
Task Variant Allocation in Distributed Robotics
José Cano∗, David R. White†, Alejandro Bordallo∗,

Ciaran McCreesh†, Patrick Prosser†, Jeremy Singer† and Vijay Nagarajan∗
∗School of Informatics, University of Edinburgh, UK

†School of Computing Science, University of Glasgow, UK

Abstract—We consider the problem of assigning software pro-
cesses (or tasks) to hardware processors in distributed robotics
environments. We introduce the notion of a task variant, which
supports the adaptation of software to specific hardware con-
figurations. Task variants facilitate the trade-off of functional
quality versus the requisite capacity and type of target execution
processors. We formalise the problem of assigning task variants to
processors as a mathematical model that incorporates typical con-
straints found in robotics applications; the model is a constrained
form of a multi-objective, multi-dimensional, multiple-choice
knapsack problem. We propose and evaluate three different
solution methods to the problem: constraint programming, a
constructive greedy heuristic and a local search metaheuristic.
Furthermore, we demonstrate the use of task variants in a real in-
stance of a distributed interactive multi-agent navigation system,
showing that our best solution method (constraint programming)
improves the system’s quality of service, as compared to the
local search metaheuristic, the greedy heuristic and a randomised
solution, by an average of 16%, 41% and 56% respectively.

I. INTRODUCTION

Modern robotics systems are increasingly distributed, het-
erogeneous and collaborative, incorporating multiple indepen-
dent agents that communicate via message passing and dis-
tributed protocols. A distributed approach can offer desirable
qualities such as improved performance. Heterogeneity refers
to the type and amount of hardware resources (e.g. sensors,
CPU capacity) available on each agent in the system. In such
systems, the efficient allocation of software processes (referred
to as tasks) to hardware processors is of paramount importance
in ensuring optimality. Previous works [13, 14] generally take
an approach that considers only a fixed set of tasks, equivalent
to a “one size fits all” architecture, limiting the ability of
a system to adapt to different hardware configurations, and
reducing the opportunities for optimisation.

Instead, we advocate the development of systems based on
the selection and allocation of what we term “task variants”.
Task variants are interchangeable software components that
offer configurable levels of quality of service (QoS) with
a corresponding difference in the amount and/or type of
computing resources they demand; such variants naturally
arise in many scenarios, and often deployed systems consist
of a particular subset of variants that have been implicitly
chosen by a system architect. For example, consider alternative
feature detection algorithms to solve a common task in a
robotics vision pipeline: different algorithms provide increas-
ingly sophisticated recognition methods but at the cost of
increasing CPU load. Similarly, a variant may offer accelerated
processing by targeting specialised hardware (e.g. GPUs).

Currently, the crucial step of selecting and allocating such
task variants is typically performed using ad-hoc methods,
which provide no guarantee of optimality and may thus lead to
inefficient allocation. In this paper, we take a more systematic
approach. We formalise the task variant allocation problem
and propose three different solution methods that are able
to efficiently exploit available resources with the objective of
maximising QoS while ensuring system correctness.

We focus on distributed heterogeneous robotics systems
where variants are naturally available for several tasks. In
particular, our work has been driven by a case study, in
the form of a distributed system of agents running on ROS
[24]. The application implements a framework for inferring
and planning with respect to the movement of goal-oriented
agents in an interactive multi-agent setup — full details can
be found in [4]. There are two types of agents navigating in
the same physical space: autonomous robots represented by
KUKA youBots [3] and humans. Each agent is pursuing a
goal (a specific spatial position in the scenario) while avoiding
collisions with other agents, based on online sensor processing
and beliefs concerning the latent goals of other agents.

Specific tasks are used to accomplish this objective in a
distributed fashion. For example, robots infer navigation goals
of other agents from network camera feeds, provided by at
least one Tracker task — meanwhile humans act independently
and are assumed to navigate as a rational goal-oriented agent
through the space. Some tasks can be configured via parameter
values (e.g. the camera frame rate for the Tracker task) that
translate into variants for that task. Each of these variants
produces a different level of QoS, which we assume is
quantified by an expert system user. Thus, the objective is
to select task variants and allocate them to processors so as to
maximise the overall QoS while agents reach their goals.

The contributions of the paper are as follows: i) we in-
troduce a mathematical model that represents the task variant
selection and allocation problem; ii) we propose three different
solution methods (constraint programming, local search meta-
heuristic, greedy heuristic) to the problem; iii) we evaluate
and compare the solution methods through simulation; iv)
we validate the solution methods in a real-world interactive
multi-agent navigation system, showing how our best solu-
tion method (constraint programming) clearly outperforms the
average QoS of the local search metaheuristic by 16%, the
greedy heuristic by 41%, and a random allocation by 56%.
To the best of our knowledge, we are the first to address task
allocation in the presence of variants in distributed robotics.

II. PROBLEM FORMULATION

We now model the problem of task variant allocation in
distributed robotics, in a general formulation that also applies
to the specifics of our case study. We consider allocation
as a constrained type of multi-objective, multi-dimensional,
multiple-choice knapsack problem. Whilst instances of these
three problems are individually common in the literature
[11, 18], the combination is not. In addition, we allow for
a number of unusual constraints describing task variants that
distinguish this formulation from previous work (e.g. the
specific type of hardware required to run a variant).

