get a ride.

Us(x) = w1 Zuz'(X)-l-u&ZZmi,j —&—ngI)
iel i€l jed j€T

We are now ready to define the objective function of ML P¥st™
that is to maximise the system’s utility (Equation 3).

obj mazxexUs(x) ©)]

We start the description of the constraints by focusing on the allocation
variables z; ; € [0,1],Vi € I,Vj € J. Since each car j € J has a
capacity c;, we need to guarantee that no more than c; passengers are
allocated to j (Constraint 4). Finally, we need to guarantee that each
passenger is allocated to at most one car (Constraint 5).

> wiy<eVied)
el
i <LViel 5)
jeJ

We introduce a second set of variables h; ;/ ;, one for each passenger
i € I, passenger i’ € I, and driver j € J. These are binary variables
indicating if two passengers are sharing the same car. In particular,
Constraints 6 guarantee that h; ;» ; = 1 if passengers ¢ and ¢’ are both
allocated to car j, and h; ;» ; = O otherwise.

hiij <z45,Yi,4 € I,Vj € J
hiw j <mg ;,Vi,i € IVj € J (6)
R s 2|Tig + x| — 1,Vii € I,Vj € J

We now move to describe the constraints needed to guarantee that
the partial utility «;(x) correctly reflects the distance between the
pick-up preference of passenger ¢ and what the driver she is assigned
to imposes on her. Note that similar constraints are used to compute
the partial utility 8;(x). As mentioned before, we consider the possi-
ble pick-up distance as divided into | 7’| intervals (where 7 is the set
of intervals). For each interval n € T, the parameter o, indicates
1’s partial utility if the pick-up distance is in interval n, and param-
eters Qi lower and Qi upper denote the lower bound and the upper
bound of interval n, respectively. A set of variables k;",,, one for each
n € T, is used to select the right interval. Note that k7?,, is a binary
variable and that k7', = 0 if the pick-up distance is in interval n and
ki, = 1 otherwise. Given this, the partial utility ov;(x) is given by
Equation 7, and Constraints 8 guarantee the the only variable k", that
equals zero is the one of the interval n, to which the pick-up distance
belongs to. Note that M is a very large number as typically used in
the Big M method [22], while A§*(x) measures the pick-up distance.
In this particular case, we compute the distance by considering lati-
tude (pi,iat,pu and Pj,1at,pw) and longitude (P 1ong,pu and Pj 1ong,pu)
of the pick-up points, and compute the Manhattan distance between
them as shown in Equation 9. This equation is particularly interesting
because it shows how we deal with imposing a zero partial utility
to a passenger when she is not assigned to any car. In particular, in
order to achieve this, a fictitious pick-up distance interval n = |T|
is introduced in the set 7" such that the large number M (bigger than
any pick-up distance) is in interval n = |T'|, alpha; | = 0, and
AP (x) = M if i is not allocated to any j € J.

ai(x) =Y in- (1—ki,),Viel (7)

neT

M - ki + (amupper — AF(x)) >0,Vi € I,Vn € T
M - ki'y + (Ai(X) — @njiower) >0,Vi € I,Vn €T

o ki. <IT|-1¥iel

neT

®

A? (X) = Z Tij (|pi,lat,pu _pj,lat,pu|+‘pi7long,pu —Pj,long,pu |)
jed
+ (=) miy)-MViel (9)
jed
In defining constraints due to requirements, we differentiate between
strict constraints, non-strict constraints, and potential constraints.
Strict constraints impose that every group of users sharing a car
must have the same value for a given user’s parameter. For example,
in the ridesharing scenario, a strict constraint is imposed on the day
of the ride and, thus, all users allocated to the same car must have
the same value for the parameter p‘ii“y. In particular, if the two users
are passengers, then the strict constraint is Constraint 10, while if the
two users are a passenger and a driver, then Constraint 11 must be
imposed.

|hiir D1 =y jpiY | < 0,Vi,d € LYj€J (10)

|2ip{ Y — @i ™| < 0,Vi, € I,Vj € J (11)

Non-strict constraints impose a threshold on how a passenger’s re-
quirement is satisfied. In the ridesharing scenario, this type of con-
straint is applied to the difference between the time of pick-up speci-
fied by the passenger, and the one of the driver she is sharing the car
with. We formulate this type of constraint as shown by Constraint 12,
where p!i™¢ and pj-"”e are parameters that indicate the pick-up time
of passenger i and driver j, respectively, and pti™e , . is the thresh-
old.

