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Abstract— It is natural for humans to work with abstract
plans which are often an intuitive and concise way to rep-
resent a task. However, high level task descriptions contain
symbols and concepts which need to be grounded within the
environment if the plan is to be executed by an autonomous
robot. The problem of learning the mapping between abstract
plan symbols and their physical instances in the environment
is known as the problem of physical symbol grounding. In this
paper, we propose a framework for Grounding and Learning
Instances through Demonstration and Eye tracking (GLIDE).
We associate traces of task demonstration to a sequence of
fixations which we call fixation programs and exploit their
properties in order to perform physical symbol grounding. We
formulate the problem as a probabilistic generative model and
present an algorithm for computationally feasible inference
over the proposed model. A key aspect of our work is that
we estimate fixation locations within the environment which
enables the appearance of symbol instances to be learnt.
Instance learning is a crucial ability when the robot does
not have any knowledge about the model or the appearance
of the symbols referred to in the plan instructions. We have
conducted human experiments and demonstrate that GLIDE
successfully grounds plan symbols and learns the appearance
of their instances, thus enabling robots to autonomously execute
tasks in initially unknown environments.

I. INTRODUCTION

Despite significant recent advances in the autonomous

capabilities of humanoid robots, much remains to be done

before robots are able to function effectively in complex

human environments. This is especially the case when robots

require understanding of contextualized information within

cluttered and dynamic environments such as the collaborative

assembly setup shown in Fig. 1. It is natural for humans

to work with abstract plans for various tasks as they are

often intuitive and concise. The ability to understand and

autonomously execute high level instructions is crucial for

the development of natural human robot interfaces (HRI).

However, high level instructions contain symbols and con-

cepts which need to be interpreted and grounded within the

environment in order to enable plan execution. Work, in

the field of HRI, related to interpreting abstract instructions

(usually in the form of natural language) approaches the

problem as grounding the unknown references within an

instruction to a set of predefined actions and observed objects

or locations in the environment [1], [2]. The problem of

learning the mapping between abstract symbols and their

physical instances in the environment, also known as the

problem of physical symbol grounding [3], connects the

idea of situated robotics [4] to the more general problem
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Fig. 1. Collaborative assembly settings demand understanding of contex-
tualized information within cluttered and dynamic environments in order
to understand human instructions and intents. Recognising task relevant
objects and locations is also necessary in order to instantiate high level
plans. As we demonstrate in this paper, eye tracking information enables
symbol grounding and learning the appearance of symbol instances.

of symbol grounding [5] which is one of the core challenges

in artificial intelligence [6].

Importantly, it is often the case that a robot may not

have any knowledge about the model or the appearance

of a symbol instance and so assuming a fully observable

environment imposes considerable constraints on the robust-

ness, scalability and applicability of the existing methods.

In order to relax the observability assumption, we introduce

GLIDE (Grounding and Learning Instances through Demon-

stration and Eye tracking) - a framework for simultaneously

grounding symbols to their instances in the environment

and learning their appearance. GLIDE enables robots to

instantiate a high level plan within an initially unknown

environment and then complete the task autonomously.

Our framework is based on learning from a small number

of demonstrations by a person wearing eye tracking glasses.

Considering the exponential development of technologies

such as ubiquitous computing and the Internet of Things,

being able to naturally communicate with a robot while

wearing an eye tracking device seems an extremely plausible

future. We exploit the fact that fixations are highly dependent

on the task and provide information about the location of task

related items. We describe a methodology for recording 3D

fixation coordinates in the environment and call the sequence

of fixations during task execution a fixation program. We



formulate the problem of mapping fixation programs to high

level task plans as probabilistic inference and demonstrate

how this mapping can be used to ground plan symbols and

learn appearance distributions of symbol instances in the

environment. We recognise probabilistic programming as a

tool well suited for the problem and so use Anglican [7]

for the implementation. We tested GLIDE on experimental

data from human demonstrations and confirm that it success-

fully performs physical symbol grounding. Overall our main

contributions as presented in this paper are:

• Methodology for recording 3D fixations within the

environment based on visual SLAM.