Our formulation of the problem divides cleanly into three
parts: the software architecture of the system, including infor-
mation about task variants; the hardware configuration that is
being targeted as a deployment platform; and the constraints
and goals of task selection and allocation, which may be
augmented by a system architect.

A. Software Model

A software architecture is defined by a directed graph of
tasks, (T, M) where the set of tasks T = {τ1 . . . τn} and each
task τi is a unit of abstract functionality that must be performed
by the system. Tasks communicate through message-passing:
edges mi,j = (τi, τj) ∈ M ⊆ T × T are weighted by the
‘size’ of the corresponding message type, defined by a function
S : mi,j → N; this is an abstract measure of the bandwidth
required between two tasks to communicate effectively.

Tasks are fulfilled by one or more task variants. Each task
must have at least one variant. Different variants of the same
task reflect different trade-offs between resource requirements
and the QoS provided. Thus a task τi is denoted as set of
indexed variants: τi = {vi1 . . . vin}. For convenience, we define
V = ∪iτi, such that V is the set of all variants across all tasks.
For simplicity, we make the conservative assumption that the
maximum message size for a task τi is the same across all
variants vij of that task, and we use this maximum value when
calculating bandwidth usage for any task variant.

A given task variant vij is characterised by its processor
utilisation and the QoS it provides, represented by the func-
tions U,Q : vij → N. The utilisation of all task variants is
expressed normalised to a ‘standard’ processor; the capacity
of all processors is similarly expressed. QoS values can be
manually (Section V-A) or automatically generated (future
work), although this is orthogonal to the problem addressed.

B. Hardware Model

The deployment hardware for a specific system is modelled
as an undirected graph of processors, (P, L) where the set of
processors P = {p1 . . . pn} and each processor pk has a
given processing capacity defined by a function D : pk → N.
A bidirectional network link between two processors pk and
pm is defined as lk,m = (pk, pm) ∈ L ⊆ P × P , so
that each link between processors will support one or more
message-passing edges between tasks. The capacity of a link is
given by its maximum bandwidth and is defined by a function
B : lk,m → N. If in a particular system instance multiple

processors share a single network link, we rely on the system
architect responsible for specifying the problem to partition
network resources between processors, such as simply dividing
it equally between processor pairs.

C. Selection and Allocation Problem
The problem hence is to find a partial function A : V →

P , that is, an assignment of task variants to processors that
satisfies the system constraints (i.e. a feasible solution), whilst
maximising the QoS across all tasks, and also maximising
efficiency (i.e. minimising the average processor utilisation)
across all processors. As A is a partial function, we must check
for domain membership of each task variant, represented as
dom(A), to determine which variants are allocated.

We assume that if a processor is not overloaded then each
task running on the processor is able to complete its function
in a timely manner, hence we defer the detailed scheduling
policy to the designer of a particular system.

An optimal allocation of task variants, A∗, must maximise
the arithmetic mean of QoS across all tasks (the global QoS):

max 1/ntasks
∑

vij∈dom(A)

Q(vij) (1)

Whilst minimising the average utilisation across all proces-
sors as a secondary goal:

min 1/nproc
∑
pk∈P

∑
vij∈dom(A): A(vij)=pk

U(vij) (2)

Exactly one variant of each task must be allocated:

∀τi ∈ T, ∀vij , vik ∈ τi :
(vij ∈ dom(A) ∧ vik ∈ dom(A)) =⇒ j = k (3)

The capacity of any processor must not be exceeded:

∀pk ∈ P :
(∑
vij∈dom(A): A(vij)=pk

U(vij)
)
≤ D(pk) (4)

The bandwidth of any network link must not be exceeded:

∀lq,r ∈ L :
(∑
i:A(vij)=pq

∑
k:A(vk

l
)=pr

S(mi,k) + S(mk,i)
)
≤ B(lq,r)

(5)
In addition, residence constraints restrict the particular

processors to which a given task variant vij may be allocated,
to a subset Ri

j ⊆ P . This is desirable, for example, when
requisite sensors are located on a given robot, or because
specialised hardware such as a GPU is used by the variant:

vij ∈ dom(A) =⇒ A(vij) = pk ∈ Rij (6)

Coresidence constraints limit any assignment such that the
selected variants for two given tasks must always reside on the
same processor. In practice, this may be because the latency of
a network connection is not tolerable. The set of coresidence
constraints is a set of pairs (τi, τk) for which:

∀vij ∈ τi,∀vkl ∈ τk : (vij ∈ dom(A) ∧ vkl ∈ dom(A))

=⇒ A(vij) = A(vkl) (7)

III. SOLUTION METHODS

We now propose and describe our three different centralised
approaches to solving the problem of task variant allocation:
constraint programming (CP), a greedy heuristic (GH), and
local search metaheuristic (LS). These are three broadly rep-
resentative search techniques from diverse families of solution
methods, as outlined by Gulwani [9].

A. Constraint Programming

We expressed the problem in MiniZinc 2.0.11 [21], a
declarative optimisation modelling language for constraint
programming. A MiniZinc model is described in terms of
variables, constraints, and an objective. Our model has a
variable for each variant, stating the processor it is to be
assigned to; since we are constructing a partial mapping,
we add a special processor to signify an unassigned variant.
Matrices are used to represent the bandwidth of the network
and the sizes of messages exchanged between tasks. The model
along with the source code can be found online [26].