> @ (0™ = i) < Plieshola (12)

jeJ
Finally, we discuss potential constraints. Constraints of this type do
not always impose a condition that must be satisfied by a solution.
Indeed, a user may have specific requirements about a characteristic
of the users she is sharing the task with or she may be indifferent with
respect to this characteristic. For example, in the ridesharing scenario,
a user may require to be in a car without smokers, while another user,
even if she is not a smoker, may not have such a requirement. In
order to formulate the constraint that guarantees these requirements,
we need to introduce a new binary variable vf’m’k”, one for each
car j € J. Constraints 13 impose that vj-"“’k” = 1, if at least one
user among the passengers and the driver sharing car j requires to be
realNoSmoke iy dicates the “no

in a car without smokers. Parameter p;
reqNoSmoke __

smoker request” of a passenger ¢ € I. In particular if p;

1 the passenger requires to be in a car with no smokers, while if
reaNoSmoke: _ () the passenger has no preferences. p ¢4 o5moke
i p g p p;

is similarly defined for driver j € J. Constraint 14 guarantees that

if none of the users in a car j has a “no smokers” requirement then

v?m"k” = 0. Now, if variable vjsv"“’k” = 1, then we need to impose

that all the users in car j do not want to smoke during the ride. This

is achieved by Constraint 15, where parameter p) °5™°F¢ —= (if
passenger ¢ € I wants to smoke in the car and pl¥ 5™k = |

otherwise. pf\’ oSmoke js similarly defined for driver j € J.
v;moker inﬁjp;‘eqNoSmoke,vj c J’ Viel

smoker reqNoSmoke .
vj >p; ,ViedJ

13)

preqNoSmoke + Zx ‘preqNoSmoke > U.s_moke'r Vj cJ (14)
' i,3Dq Z U s
el

p;VoSmoke + inyjpzll\]oSmoke 2 (Cj + 1)v;7noker7vj cJ (]5)
el

To conclude, we consider the case in which the system allows a user
to specify if she wants/does not want to share a task with another
specific user. The constraints used to guarantee these requirements
are strict constraints and are formalised as follows. Constraints 16 and
17 guarantee that passengers i and i’ and passenger 7 and driver j are
allocated to the same car, respectively. While Constraints 18 and 19
guarantee the opposite.

> hiw; <0 (16)
JjeJ

zi; <0 a7
> hian ;> 1 (18)
JjeJ

zij > 1 (19)

4.2 Maximising fairness among users

MILPYst constitutes the second step of our framework. The aim
for this program is to identify the first solution that will be presented
to users. Note that this is the solution we would like all users to choose
among the ones in the recommendation set. The solution the program
provides guarantees a minimum level of system utility while focusing
on an objective function that is oriented to being beneficial to the users.
In the following formulation we assume, without loss of generality,
that the program aims to maximise user fairness. This translates into
an objective function that minimises the difference between the utility
of every pair of passengers 7,1’ € I (Equation 20).

obj minxexz Z [ui(x) — ug (x)] 20)

i€l i/ el|i’>i

As mentioned before, the solution provided by this program must
guarantee a minimum level of system utility. Given the maximum
utility V* the system can achieve (computed by M ILPY***™) and
the parameter d € [0, 1], the required guarantee can be obtained by
imposing Constraint 21.

Us(x) > V* - d @21)

In addition to this, all the qonstraints described for M ILPsvstem
must also hold for M ILP¥st,

4.3 Maximising user coordination

The last step of our framework aims to compute the remaining |R| — 1
solutions (one has already been identified by M I LP7*"*%). To achieve
this, M I LP°"°"* is executed | R| — 1 times.

A solution identified by MILP°"e" has the following three
characteristics: it guarantees a minimum level of system utility (as
M ILPT"st does), computes a solution that is different from the ones
previously chosen, and artificially modifies the utility each passenger
i € I has for this solution such that all of them would prefer the
solution x* identified by MILP¥* "t Note, that the set I C I is
composed by all passengers ¢ € [such that ZjeJ x;; =1,ie., only
the utility of passengers who are assigned to a driver in solution x™ is

artificially modified. This last characteristic depends on the response
model of the users, and is achieved by using taxation.