• An inference algorithm exploiting the properties of fix-

ation programs in order to ground symbols and localise

their instances in the environment.

• An algorithm for learning the appearance of symbol

instances when no previous knowledge is present.

II. BACKGROUND

A. Symbol Grounding

The problem of connecting symbols to their meaning

was introduced as the “Chinese Room” experiment [8] and

later formally defined as the symbol grounding problem

by Harnard [5]. A symbol is any object that is part of a

symbol system and symbols are arbitrary in their shape.

A symbol system is a set of symbols and syntactic rules

for manipulating them on the basis of their shapes (not

their meanings). Since robots are embedded and situated

agents, our interpretation of symbol meaning follows the

physical symbol grounding paradigm proposed by [3] and

is a “functional relation between a form and a referent”.

In other words, the meaning of a symbol is its relation to

the physical entity in the environment which the symbol is

referring to.

Previous work related to symbol grounding and robotics

focuses on human-robot interaction scenarios where natural

language is used to provide commands to the robot [1], [2].

The syntactic constituents of the utterance are grounded to

entities of interest in the environment - objects, locations,

trajectories, actions, events. Interestingly, the utterance can

also be semantically parsed to a program expressed in a

robot control language [9] which the robot can execute.

Multimodal models fusing gestures and language have also

been proposed [10], [11]. However, a common assumption

is that all entities of interest in the environment are ob-

servable. GLIDE aims to relax this constraint by enabling

simultaneous grounding of the plan symbols and learning of

the appearance of their instances. Importantly, the proposed

framework utilises a high level planning language, instead of

natural language, for the representation of plans.

B. Eye Tracking

Oculomotor control has been studied during the perfor-

mance of various tasks such as sandwich making, tea making,

driving, playing table tennis, playing cricket and others (see

[12] for an extensive review). The results from those studies

show that eye movements during task execution are task

specific and are barely affected by low level features in

the environment [13], [14]. This supports the active vision

paradigm according to which the vision system actively seeks

information that is relevant to the current cognitive activity

[15]. For example, Land et al. conducted a study [16] in

which participants were asked to prepare a cup of tea in a

regular kitchen environment while their eye movements were

recorded. The majority of fixations were on objects related

to the task despite the complexity of the environment and

the free motion of the participants.

Eye tracking glasses (ETG) provide fixation locations as

2D points within the image from a first person point of

view camera mounted on the device and facing the scene.

Paletta et al. demonstrated that fixations can be projected

onto a precomputed 3D map, by utilising SIFT features in

the scene images [17], while Pfeiffer et al. rely on artificial

fiducial markers in order to estimate 3D fixation locations

[18]. Our approach utilises visual SLAM in order to reduce

the constraints on the scene.

The predominant use of eye tracking in the field of

robotics is in human-robot interaction settings, where gaze

information enables the recognition of human behaviour [19]

and the execution of anticipatory actions [20]. However,

we focus on the question of how eye tracking can guide

instruction grounding and perception. In this line of thought,

Papadopoulos et al. treat fixations within an image as a noisy

supervisory signal for the training of visual object class

detectors [21], however they do not reason about fixations

during the execution of multi-action tasks.

III. PROBLEM DESCRIPTION

Initially, a task such as building the tower of cubes

shown in Fig. 2 (right) is demonstrated by a person wearing

eye tracking glasses. We make no assumptions about the

availability of prior knowledge related to the environment,

however the task to be demonstrated T is predetermined.

Additionally, the robot has access to a dictionary with action

primitives A which the person can execute in an arbitrary

sequence in order to solve the task. As illustrated in Fig. 2

(left), we represent plans for solving the task as a sequence of

(action object location) tuples where action is

symbol corresponding to an action from A, object is a

symbol referring to a physical object in the environment and

location is a symbol referring to a physical location in the

environment, sometimes dependent on the previous action.