Most constraints are a direct translation of those in Section
II-C although the constraint given by Equation 3 is expressed
by saying that the sum of the variants allocated to any given
task is one — this natural mapping is why we selected
MiniZinc, rather than (for example) encoding to mixed in-
teger programming. The development of a model that allows
MiniZinc to search efficiently is key to its success, and we
spent some time refining our approach to reduce solution time.

There are two objectives to be optimised, and we achieve
this by implementing a two-pass method: first the QoS objec-
tive is maximised, we parse the results, and then MiniZinc is
re-executed after encoding the found optimal value as a hard
constraint whilst attempting to minimise processor utilisation.

The full model is too large to list here, but to give a flavour,
we show our variables, a constraint, and the first objective:

array[1..nVariants] of
var 0..nProcessors: assignments;

constraint forall (p in 1..nProcessors) (
sum([if assignments[v] == p

then utilisations[v]
else 0
endif
| v in 1..nVariants])

<= capacities[p]);

solve maximize sum(
[if assignments[v] != 0
then qos[v]
else 0
endif
| v in 1..nVariants]);

MiniZinc allows instance data to be separated from the
model. Part of a data file looks like this:

nProcessors = 3;
capacities = [100, 100, 223];
links = [| -1, 17745, 17676

| 17745, -1, 17929
| 17676, 17929, -1 |];

To solve instances, we used the Gecode [7] constraint
programming toolkit, which combines backtracking search
with specialised inference algorithms. We used the default
search rules, and only employ standard toolkit constraints.

It addition to being used as an exact solver, Gecode can also
run in anytime fashion, such that it reports the best solution
found so far. Our system reports both the increasingly better
solutions produced during the run and any globally optimal
result, where found. In our evaluation we consider both the
standard mode, which returns the global optimum after an
unrestricted runtime (Section V-C), and also this anytime mode
that returns the best result found so far (Section V-E).

B. Greedy Heuristic

Our second solution method is a non-exact greedy algorithm
that uses a heuristic developed from an algorithm originally
designed for solving a much simpler allocation problem [5].
The procedure is described in Algorithm 1, and attempts to
obey constraints, then allocate the most CPU intensive tasks
possible to those processors with the greatest capacity.

Algorithm 1 Greedy Heuristic

1: Pmax = sort processors by max capacity
2: Tmax = sort tasks by max variant size

Allocate variants with residency constraints
3: for task in Tmax do
4: Vmin = sort variants of task by min variant size
5: for variant in Vmin do
6: if variant has residency constraints AND task has

no variant assigned then
7: Allocate variant to processor from Rtask

variant

Allocate variants with coresidency constraints
8: for task in Tmax do
9: if task has coresidency constraints AND task has no

variant assigned then
10: Allocate smallest variant to processor from Pmax

Allocate remaining variants
11: for task in Tmax do
12: if task has no variant assigned then
13: Allocate smallest variant to processor from Pmax

Upgrade variants where possible
14: for task in Tmax do
15: if sufficient capacity in assigned processor then
16: Allocate larger variant of task
17: if all tasks assigned then
18: return allocation

First, the smallest task variants with residency constraints
are allocated to processors, beginning with the largest pro-
cessor if the subset Ri

j for a given task variant vij contains
more than one element. Next, the smallest variants of any tasks
with coresidency constraints are assigned selecting processors
from Pmax. Then, the smallest variants of any remaining, un-
allocated, tasks are allocated, again preferring processors with
more capacity. Finally, the algorithm attempts to substitute
smaller variants with larger ones on the same processor. Note

that the way in which the next processor (from Ri
j , Pmax) or

variant is selected must also ensure that allocations will not
result in a violation of any previously satisfied constraints.

Also note that the greedy heuristic is not guaranteed to find a
solution, but if it finds one it is always feasible, i.e. satisfies the
system constraints. The ability to provide solutions is greatly
determined by any residency and coresidency constraints.

C. Local Search Metaheuristic
The third algorithm we propose is a simple local search

metaheuristic employing random restarts. The process is de-
scribed by Algorithm 2. Initially, a random assignment is
generated by allocating a random variant for each task to a
random processor, and all choices are made uniformly random.
There is no guarantee a randomly generated allocation will
satisfy the constraints of the model, and indeed the search
algorithm is not guaranteed to find a feasible solution in
general. As there is no way to determine if the global optimum
has been found, the algorithm continues to search the space
of assignments until a given timeout is reached. The search
may find a local optimum, in which case a random restart is
used to explore other parts of the search space (lines 6-7).