When considering the noiseless response model and constant noise
model, in order for a passenger ¢ € I to select/prefer the solution
computed by M ILP""*t we need to guarantee that her utility for the
solution x currently computed is lower than her utility for allocation
x*, i.e. the solution computed by MILP¥"st. We achieve this by
imposing a tax 7;(x) on passenger 7 for allocation x that decreases
the utility ¢ has for x. Constraint 23 guarantees that x* is the preferred
solution of passenger <. In this constraint, € is a very small number
used to express the fact that u;(x*) must be strictly higher than
u;(x) — 7i(x). However, this constraint imposes a lower bound to
the tax 7;(x) but no upper bound. Thus, potentially, the program can
assign an infinite value to 7;(x). This is not desirable because no
real options would be effectively given to the passengers if all but
one could be infinitely taxed. Moreover, we also want to avoid the
case in which 7;(x) is higher than the minimum tax required as the
system should not aim to unnecessarily extract excessive utility from
its participants. Thus, the upper bound 7;(x) should be equal to its
lower bound. We obtain this by using the Big M method [22] that
involves changing the objective function as shown by Equation 22.

minz Jus (x7) — wi(x) + 7:(x)]
M (3 (i) — e~ () + 1)) @2)

iel

ui(x*) — € > ui(x) — 7i(x) (23)
Similarly to the constant response model case, M ILP°"*™® needs
to impose a lower bound on the tax also for the logit response model
(Constraint 25), and modify the objective function (Equation 24) such
that the tax is the lowest possible. However, since in this case the
probability with which a passenger selects solution x is proportional to
the utility that x represents for that passenger, imposing a lower bound
to the tax means imposing a lower bound to the selection probability
of x* for each passenger i € I. In Constraint 25, v is the minimum
selection probability required for x*. Note that this constraint is linear
because everything but u; (x) and 7;(x) are parameters given as input
to the program.

minz i (x*) — ui(x) + 7 (x)| + M(Z (us(x™)

i€l il

_ (3 (uilx) = i(x')) + ui(x) - Ti(x)))) (24)
x'€R

(773 (X*)
Dwrer (WilX) = 7i(x')) +ui(x) — 7i(x)
Finally, M I L P°"°"* needs to guarantee that solution x is different
from the ones previously computed. Depending on the required degree
of difference between two solutions, we can formulate the M I L P
constraints as follows. Constraint 26 guarantees that the solution x
differs from the ones already computed, i.e. the ones in set R, at least
for the allocation of one passenger. While Constraint 27 requires that
each ride (except the one with no passenger allocated to it) of solution
x differs from the corresponding ride in solution x’ € R, at least for

the allocation of one passenger.

S iy — iyl > 1,9 € R (26)

iel jeJ

> 25
}Jp 25

Z lzij — ;5] > 1,vx € RVj € J 27)
icl
In addition to these, all the constraints described for M I L Psvste™
and M ILP7"*t must also hold for M ILP°t""s,

5 Experimental Evaluation

In order to demonstrate the effectiveness of our approach, we run
two sets of simulated experiments. In the first set, we compare the
recommended set of solutions generated with our diversity-aware
approach, with a set of solutions that maximise the system’s utility and
provide no support for user coordination. Essentially, the benchmark
set is produced without considering the need for consistency across
users’ selections. In this way, we will demonstrate that our diversity-
aware approach is strictly better for the generation of recommendation
sets.

In the second set of experiments, we compare our approach to
that of allocating a single solution that maximises system utility. We
assume users are characterised by a utility threshold of acceptance,
unknown to the system. This latter set of experiments, will show how
recommending a set of solutions through our approach can produce
results that are equally good to what a direct allocation would have
produced.

5.1 Experiment design

For both types of experiments we consider different configurations,
each of which is characterised by the population of users, specifically
the number of users and the percentage of drivers among them, the
value of the threshold d used in M ILP "t and MILP°"*"* the
user response model, and, for the logit model, the probability € with
which the sponsored allocation x™ is selected. In particular, we run
experiments for 10 and 20 users, for each percentage of drivers among
20, 30, and 40 percent. We vary the utility threshold d for M ILPFrst
and MILP°"°"s between the values 0.5, 0.75, and 1. The user
models evaluated are the constant noise model and the logit model,
and, for the latter, the probability € of users selecting the sponsored
recommendation is either 60 or 80 percent. Every configuration is
repeated 100 times. We choose not to evaluate the noiseless response
model because, by construction, it is a special case of the the constant
noise model with the best performance, i.e. with the probability of the
most preferred option set to 1. Without loss of generality, we set the
weights w1 = w2 = w3 = 1 in the system-level utility function.