Even though action is a primitive action and known in ad-

vance, it can be executed by the robot only after the object

and location symbols are grounded to their instances

within the environment as shown in Fig. 2 (middle). Given

that a person wears an ETG device and demonstrates how to

execute the plan, the problem we address is how eye tracking

information can be used to ground plan symbols to their

instances in the environment and learn to recognise those in

order to perform the demonstrated task autonomously.



Fig. 2. The representation of a plan (left) which solves an example task with the goal of building a tower with five colour cubes in a particular order
(right). All plan symbols need to be grounded to their physical instances (middle) in order to enable autonomous execution of the task.

IV. METHODOLOGY

We split the problem of simultaneous symbol grounding

and instance learning in three parts. First, we describe how to

estimate 3D fixation locations within the environment in or-

der to map fixations to physical locations in the environment.

Secondly, we show how to localise the instance of a plan

symbol by exploiting the properties of a fixation program.

Lastly, once the location of an instance is known, we describe

how to learn its appearance in order to enable automatic

recognition.

A. 3D Eye Tracking

Mobile eye trackers provide fixation information in pixel

coordinates corresponding to locations in the image of a

first person view camera. Relying only on that information

requires all items of interest in the environment to be detected

from the image in order to determine which one is fixated.

However, in a collaborative assembly scenario, such as the

one shown in Fig. 1, there are several sensors which can

be used - the robot has an RGBD sensors, multiple cameras

and laser scanners. Additionally, the environment can also

be highly sensorised. In order to take advantage of multiple

sensors, instead of a single first person view camera, we

estimate the 3D fixation locations, enabling the projection of

fixations in the frame of any sensor in the environment.

In order to achieve that, we calibrate the first person view

camera and utilise the ORBSLAM algorithm [22], which is

a mono camera SLAM algorithm, in order to estimate the

6D pose of the eye tracking glasses in real time. Since a

single camera is used, the obtained measurements are correct

only up to a scale factor. Therefore we have developed

a calibration procedure which relies on detecting several

APRIL tags [23] initially present in the scene. First, the

physical distance dcalib between two different view points

is estimated using the calibration parameters of the camera

and the tags. Then, the distance dvslam is calculated from the

estimated poses by ORBSLAM and the scale is calculated

as dcalib/dvslam. Additionally, the transformation between

the world frame and the origin of the ORBSLAM frame is

also also computed during the calibration procedure. Once

the 6D pose of the glasses is calculated within the world

frame, the fixation locations are projected from the first

person view camera image to the 3D environment by ray

casting and finding the intersection with a 3D model of the

environment. As a result, fixations can be represented as 3D

locations in the environment instead of just pixel coordinates.

We are interested in scenarios where table top manipulation

is required, so we project fixations to the plane of the table

top resulting in 2D points with physical coordinates. It is

also possible to intersect the ray with a point cloud of the

environment [17].

Utilising a visual mono SLAM algorithm for pose estima-

tion of the eye tracking glasses imposes fewer constraints

on the scene, however it puts demands on the hardware.

Throughout our work we use the SMI ETG 1 device which

provides fixations information at a rate of 60Hz and the

first person view camera has a frame rate of 30FPS. Initial

experiments revealed that this frame rate is insufficient for

the ORBSLAM algorithm since people move their heads rel-

atively fast, adding significant blur to the images. Therefore,

we have attached an extra camera to the eye tracking glasses

which provides 120FPS and enables robust head tracking.

The transformation between the frame of the eye tracking

glasses camera and the high frame rate one is also estimated

during the calibration procedure.

B. Model Definition

In order to solve the problem of physical symbol ground-

ing we define a generative probabilistic model shown in

Fig. 3. The task T and the fixation program F1 . . . FT

are observed, where Fi ∈ R
2 and T is the total number

of observed fixations. P encodes any valid plan which

successfully completes the task. Following the idea that “task

and context determine where you look” [15], the action

Ai ∈ A induces a set of fixations Fsi . . . Fli on a certain item

of interest related to the action, where s1 = 1 and lL = T . In
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Fig. 3. The proposed probabilistic model for physical symbol grounding
which is based on the idea that “task and context determine where you
look” [15].

the context of planning, an item of interest could be any of

the symbols in the plan. For example, given the plan in Fig.