Algorithm 2 Local Search Metaheuristic

1: current← random assignment
2: while time < timeout do
3: for n in neighbours(current) do
4: if n is superior to current then
5: current← n
6: if no improvement then
7: current← random assignment

The neighbourhood of a solution in the space of allocations
is defined as all those solutions that can be generated by
substituting another variant of the same task for one already al-
located, or by moving a single variant to a different processor.
In order to determine if one solution is preferable to another,
a priority ordering amongst the constraints and objectives is
established, in order of importance:

1) No processors should be overloaded.
2) The network should not be overloaded.
3) Residency constraints must be satisfied.
4) Coresidency constraints must be satisfied.
5) Average QoS per task should be maximised.
6) Average free capacity per CPU should be maximised.
A solution is feasible if the first four constraints are satisfied,

after which the search will try to optimise QoS and then reduce
processor utilisation to free up capacity. This priority ordering
method is preferred over the alternative of a weighted sum
objective, an approach found elsewhere in the literature [17].
Weighted sum approaches require the user to define numerical
relationships between objectives and constraints, which is a
somewhat inelegant approach to this problem. For the same
reason, we prefer local search over simulated annealing [25],
an algorithm we also experimented with, which relies on a
numerical gradient in the constrained objective space.

Fig. 1: Case study software architecture, composed of one Tracker
instance per camera, one instance of each task in the Robot domain
per robot, and one Experiment instance for the complete system.

IV. EXAMPLE CASE STUDY

Our case study serves as a specific instantiation of the
general model presented, with which we can test our algorith-
mic solutions in a real system. We first present a “baseline”
instance of the system, consisting of a single robot, person,
server and camera. This simplified configuration illustrates
the system components and the constraints imposed on them.
Each agent (robot or human) is pursuing a spatial goal. The
application’s overarching QoS metric is a combination of
essential requirements (e.g. avoid collisions between agents,
minimise travel time to reach target goals), as well as more
sophisticated preferences (e.g. minimise close-encounters and
hindrance between navigating agents, minimise the time taken
to infer the true agent goal). Therefore, task variants must
be selected and allocated across available processors with
the objective of optimising global QoS based on the selected
variants’ individual QoS values.

A. Software Architecture

Figure 1 shows a high-level diagram representing the soft-
ware architecture of the case study. It is composed of multiple
tasks and their message connections. In the figure, connections
are labelled with message frequencies, which can be obtained
from the maximum bandwidth requirement described in Sec-
tion II-A. The QoS values for the variants of a given task
represent the proportional benefit of running that task variant;
a variant that has a higher QoS, however, would typically incur
a higher CPU usage. We rely on an expert system user to
estimate QoS values for task variants.

We now describe for each task in our case study, the
corresponding variants (see Table I for details):

• Tracker: A component of a distributed person tracking
algorithm that fuses multiple-camera beliefs using a par-
ticle filter. The variants for this task are based on the
input image resolution and the output frame rate given
a fixed number of cameras. The higher the output frame
rate the more accurate the tracking.

• Experiment: A small synchronous task that coordinates
all robots taking part in the experiment.

• Environment: A local processing task required by each
robot. This task combines information generated by the
local robot, other robots, and elsewhere in the system (i.e.
Tracker, Experiment).

• Model: An intention-aware model for predicting the fu-
ture motion of interactively navigating agents, both robots
and humans. The variants for this task are based on the
number of hypothetical goals considered given a fixed
number of agents. A higher number of modelled agent
goals will lead to more accurate goal estimates.

• Planner: Generates an interactive costmap, which pre-
dicts the future motion of all agents with relation to other
agents’ motion given their inferred target goals. This
costmap is used by the Navigation task for calculating
the trajectory to be executed.

• AMCL: A task performing localisation relying on laser
data and a known map of the environment [23]. The
variants of this task vary with the number of particles the
monte-carlo localisation may use during navigation, since
a larger number increases localisation robustness and
accuracy in environments populated with other moving
obstacles. We assume the robot moves on average at the
preferred speed of 0.3m/s (min 0.1m/s, max 0.6m/s).

• Navigation: This task avoids detected obstacles and at-
tempts to plan a path given the interactive costmap of
the agents in the environment, ultimately producing the
output velocity the robot platform must take. The variants
of Navigation depend on the controller frequency, that
is, the number of times per second the task produces a
command velocity. The higher the frequency, the more
reactive and smooth the robot navigation becomes.

• YouBot Core: A core set of ROS packages and nodes that
enable the robot to function, for example etherCAT motor
connectivity, internal kinematic transformations, and a
laser scanner sensor. This task must always run in the
corresponding robot (a residence constraint).

Finally, it is critical that a robot can execute all of its own
tasks, even if only using the least computationally demanding
variants. Those tasks are represented within the robot names-
pace in Figure 1. This is essential to ensure a continued service
in periods of network outage, albeit at lower levels of QoS.

B. Hardware Architecture

The hardware integrating the baseline system is composed
of a single network camera and two processors, that is, a
robot with onboard processor and a remote server. Robot and
server communicate through a wireless network, and camera
and server through a wired network. In practice the network
bandwidth is currently not a limiting factor, as both networks
are dedicated and private in our lab.

V. EVALUATION

In this section, we first describe the results of an empirical
characterisation of the baseline system, which is mandatory
to evaluate both the solution methods and the case study
itself. We then extend this characterisation to define a set of

system instances of increasing size and complexity. Having
established these benchmark problems, we employ them to
evaluate the utility of our solution methods, in two stages.

In the first stage, we compare the quality of solutions re-
turned by the three proposed methods to answer the following
research questions:

• RQ1A. Is it possible to find globally optimal variant
selections and allocations using constraint programming?

• RQ1B. How well can a straightforward greedy heuristic
and the local search metaheuristic perform on this prob-
lem, relative to the constraint programming method?