The metrics used for each experiment are system utility, fairness
(computed as described in the previous section), number of drivers
with allocated passengers, and number of allocated passengers. Note,
that all evaluations are performed after user selections have been
performed. Thus, rides that have not been chosen by all the users
allocated to them are not considered in the performance evaluation.
Finally, we highlight that the metrics proposed account for the taxation
imposed on the solutions. That is, each user, given his final allocation,
has had any taxation imposed on him deducted from his effective
utility, which in turn affects the evaluation of the system-level utility
(Eq. 2) and fairness of allocation (Eq. 20).

The procedure used to obtain the experimental results is the follow-
ing: First we generate the desired number of users, divided into drivers
and passengers as prescribed by the configuration. For each user, we
randomly generate the latitude and longitude of the pick-up point and
drop-off point (we restrict the variability of this coordinate to 50), the
pick-up time, whether she allows smokers in the car, and whether she

) 58] I
(=3 (= (=
(e} [} (=)
T T T
L L L

System Utility

5
(=)
T
L

Limit 0.75
Utility Threshold d

.Diversity-Aware Set
[IJBenchmark Set

Limit 0.50 Limit 1.00

2500 1

2000 1

Fairness
—_
D
S
S
;
.

1000 - 1

500 1

0 L L
Limit 0.50 Limit 0.75
Utility Threshold d

.Diversity—Aware Set
[CIBenchmark Set

(b)

Limit 1.00

Number of Users
P N
;

\S)

T

& iiﬁ

Limit 0.50

Limit 0.75
Utility Threshold d

Limit 1.00

Mlno. Drivers with Passengers; Diversity-Aware Set
[Mno. Allocated Passengers; Diversity-Aware Set
[[no. Drivers with Passengers; Benchmark Set
[Cno. Allocated Passengers; Benchmark Set

Figure 1: Results on System Utility (a), Fairness (b), and the number of Allocated Passengers and Drivers with Passengers (c) for the experiments
with a recommendation set benchmark, with 20 users, 30% drivers, and constant noise.

wants to smoke. Then we generate | R| = 7 solutions (where possible)
both for the case without coordination support in which the goal of the
application is solely to maximise the system’s utility, and following
our approach. Finally, we simulate user behaviour according to the
respective user response model and compute the metrics listed above.

This final step of our evaluation changes slightly depending on the
benchmark we are comparing our approach to. As mentioned before,
we consider two benchmarks: a benchmark with a recommendation

set and a benchmark where a single allocation is proposed to the users.

Note that in both cases, the solutions computed aim to maximise
system-level utility.

When we consider the benchmark with a recommendation set,
we compute the two sets of |R| solutions computed as described
above. Then, both for the benchmark case and for our approach, we
recommend to each passenger the rides she is allocated to by these
solutions. Each passenger then, independently, and without knowledge
of other passengers’ behaviour, selects a solution in accordance with
her utility over each option, and her response model. Given these
independent choices, we identify which rides have been selected by
all the users allocated to them and, on the basis of this, we evaluate
the performance of both approaches.

In the comparison with the benchmark with a single allocation, we
assume that passengers select rides that satisfy a minimum level of
user utility, i.e. there is a threshold over the user utility and solutions
that do not satisfy this threshold cannot be selected. For example, in
the case of ridesharing, we can assume that if the utility of a passenger
for a ride is lower than her utility for taking the train, then she chooses

not to join that ride. Given this, we consider the set | R| of solutions
computed using our diversity-aware approach and, for the benchmark,
the solution computed by M ILPY5*™ We assume that users apply
this utility threshold and thus, all the rides that do not satisfy the
threshold are removed from the ones that can be selected. This can be
understood as users implicitly rejecting these solutions. We therefore
make use of this label in corresponding figures. After this, each user
selects one of the remaining options (note that in the benchmark case
each user has either one ride or no option available). Now, as in the
case of the previous benchmark, given these independent choices,
we identify which rides have been selected by all users allocated to
them and, on the basis of this, we evaluate the performance of both
approaches.

A key point to remember, is that our diversity-aware approach in-
fluences users’ utility over allocations through the use of taxation, and
that this directly impacts on selection behaviour. We expect that this
will aid in aligning user selections, and therefore lead to greater per-
formance in terms of allocated passengers and drivers with passengers
and, consequently, in terms of system-level utility.