2 (left), an item of interest might be either a particular cube

or a location such as the building-area. The fixations

Fli+1 . . . Fsi+1−1 are observed during the transition from one

item of interest to another and are not represented in the

graphical model in order to avoid clutter. Additionally, the

set of fixations Fsi . . . Fli depends also on the actual physical

location of the item of interest. The main assumption is

that symbol instances cannot be recognised prior to learning,

therefore we model the belief about the position of item m as

a normal distributionNm(µm,Σm) over possible locations in

the environment. Since fixations are projected to the table top

plane µm ∈ R
2 and Σm is a 2×2 covariance matrix. µm and

Σm are latent variables which we are interested in inferring

in order to consequently learn the instance of symbol m. The

set of tuples {(µi,Σi) : i = 1 . . .M} which encodes the state

of the environment is denoted as E, where M is the number

of items of interest, or equivalently the number of symbol

instances. We assume that the changes in the environment

from state Ei to state Ei+1 can be caused only by the action

Ai.

C. Inference

Assuming a uniform prior over the possible locations of

each item and that a task can be uniformly chosen from a set

of predefined ones, we are interested in solving the following

inference problem

p(E1:L|F1:T , T ) ∝

∝
∑

P,A1:L,s1:L,l1:L

p(F1:T |A1:L, E1:L)p(A1:L|P )p(P |T )

(1)

where we use the notation Xa:b to represent the sequence

Xa, Xa+1, . . . , Xb−1, Xb. The key insight is that fixation

programs encode information about why a certain point is

fixated (what action is performed) and where the fixation

is located (where the action item of interest is). Reasoning

Algorithm 1: Environment Inference

Input: T , A, P , λm, λs, Dmax

Data: F1:T

Output: E = {(µ1,Σ1), (µ2,Σ2), . . . , (µM ,ΣM )}

1 // Find all possible plans for the task

2 PT = P(T )
3 samples← []
4 for n from 1 to Nsamples do

5 // Step 1: Generate actions

6 Pn ← Sample UniformCategorical(PT )
7 Ln ← GetLength(Pn)
8 An

1:Ln ← GetActions(Pn)

9 // Step 2: Generate fixation program segments

10 αn ← 2Ln

11 [sn1 , l
n
1 , . . . s

n
L, l

n
L] = T ∗ Sample Dir(αn)

12 // Step 3: Evaluate fixation program likelihood

13 wn ← 1.0
14 for i from 1 to T − 1 do

15 if BothDuringAction(Fi, Fi+1) then

16 dm ← ||Fi − Fi+1||
17 wn ← wn ∗ λm exp(−λmdm)
18 if BothDuringTransition(Fi, Fi+1) then

19 ds ← Dmax − ||Fi − Fi+1||
20 wn ← wn ∗ λs exp(−λsds)

21 // Store sample

22 sample← {wn : [sn1 , l
n
1 , . . . s

n
L, l

n
L]}

23 Append sample to samples

24 [ŝ1, l̂1, . . . ŝL, l̂L] = WeightedAverage(samples)

25 // Step 4: Estimate item of interest locations

26 E ← []
27 for m from 1 to M do

28 (µm,Σm) = FitNormal(F
ŝm:l̂m

)

29 Append (µm,Σm) to E

about those two aspects can be performed independently as

p(F1:T |A1:L, E1:L) = p(F1:T |A1:L)p(F1:T |E1:L) (2)

By exploiting the properties of fixation programs, we split

the inference problem in 4 parts in order to obtain a compu-

tationally feasible solution.