• RQ1C. How well do the results produced by the three
solution methods translate to deployment on the physical
system outlined in Section IV?

• RQ1D. How effective are the allocations proposed by our
solution methods compared to random allocations?

In the second stage, we compare an anytime version of the
MiniZinc model solver against the local search metaheuristic,
to explore their performance over time. Our research question
is as follows:

• RQ2. How do local search metaheuristic and “anytime”
constraint programming compare in terms of their solu-
tions quality after a given period of run-time?

A. System Characterisation

We performed an offline characterisation of the baseline
system using common monitoring utilities from ROS (e.g.
rqt) and Linux (e.g. htop). The objective was to measure for
each task in the system the following values: i) the average
percentage of CPU utilisation required for each variant on each
processor, and ii) the average frequency at which messages
published by variants are sent to other tasks, along with the
bandwidth required for each type of message.

Table I summarises the values obtained. Column two repre-
sents the number of variants for each task, and column three
the value of the parameters that create the task variants (see
Section IV-A). The next three columns include the average
values of CPU utilisation, frequency and bandwidth for each
task variant — note that the maximum values for frequency
are shown in Figure 1. The CPU values for the Tracker task
assume only one person in the environment. Columns seven
and eight show the residence and coresidence constraints for
each variant and task respectively. Finally, the last column
represents the normalised QoS associated with each task
variant, where 100 is the maximum value. Note that we have
assigned QoS value “1” to single variant tasks because they
have much less impact in the system behaviour, which is
reflected in low CPU utilisation values in Table I.

The focus of this work is task variant allocation, for which
we require QoS values as inputs. Although QoS values were
manually generated based on real system measurements, they
may be automatically generated, but we leave this for future
work. It is worth noting that the user is required to provide
QoS values only “once” for each task variant. Therefore, when
the system is scaled up by replicating tasks on more robots or
cameras, the user is not required to assign new QoS values.

TABLE I: Task variants characterisation.

Task Variants Parameters CPU Freq (Hz) BW (KB/s) Res CoRes QoS
Experiment 1 - 1 10 1 server - 1

Tracker 4 Output freq. (25 20 15 10) 200 160 120 80 25 20 15 10 2.5 2.0 1.5 1.0 server - 100 90 70 40
Environment 1 - 1 10 0.5 - - 1

Model 3 Num. goals (10000 3500 4) 59 39 17 10 10 10 5 5 5 - - 100 60 20
Planner 1 - 1 10 0.5 - Navigation 1
AMCL 3 Particles (3000 500 200) 66 41 19 2.5 2.5 2.5 1 1 1 - - 100 75 50

Navigation 3 Controller freq. (20 10 2) 50 39 25 20 10 2 1 0.5 0.1 - Planner 100 67 33
Youbot Core 1 - 16 10 0.5 robot - 1

Finally, we specify the characteristics of the hardware used
to obtain the measurements. The robot’s on-board processor
is an Intel Atom, 2 cores @ 1.6GHz, 2GB RAM. The
server’s processor is an Intel i5-3340, Quad Core @ 3.30GHz
(Turbo), 16GB RAM. Note that all CPU measurements are
normalised to the robot CPU capacity (= 100). From this, we
can understand why the Tracker instances (which have a high
CPU requirement) can only run in the server, translating into
a residence constraint. The networks employed are a wireless
802.11ac network at 300Mbps, and a 1Gbps Ethernet network.

B. System Instances
In order to obtain more complex instances of the system, we

only need to add processors (robots, servers) and/or cameras,
allowing the system to cope with a more complex environment
and complete more difficult challenges. As these parameters
are varied, the total number of tasks and variants change
accordingly, but the number of variants for each task is
fixed. Table II summarises the set of instances comprising our
benchmarks, and the number of tasks and variants generated
for each case — note that only one server is used for all cases.

TABLE II: System instances considered

Instance Processors Robots Cameras Tasks Variants
1 2 1 1 8 17
2 2 1 2 9 21
3 2 1 3 10 25
4 3 2 1 14 29
5 3 2 2 15 33
6 3 2 3 16 37
7 4 3 1 20 41
8 4 3 2 21 45
9 4 3 3 22 49
10 4 3 4 23 53

C. Simulation Results: QoS Analysis
We now analyse and compare the QoS values of solutions

provided by the three proposed methods (since these are sim-
ulation results, we call them expected values). Remember that
the allocation of more powerful variants translates into higher
global QoS values, and strongly correlates with improved
overall system behaviour. For example, switching from the
least to most powerful variant of the Tracker task (QoS values
40 and 100, Table I) actually provides more accurate and faster
tracking of people in the environment. This in turn provides
the Planner and Model tasks with better data, improving the
robots ability to navigate (e.g. avoiding collisions).

Fig. 2: Expected QoS for greedy heuristic (GH), local search (LS),
and constraint programming (CP). Server capacity = 400.

We execute Python programs implementing the three pro-
posed methods for the instances described in Table II. Answer-
ing RQ1A, we found that constraint programming finds the
globally optimal solution for all instances analysed. In other
words, for each instance this method provides the allocation
of task variants to processors with the best possible average
QoS and minimum CPU usage. Since constraint programming
provides the best possible QoS, we normalise the QoS pro-
vided by the greedy and local search methods to the optimum.
Figure 2 shows results comparing the three methods — note
that values for LS are actually the average of three independent
runs considering the amount of time used by CP. Therefore,
answering RQ1B, we observe that LS and GH achieve an
average of 15% and 47% less QoS than CP respectively.