5.2 Results

Below we present and discuss the results of our experiments for the
case of 20 users with 30% drivers as representative of all experiments.
The results on other population sizes and driver percentages were
qualitatively equivalent. We analyse each set of experiments (rec-
ommendation set and single allocation) separately and present the

500

N W B

o o <9

S o O
T T T

System Utility

100 -

Limit 0.50 Limit 0.75

Utility Threshold d
FDivcrsity—Awam Set, € = 0.6

Limit 1.00

[EDiversity-Aware Set, € = 0.8
[IBenchmark Set

(a)

2500
_ 2000

Fairness
—_
wn
S
S

1000
500

Limit 0.50

Limit 0.75
Utility Threshold d

FDivcrsity—Awam Set, € = 0.6,

Limit 1.00

[EDiversity-Aware Set, € = 0.8
[JBenchmark Set

(b)

Number of Users

Limit 0.50

e

Limit 0.75

Limit 1.00

Utility Threshold d

lno. Drivers with Passengers; Diversity-Aware Set, e = 0.6
[lno. Allocated Passengers; Diversity-Aware Set, e = 0.6
[lno. Drivers with Passengers; Diversity-Aware Set, € = 0.8
[Cno. Allocated Passengers; Diversity-Aware Set, e = 0.8
[no. Drivers with Passengers; Benchmark Set

[Jno. Allocated Passengers; Benchmark Set

Figure 2: Results on System Utility (a), Fairness (b), and the number of Allocated Passengers and Drivers with Passengers (c) for the experiments
with a recommendation set benchmark, with 20 users, 30% drivers, and logit noise.

constant and logit noise cases for each of them.

5.2.1 Experiments with set recommendation benchmark

This subsection discusses the experimental results from the set of
experiments where the benchmark also presents the passengers with a
set recommendation. Focusing first on the constant noise case (Fig.
1) we notice that there is a near linear trade-off between fairness
and system utility (Fig. 1a, 1b). A trade-off that can be modulated by
change of the utility threshold d. We also note that when d = 1, which
forces M IPfst and M I P°"*"s optimisations to prioritise system
utility maximising solutions, the diversity-aware approach slightly
outperforms the benchmark set, in terms of system utility, number of
allocated passengers, and number of drivers with passengers (Fig. 1a,
1¢). Reducing the value of parameter d offers better results on fairness
(Fig. 1b), in comparison to the benchmark, but at a cost of reduced
system utility (Fig. 1a).

Moving on to the logit noise case (Fig. 2), we notice once more the
role of the utility threshold parameter d in trading off system utility
and fairness (Fig. 2a, 2b). Further, the only scenario in which we
perform slightly worse than the benchmark, in terms of user allocation
and system utility, is for e = 0.6 and d = 0.5, i.e. when we optimise
mostly for fairness and where we try not to influence user decisions too
much. In terms of fairness, we only under-perform for d = 1, a result
emerging from the large number of users with 0 utility, as results from
the benchmark (Fig. 2a, 2¢). Otherwise, we notice that the diversity-
aware procedure significantly outperforms the set recommendation

benchmark, in terms of system utility, number of allocated passengers,
and number of drivers with passengers (Fig. 2a, 2c).

Summarising the results of this subsection, we note the significant
improvement in performance afforded by our diversity-aware sys-
tem. This signifies how important it is to be aware of the diversity
among users when coordinating in sharing economy applications.
These results increase in significance once we consider that there is
no coordination present between users, and all the improvement is
the result of implicit system interactions with each individual user;
users that are free to choose amongst recommended alternatives. We
conclude that making set recommendations by simply listing a set of
system-optimal alternatives is a significantly sub-optimal procedure.

5.2.2 Experiments with single allocation benchmark, and
rejection

This subsection discusses the experimental results from the set of
experiments involving a diversity-aware set recommendation and a
benchmark single allocation, while considering passengers that can
reject rides. Focusing first on the constant noise case (Fig. 3), we
notice that our system under-performs in terms of system utility (Fig.
3a), a loss it gains in its increased performance in terms of fairness
(Fig. 3b). We further notice, as above, that there is a near linear trade-
off between fairness and system utility, which can be modulated by
change of the utility threshold d (Fig. 3a, 3b).