1) Generating actions: The term p(P |T ) encodes the

probability of a plan given the demonstrated task and is

computed by a high level planner P . The planner is assumed,

by utilising the dictionary of primitive actions A, to find

the set of all plans PT that successfully achieve the task.

p(P |T ) is defined as a uniform categorical distribution over

PT . By biasing the categorical distribution, it is possible to

represent any preferences with respect to a plan, for example

shorter plans are selected with higher probability. p(A1:L|P )
is similar to an indicator function and assigns a probability

of 1 to the sequence of actions A1:L which is defined by

plan P and 0 to any other sequence.



2) Generating fixation program segments: The main dif-

ficulty in expressing the likelihood of the observed fixations

given the actions as shown in (2) is the fact that there are

T fixations and L actions. The fixations induced by action

Ai are Fsi:li , while the fixations made during a transition

from action Ai to Aj are given by Fli+1:sj−1. If there are L
actions then there are L−1 additional transitions resulting in

2L−1 sets of fixations in total. Thus, the term p(F1:T |A1:L)
in (2) can be rewritten as

p(F1:T |A1:L) = p(F1:l1 , Fl1+1:s2−1, Fs2:l2 . . . FsL:lL |A1:L)

Similar to the stick breaking analogy for sampling

from a Dirichlet distribution [24], the sequence

s1, l1, s2, l2, . . . sL, lL can be viewed as points where

the fixation program is split in 2L − 1 segments with total

length equal to T . Therefore, s1, l1, s2, l2, . . . sL, lL, are

sampled from a (2L − 1)-dimensional symmetric Dirichlet

distribution with concentration parameter α and normalised

such that s1 = 1 and lL = T . Since there are no zero length

segments in the fixation program α should be greater than 1.

Empirical tests showed that setting α = 2L yields a stable

heuristics. It should be noted that sampling the fixation

program segments is equivalent to sampling the structure of

the graphical model in Fig. 3.

3) Evaluating fixation program likelihood: Fixations on

items of interest are clustered on the item, while fixa-

tions made during transition are sparse and have relatively

large distance between each other. Therefore, the likelihood

p(F1:T |A1:L) is modelled as

p(F1:T |A1:L) =

T−1
∏

i

Litem(Fi, Fi+1)Ltrans(Fi, Fi+1) (3)

The likelihood of two consecutive fixations Fi and Fj during

an action Ak is defined as an exponential distribution over

the distance between them dm = ||Fi − Fj ||, thus

Litem(Fi, Fj) =

=

{

λme−λmdm if [i, j] = [sk, lk]

1 otherwise

(4)

which means that fixations closer together are more likely.

λm is the mean distance between consecutive fixation during

an action and is learnt from labelled data. The likelihood of

two consecutive fixations Fi and Fj during a transition from

Ak to Ak+1 is defined as an exponential distribution over

the ds = Dmax − ||Fi − Fj ||, where Dmax is the maximum

possible distance between Fi and Fj , and so

Ltrans(Fi, Fj) =

=

{

λse
−λsds if [i, j] = [lk + 1, sk+1 − 1]

1 otherwise

(5)

In this case more distant fixations are more likely and λs

is the mean distance between consecutive fixation during a

transition and is also learnt from labelled data. Dmax can be

learnt from data as well, however we have set it simply to the

diameter of the circular table on which the experiments were

Fig. 4. The experimental setup used for recording demonstrations of
building a tower with five colour cubes. During the demonstration the person
wears eye tracking glasses which we have modified to enable visual mono
SLAM based localisation.

conducted. We perform importance sampling by using the

described likelihood function in order to obtain the estimates

ŝ1, l̂1, ŝ2, l̂2, . . . ŝL, l̂L.

4) Estimating item of interest locations: Once the parti-

tioning of the fixation program is estimated, inferring the

location of each item of interest is performed through max-

imum likelihood estimation. For each item of interest i we

fit Ni(µi,Σi) to the fixations segment F
ŝi:l̂i:

corresponding

to the action Ai. Due to the noisy nature of the eye tracking

signal we constrain Σi to be a diagonal matrix and so

avoiding potential problems with overfitting to the fixation

clusters.

The pseudo code in Alg. 1, which is optimised for clarity

rather than efficiency, summarises the proposed algorithm.