Since we maintain the server capacity (= 400) across all
instances analysed, the problem becomes more constrained
as the total number of variants increases. As an example,
CP solves Instance1 allocating the most powerful variants
for all tasks. However for Instance10, all tasks need to use
less powerful variants in order to satisfy the CPU capacity
constraint (e.g. the four Tracker tasks use the least powerful).

D. Analysis of Case Study Behaviour

Having obtained the simulation results, our next step is to
validate that the expected QoS values obtained via simulation
match the behaviour of the real system. To do this, we
performed experiments for instances 1-6 from Table II in
our case study environment. For each instance, we configured
the allocation of task variants to processors computed by the

Fig. 3: Measured QoS for greedy heuristic (GH), local search (LS),
constraint programming (CP), and random allocations (RA). Error
bars represent the deviation from the expected QoS values.

solution methods — note that only a single human agent
is present in the environment for all experiments. Then, the
measured QoS value for each instance and method is obtained
by applying the following formula:

QoSmeasured =
∑
τi∈T

QoSvij
×

F o
vij

F e
vij

(8)

where QoSvi
j

is the expected QoS value for task variant vij
as predicted by our solution methods, F o

vi
j

is the observed fre-

quency of messages produced by vij on the real system and F e
vi
j

is the expected frequency associated with vij (Table I). These
two frequencies can differ due to overloaded processors (for
infeasible solutions) and/or approximation errors in the system
characterisation. Therefore, this frequency ratio determines the
effectiveness of a task variant in the real system.

Figure 3 shows the results. The black error bar for each
column denotes the difference between measured QoS (top of
column) obtained with Equation 8, and expected QoS (error
bar upper end) obtained by simulation. Answering RQ1C, the
measured QoS values for local search, constraint programming
and the greedy heuristic only deviate by 8%, 7% and 5%
on average respectively from the expected values. This result
validates the accuracy of our methodology.

Finally, we also examined the system behaviour considering
random allocations of task variants to processors. Figure 3
also includes these results (RA), where each bar actually
corresponds to the average QoS of three randomly generated
allocations. Answering RQ1D, we see how the measured QoS
values for random allocations deviate much more from the ex-
pected ones, by an average of 22%, than those for the proposed
solution methods. The reason is that our solution methods
produced feasible allocations for the six instances analysed
(i.e. satisfying system constraints), thus differences are only
due to approximation errors in the system characterisation.
However, some of the random allocations produced infeasible
solutions, which translated into overloaded processors and
therefore larger differences with the expected values.

In summary, constraint programming improves by 16%,
41%, and 56% on average over local search metaheuristic,
greedy heuristic and random allocations respectively.

E. Anytime Approaches

We now consider task allocation using the MiniZinc model
solver Gecode and the local search metaheuristic as anytime
algorithms, where the best allocation currently known can be
returned at any point during their execution. This is particu-
larly important if we are to allocate variants in larger systems
or at run-time. The two algorithms approach the problem
differently, because using Gecode requires a two-pass proce-
dure where each objective is optimised in turn, whereas the
local search metaheuristic attempts to optimise both objectives
simultaneously. Therefore, the relative performance of the two
algorithms is of interest.

The experiments were performed on a 2.7GHz Intel Core
i5 iMac with 16GB RAM, which gives similar solution times
to those presented above. We first ran Gecode to completion
against each benchmark instance. We selected the smallest
two instances that resulted in significant runtimes, which were
Instance 7 (approximately 25 seconds) and 8 (550 seconds).

We then executed Gecode and local search with increasing
timeout values, to evaluate how the solutions they found
improved over time. Figures 4a and 4b show typical results.
The graphs show two objectives: firstly, the Quality of Service
objective as defined by Equation 1, and secondly the Utilisa-
tion objective as defined by Equation 2. Each intermediary
result is from an independent run of the algorithms, avoiding
the problem of autocorrelation. All results in Figure 4 are
normalised to ideal (“1”), which represents: i) for QoS values,
the QoS of using the most powerful variants; ii) for CPU
utilisation, unutilised processors (free capacity of 100%).

These graphs illustrate a clear trend that answers RQ2:
MiniZinc produces superior results in the same amount of
time, and is our preferred anytime solution method. Promis-
ingly, it also produces high quality results within a short
timeframe, which may enable dynamic optimisation in the
future and also increases our confidence in its ability to scale
to larger systems. Local search produces feasible solutions
with better utilisation values (more free capacity) in a short
amount of time, however our case study architects are pri-
marily concerned with QoS. As our local search algorithm is
implemented in Python, it may be argued that MiniZinc has an
unfair advantage in that its solvers are written in C; however,
the highly optimised nature of constraint solvers is actually
a strong argument in favour of adopting them, particularly as
they improve through continuous development over time.

The fifth value for local search QoS in Figure 4a is lower
than the preceding and following values, which suggests that
there is a certain amount of variance in the results produced
by local search, based on the seed provided. To measure the
variance, we repeated the experiment ten times using local
search, and present the results in Figure 4c. This underlines
the fact that the performance of local search is quite variable,
although it generally makes steady progress over time.