Finally, in the logit noise case for the second set of experiments (Fig.
4), we notice once more the role of the utility threshold parameter d

500 1

System Utility
(9%
S
S

Limit 0.50 Limit 0.75 Limit 1.00
Utility Threshold d

MDiversity-Aware Set, with rejection
[CIBenchmark Single, with rejection

(a)

2500

2000 1

S

1500 1

Fairnes

1000 J

500 1

Limit 0.75
Utility Threshold d
lDiversity-Aware Set, with rejection|
[IBenchmark Single, with rejection

Limit 0.50 Limit 1.00

(b)

—_
S

W

Number of Users

Limit 0.50

o

Limit 0.75

Limit 1.00

Utility Threshold d

Mlno. Drivers with Passengers; Diversity-Aware Set, with rejection
[Mno. Allocated Passengers; Diversity-Aware Set, with rejection
[[no. Drivers with Passengers; Benchmark Single, with rejection
[CIno. Allocated Passengers; Benchmark Single, with rejection

Figure 3: Results on System Utility (a), Fairness (b), and the number of Allocated Passengers and Drivers with Passengers (c) for the experiments
with a single allocation benchmark, and rejection, with 20 users, 30% drivers, and constant noise.

in trading off system utility and fairness (Fig. 4a, 4b). Importantly,
we note that our diversity-aware approach, which recommends a set,
allowing for users to freely choose their preferred option, matches the
performance of the benchmark, which allocates a single solution to
each user (Fig. 4a, 4c). These results hold for when we do not wish to
emphasise fairness, i.e in the d = 1 scenario.

The results of this subsection show that our diversity-aware set
recommendation system, can consistently provide results that are
equivalent to those of allocating a single item to each user. This
shows, that providing users with options can be essentially free, in
terms of system utility, even without considering any other beneficial
effects that could result from allowing a system to recommend rather
than allocate solutions to its user base. Moreover, we are afforded
additional options in trading-oft system utility with fairness.

6 Conclusion

We presented a methodology for the coordination of user collectives,
in the absence of communication among agents. Our diversity-aware
approach significantly outperforms the system utility maximising
procedure, demonstrating that the recommendation of sets of solutions
in sharing applications requires explicitly handling the uncertainty
over user behaviour. Furthermore, we showed how our procedure can

match the performance of a direct allocation of users to resources.

This significant result demonstrates that we can allow users to have
a choice in their alternatives, at no loss to the system. Lastly, our
procedure allows for the adaptive trade-off between system-level
utility and fairness of final allocation.

Future work will examine handling beliefs over user preferences in
the context of recommending a set of options for sharing economies.
Specifically, we are studying the inclusion of active learning proce-
dures in the mixed integer linear program formulations. Further, we
are interested in studying the robustness of our procedures to varying
degrees of incorrect assumptions.

REFERENCES

[1] Haris Aziz, Markus Brill, Felix A. Fischer, Paul Harrenstein, Jérome
Lang, and Hans Georg Seedig, ‘Possible and necessary winners of partial
tournaments’, J. Artif. Intell. Res. (JAIR), 54, 493-534, (2015).

[2] Yoram Bachrach, Sofia Ceppi, Ian A. Kash, Peter Key, Filip Radlinski,
Ely Porat, Michael Armstrong, and Vijay Sharma, ‘Building a person-
alized tourist attraction recommender system using crowdsourcing’,
in Proceedings of the 2014 International Conference on Autonomous
Agents and Multi-agent Systems, pp. 1631-1632, (2014).

[3] Yoram Bachrach, Edith Elkind, Reshef Meir, Dmitrii Pasechnik, Michael
Zuckerman, Jorg Rothe, and Jeffrey S. Rosenschein, The Cost of Stability
in Coalitional Games, 122—134, Springer Berlin Heidelberg, 2009.

[4] C.Boutilier, ‘A POMDP formulation of preference elicitation problems’,
in Proceedings of the 18th National Conference on Artificial Intelligence,
pp- 239-246, (2002).

[5] D. Braziunas, ‘Computational approaches to preference elicitation’,
Technical report, University of Toronto, (2006).

[6] Sofia Ceppi and Ian Kash, ‘Personalized payments for storage-as-a-
service’, SIGMETRICS Perform. Eval. Rev., 43(3), 83-86, (2015).

[7] Urszula Chajewska, Daphne Koller, and Ronald Parr, ‘Making ratio-
nal decisions using adaptive utility elicitation’, in Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence, pp.
363-369. AAAI Press, (2000).