We have implemented it with the Anglican probabilistic

programming language [7].

D. Instance learning

Once the symbol locations are estimated, the symbol

appearances are learnt during the instance learning stage in

order to enable automatic recognition. As suggested by [21],

grounded fixations can be used as a noisy supervisory signal

for any type of classifier. Additionally, since the estimated

locations can be projected in the frame of any sensor it is

possible to train multimodal classifiers. We describe a simple

vision based algorithm for instance learning as an initial

step towards the development of more sophisticated systems.

Given a set of fixations Fsi:li which correspond to an item of

interest, it is projected onto the image of a camera viewing

the scene resulting in fsi:li . For each projected fixation

an image crop is made centred at the fixation with size

proportional to the variance of Ni. The difference between

every two crops is computed in order to estimate the colour

of the background. After that each crop is resized to enclose

the largest foreground object it contains. The resized crops

are used to compute the distribution over the colour and

size of the symbol instance. This information is sufficient
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Fig. 5. A typical fixation program recorded during a demonstration of
how to build a tower of 5 colour cubes in the sequence of blue, red, green,
yellow, blue (from bottom to top).

to detect the object in simple environments such as the table

top setup. It should be noted that different sensors will lead

to different appearance distributions and so a more general

representation can be learnt by taking multiple sensors into

account.

E. Experimental setup

We have conducted human experiments where the PR2

robot is shown how to build a tower of five colour cubes

such as the one in Fig. 2 (right). Each of the 5 participants

demonstrated the task 10 times, working on a table top, while

wearing eye tracking glasses which we have modified as can

be seen in Fig. 4. We recorded eye tracking information as

well as video feeds from multiple cameras together with the

poses estimated by ORBSLAM. One of the cameras, which

is fixed on the ceiling, is used for estimating ground truth

locations of the cubes.

V. RESULTS

A. 3D Eye Tracking

The first step in the evaluation of GLIDE is to analyse the

results obtained by the proposed 3D eye tracking method-

ology. Correct pose estimation of the eye tracking glasses

is crucial for the projection of fixations on the environment,

therefore we have tested multiple visual SLAM algorithms

on the table top setup which we are interested in. ORBSLAM

relies on image feature points and does not assume that they

belong to a single plane. Thus, it is able to use feature

points detected both on the table and in the environment

which we found to be crucial. The only problems which we

experienced were with people leaning over the table, looking

at it from closer and so limiting the number of visible feature

points. However, the issue was easily resolved by tilting the

camera up slightly and recalibrating its transformation.

A typical fixation program recorded during a demonstra-

tion of how to build a tower of 5 colour cubes in the

sequence of blue, red, green, yellow, blue (from bottom

to top) is shown in Fig. 5. Firstly, it can be noticed that

fixations are indeed clustered on items of interest for each

action and are sparse in the transition stages, which is a key

assumption in the proposed inference algorithm. We used one

demonstration from each participant to estimate the mean

distances between fixations for the two cases λm = 0.81cm
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Fig. 6. The results from running the proposed inference algorithm on
the fixation program in Fig. 5 in order to determine the location of each
symbol instance in the environment. The ellipses represent the inferred
Nm(µm,Σm) for each item of interest. The black ellipses correspond to
a single standard deviation. The purple ellipse represents the location of
the building area obtained by averaging the 5 building steps. The transition
fixations are not explicitly visualised.
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Fig. 7. A probability mass distribution over the error in localising each of
the cubes in each of the recorded demonstrations. The error is calculated as
the distance between the ground truth locations and the inferred locations
from the fixation programs.

and λs = 6.29cm respectively. As expected, λs is an order

of magnitude greater than λm. This difference is crucial as

it provides valuable information in order to align the plan

with the observed fixation program. Furthermore, cluster

locations are not directly on the cubes, but often at the edge

or even slightly aside. On one hand, this can be explained

by the approximation of projecting fixations on the table

top, instead of the top side of each cube. This distortion

effect can be easily noticed in the building area where each

consequent cube violates the planar assumption stronger

than the previous one and the fixations form a diagonal

cluster. The person is usually positioned at approximately

(0.0,−0.6) which matches the angle of the diagonal cluster.