+
+ + +

+ + + + + +

5 10 15 20 25 30

0
.1

0
.2

0
.3

0
.4

Time (s)

N
o
rm

a
lis

e
d
 O

b
je

c
ti
ve

 V
a
lu

e

+

+ + +
+ +

+ + + +

o

o

o

o

o

o
o

o

o
o

o

o

o
o

o

o

o

o

o

o

+

+

o

o

Minizinc QoS

MiniZinc Util

Local Search QoS

Local Search Util

(a)

+
+ + + +

100 200 300 400 500

0
.1

0
.2

0
.3

0
.4

Time (s)

N
o
rm

a
lis

e
d
 O

b
je

c
ti
ve

 V
a
lu

e

+

+ + + +

o

o

o

o

o

o
o

o
o

o

+

+

o

o

Minizinc QoS

MiniZinc Util

Local Search QoS

Local Search Util

(b)

3 6 9 12 15 18 21 24 27 30

0
.3

0
0
.3

5
0
.4

0

Time (s)

N
o
rm

a
lis

e
d
 Q

o
S

(c)

Fig. 4: Anytime results: (a) Instance 7; (b) Instance 8; (c) Distribution on Instance 7 with 10 Repetitions.

VI. RELATED WORK

Much work has been performed in the area of task allocation
in distributed robotics, where different types of optimisation
problems have been addressed. A comprehensive taxonomy
can be found in [12], which in turn is based on an earlier
taxonomy [8]. According to these taxonomies, the task variant
allocation problem presented in this paper falls in the category
of Cross-schedule Dependencies (XD), that is, the effective
utility of each individual task-agent allocation depends on
both the other tasks an agent is performing, and the tasks
other agents are performing. Several types of system con-
figurations are supported within this category — e.g. MT-
SR-IA considers multi-task robots (MT), single-robot tasks
(SR), and instantaneous tasks assignment (IA). Furthermore,
problems in this category can be formulated with different
types of mathematical models. In our case, we use a special
form of knapsack formulation (Section II). Below we outline
key related work in distributed robotics falling in the same
category, highlighting how our work differs from past research.

The first difference arises from the number of tasks and
agents considered. Prior work based on the linear assignment
problem [22] assumes a single task per agent [20, 16, 15, 14].
In our case, the number of tasks is equal to or greater than
the number of agents (and the number of variants is greater
still). A second point is related to the number of agents
simultaneously completing tasks. In [6, 27, 2] several agents
are required, which is a subset of our problem. Another
consideration is that our system is fully heterogeneous, i.e. all
tasks and processors may be different. Some past work does
assume heterogeneous tasks and multiple instances of every
task [19], but does not consider different variants of the same
task, which is the principal addition to the problem here.

Aleti et al. [1] provide a high-level general survey of soft-
ware architecture optimisation techniques. In their taxonomy,
our work is in the problem domain of design-time optimisation
of embedded systems. We explore optimisation strategies that
are both approximate and exact. We evaluate our work via

both benchmark problems and a case study. In terms of the
taxonomy in [1] our work is particularly wideranging.

Finally, Huang et al. [10] consider the selection and place-
ment of task variants for reconfigurable computing applica-
tions. They represent applications as directed acyclic graphs
of tasks, where each task node can be synthesised using one
of four task variants. The variants trade off hardware logic
resource utilisation with execution time. Huang et al. use an
approximate optimisation strategy based on genetic algorithms
to synthesise the task graph on a single FPGA device.

To summarise, no existing work in the robotics field ad-
dresses all of the considerations that our proposal does, i.e. a
constrained, distributed, heterogeneous system with more tasks
than nodes and different variants for the tasks.

VII. CONCLUSION

We have addressed a unique generalisation of the task
allocation problem in distributed systems, with a specific
application to robotics. We advocate the use of task variants,
which provide trade-offs between QoS and resource usage
by employing different algorithms and/or taking advantage of
heterogeneous hardware. We have presented a mathematical
formulation of variant selection and assignment, and evaluated
three solution methods on instances from a problem generator
based on a robotics case study. We conclude that our solution
methods are very effective in selecting and allocating variants
such that QoS is optimised and resource usage minimised. We
find high-quality solutions that translate well to real systems,
providing a useful tool for the system architect.

ACKNOWLEDGMENTS

This work was supported by the AnyScale Applications
project under the EPSRC grant EP/L000725/1, and partially
by the EPSRC grants EP/F500385/1 and EP/K503058/1, and
the BBSRC grant BB/F529254/1. We thank Ornela Dardha for
her valuable help in the problem formulation.

REFERENCES

[1] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and
I. Meedeniya. Software architecture optimization meth-
ods: A systematic literature review. Software Engineer-
ing, IEEE Transactions on, 39(5):658–683, 2013.

[2] S. Balakirsky, S. Carpin, A. Kleiner, M. Lewis, A. Visser,
J. Wang, and V. A. Ziparo. Towards heterogeneous robot
teams for disaster mitigation: Results and performance
metrics from robocup rescue: Field reports. J. Field
Robot., 24(11-12):943–967, November 2007.

[3] R. Bischoff, U. Huggenberger, and E. Prassler. Kuka
youbot - a mobile manipulator for research and educa-
tion. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 1–4, May 2011.