500

N W B

(== R}

[= I}
T T T

System Utility

100

Limit 0.50 Limit 0.75

Utility Threshold d
FDivcrsity—Awarc Set, with rejection, € = 0.6

Limit 1.00

[EDiversity-Aware Set, with rejection, € = 0.8
[[JBenchmark Single, with rejection

(a)

2500

1rness

Fa

1000 - J

2000(]
1500]

500 1

Limit 0.50 Limit 0.75

Utility Threshold d
FDivorsity—Awaro Set, with rejection, € = 0.6

Limit 1.00

[Diversity-Aware Set, with rejection, € = 0.8
[]Benchmark Single, with rejection

(b)

Number of Users

o

Limit 0.50

Limit 0.75
Utility Threshold d

Limit 1.00

Ino.
Hno.
Hno.
[no.
no.
Tno.

Drivers with Passengers; Diversity-Aware Set, with rejection, € = 0.6
Allocated Passengers; Diversity-Aware Set, with rejection, € = 0.6
Drivers with Passengers; Diversity-Aware Set, with rejection, € = 0.8
Allocated Passengers; Diversity-Aware Set, with rejection, € = 0.8
Drivers with Passengers; Benchmark Single, with rejection
Allocated Passengers; Benchmark Single, with rejection

©

Figure 4: Results on System Utility (a), Fairness (b), and the number of Allocated Passengers and Drivers with Passengers (c) for the experiments
with single allocation benchmark, and rejection, with 20 users, 30% drivers, and logit noise.

(8]
[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

Kim-Sau Chung, ‘On the existence of stable roommate matchings’,
Games and Economic Behavior, 33(2), 206 — 230, (2000).

John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm, ‘Op-
timizing kidney exchange with transplant chains: theory and reality’,
in International Conference on Autonomous Agents and Multiagent
Systems, AAMAS, pp. 711-718, (2012).

Krzysztof Gajos and Daniel S. Weld, ‘Preference elicitation for interface
optimization’, in Proceedings of the 18th Annual ACM Symposium on
User Interface Software and Technology, UIST ’05, pp. 173-182, New
York, NY, USA, (2005). ACM.

D. Gale and L. S. Shapley, ‘College admissions and the stability of
marriage’, The American Mathematical Monthly, 69(1), 9-15, (1962).
Christophe Gonzales and Patrice Perny, ‘GAI networks for utility elici-
tation.’, KR, 4, 224-234, (2004).

Shengbo Guo and Scott Sanner, ‘Real-time multiattribute bayesian pref-
erence elicitation with pairwise comparison queries’, in International
Conference on Artificial Intelligence and Statistics, pp. 289-296, (2010).
Dan Gusfield and Robert W. Irving, The Stable Marriage Problem:
Structure and Algorithms, MIT Press, Cambridge, MA, USA, 1989.
Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Jose M
Hernandez-lobato, ‘Collaborative Gaussian processes for preference
learning’, in Advances in Neural Information Processing Systems, pp.
2096-2104, (2012).

Daniel Kahneman and Amos Tversky, ‘Choices, values, and frames.’,
American psychologist, 39(4), 341, (1984).

R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives: Prefer-
ences and Value Trade-Offs, Cambridge University Press, 1993.
Michel Balinski Mourad Baou, ‘The stable allocation (or ordinal trans-
portation) problem’, Mathematics of Operations Research, (3), 485-503,
(2002).

Filip Radlinski and Susan Dumais, ‘Improving personalized web search
using result diversification’, in Proceedings of the 29th Annual Inter-
national ACM SIGIR Conference on Research and Development in

[20]

[21]

[22]

(23]

Information Retrieval, pp. 691-692, (2006).

Onn Shehory and Sarit Kraus, ‘Methods for task allocation via agent
coalition formation’, Artificial Intelligence, 101(1), 165 — 200, (1998).
Paolo Viappiani and Craig Boutilier, ‘Optimal bayesian recommendation
sets and myopically optimal choice query sets’, in Advances in Neural
Information Processing Systems, pp. 2352-2360, (2010).

Wayne L. Winston, Introduction to Mathematical Programming: Appli-
cations and Algorithms, Duxbury Resource Center, 2003.

Yair Zick, Maria Polukarov, and Nicholas R. Jennings, ‘Taxation and
stability in cooperative games’, in Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent Systems, pp. 523—
530, (2013).