[4] A. Bordallo, F. Previtali, N. Nardelli, and S. Ramamoor-
thy. Counterfactual reasoning about intent for interac-
tive navigation in dynamic environments. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ Interna-
tional Conference on, pages 2943–2950. IEEE, 2015.

[5] J. Cano, E. Molinos, V. Nagarajan, and S. Vijayakumar.
Dynamic process migration in heterogeneous ROS-based
environments. In Advanced Robotics (ICAR), 2015 In-
ternational Conference on, pages 518–523, July 2015.

[6] Jian Chen, Xiao Yan, Haoyao Chen, and Dong Sun.
Resource constrained multirobot task allocation with a
leader-follower coalition method. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Con-
ference on, pages 5093–5098, Oct 2010.

[7] Gecode Team. Gecode: Generic constraint development
environment. http://www.gecode.org, 2006.

[8] Brian P. Gerkey and Maja J. Matarić. A formal analysis
and taxonomy of task allocation in multi-robot systems.
The International Journal of Robotics Research, 23(9):
939–954, 2004.

[9] Sumit Gulwani. Dimensions in program synthesis. In
Proceedings of the 12th International ACM SIGPLAN
Symposium on Principles and Practice of Declarative
Programming, pages 13–24, 2010.

[10] Miaoqing Huang, V.K. Narayana, M. Bakhouya,
J. Gaber, and T. El-Ghazawi. Efficient mapping of task
graphs onto reconfigurable hardware using architectural
variants. Computers, IEEE Transactions on, 61(9):1354–
1360, 2012.

[11] Hans Kellerer, Ulrich Pferschy, and David Pisinger.
Knapsack problems. Springer, 2004.

[12] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine
Dias. A comprehensive taxonomy for multi-robot task al-
location. The International Journal of Robotics Research,
32(12):1495–1512, October 2013. ISSN 0278-3649.

[13] Dong-Hyun Lee, S.A. Zaheer, and Jong-Hwan Kim.
Ad hoc network-based task allocation with resource-
aware cost generation for multirobot systems. Industrial
Electronics, IEEE Transactions on, 61(12):6871–6881,
Dec 2014.

[14] L. Liu and D. Shell. A distributable and computation-

flexible assignment algorithm: From local task swapping
to global optimality. In Proc. of Robotics: Science and
Systems, Sydney, Australia, July 2012.

[15] L. Liu and D. Shell. Optimal market-based multi-robot
task allocation via strategic pricing. In Proc. of Robotics:
Science and Systems, Berlin, Germany, June 2013.

[16] Lingzhi Luo, N. Chakraborty, and K. Sycara. Provably-
good distributed algorithm for constrained multi-robot
task assignment for grouped tasks. Robotics, IEEE
Transactions on, 31(1):19–30, Feb 2015.

[17] R. Timothy Marler and Jasbir S. Arora. The weighted
sum method for multi-objective optimization: new in-
sights. Structural and Multidisciplinary Optimization, 41
(6):853–862, 2009.

[18] Silvano Martello and Paolo Toth. Knapsack Problems:
Algorithms and Computer Implementations. John Wiley
& Sons, 1990.

[19] Natsuki Miyata, Jun Ota, Tamio Arai, and Hajime
Asama. Cooperative transport by multiple mobile robots
in unknown static environments associated with real-time
task assignment. IEEE T. Robotics and Automation, 18
(5):769–780, 2002.

[20] Changjoo Nam and D.A. Shell. Assignment algorithms
for modeling resource contention and interference in
multi-robot task-allocation. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pages
2158–2163, May 2014.

[21] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket,
Sebastian Brand, Gregory J. Duck, and Guido Tack.
Minizinc: Towards a standard CP modelling language. In
Proc. of the 13th International Conference on Principles
and Practice of Constraint Programming, CP’07, 2007.

[22] David W. Pentico. Assignment problems: A golden
anniversary survey. European Journal of Operational
Research, 176(2):774–793, 2007.

[23] Patrick Pfaff, Wolfram Burgard, and Dieter Fox. Robust
monte-carlo localization using adaptive likelihood mod-
els. In EUROS, pages 181–194, 2006.

[24] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Ng. ROS: an open-source
robot operating system. In ICRA Workshop on Open
Source Software, 2009.

[25] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating
hard real-time tasks: An NP-Hard problem made easy.
Real-Time Systems, 4(2):145–165.

[26] David White and Jose Cano. Task variant allocation
repository. https://github.com/ipab-rad/task alloc.

[27] Yu Zhang and Lynne E. Parker. Considering inter-
task resource constraints in task allocation. Autonomous
Agents and Multi-Agent Systems, 26(3):389–419, 2013.

http://www.gecode.org
https://github.com/ipab-rad/task_alloc

	Introduction
	Problem Formulation
	Software Model
	Hardware Model
	Selection and Allocation Problem

	Solution Methods
	Constraint Programming
	Greedy Heuristic
	Local Search Metaheuristic

	Example Case Study
	Software Architecture
	Hardware Architecture

	Evaluation
	System Characterisation
	System Instances
	Simulation Results: QoS Analysis
	Analysis of Case Study Behaviour
	Anytime Approaches

	Related Work
	Conclusion