On the other hand, people are known to fixate on task critical

locations such as grasp points [25]. Another interesting

feature is that trajectories from the first block to the building

area follow almost straight line paths, while the last one is

noticeably curved. This pattern is present in most of the

fixation programs which we recorded and we attribute it

to the fact that people change their focal plane during the

transition, however we are not able to detect that and simply

project the fixation onto the table top. This can be avoided

by monitoring the 3D optical axis of each eye and find the

intersection between them in order to truly estimate a 3D



Fig. 8. Images of symbol instances extracted by utilising the results from performing inference over the recorded fixation program (left). Each of the
crops is centred at a fixation belonging to the corresponding action segment. Those images are used to ground the plan symbols to their physical instances
and learn their appearance (middle). The visualised instances are the mean of the learnt appearance distributions. The approach can also be used to learn
the appearance of the task goal (right).

fixation. The SMI ETG 1 device provides such information

however we found it to be extremely noisy. Therefore, we

rely on the point of regard within the first person view camera

image which is less noisy, but abrupt changes with large

magnitude are often observed. One of the preprocessing steps

that we employed is to remove any fixations which are out

of the table surface.

B. Localisation of Symbol Instances

Next we proceed with the evaluation of the proposed

inference algorithm. The inferred locations from the fixation

program in Fig. 5 are shown in Fig. 6. EachNm(µm,Σm) for

each item m is visualised as an ellipse with the corresponding

colour. The purple ellipse represents the estimated location

for the building area which was calculated by averaging the

locations of the five building steps. It can be seen that the

fixation program was segmented correctly and each symbol

instance was successfully localised. The building area has

the greatest variance which is expected as there are 5 actions

depending on it. In order to evaluate the performance of the

inference algorithm we have plotted in Fig. 7 the distribution

of localisation error as a histogram by analysing all recorded

demonstrations. The error is calculated independently for

each cube and it is defined as the distance between the

ground truth location estimated by a top view camera and

the inferred location from the fixation program. 73% of

the cubes are successfully localised with an error of less

than 10cm which is comparable to the cube size of 6.5cm.

Manual inspection of erroneous cases revealed that wrong

localisation is predominantly caused by noisy eye tracking

data that we have not filtered out. However, since we segment

the fixation program and the beginning and the end are fixed,

usually only a small number of item of interest locations are

affected by the noise.

C. Instance Learning

The last step in the evaluation of the proposed framework

is to examine the performance of the vision based instance

learning algorithm. Given that the location of a symbol

instance is inferred, we can take image crops around the

corresponding fixations as shown in Fig. 8 (left). Each

crop contains the item of interest being fixated, however,

additional items are also partially visible due to the cluttered

table top. Nevertheless, the proposed instance learning al-

gorithm manages to filter the extra items out and calculates

an appearance distribution over the size, colour and pixel

values of each symbol instance. The mean value of each

symbol instance is visualised in Fig. 8 (middle). Manual

visual inspection of the learnt appearance models for each

cube throughout all demonstrations revealed that 71% of

the instances were correctly learnt. Furthermore, the same

approach can be used to learn the appearance of the task goal

as demonstrated in Fig. 8 (right). There is an interesting trade

off between the number of demonstrations, number of sen-

sors and generalisation capabilities of the learnt appearance

models. The ones shown in Fig. 8 (middle) are learnt from a

single static camera from a single demonstration. While they

look surprisingly similar to the real cubes, they have overfit

the appearance of the symbol instance and slight changes

in the point of view or lighting conditions will render them

invalid. Therefore, it is an interesting problem on its own

how to combine multiple sensors, possibly moving, with a

number of demonstrations in order to arrive at a more general

appearance model of the given symbol instance.

VI. DISCUSSION

In this work we have presented how the interpretation of

high level instructions together with 3D eye tracking data

can actively guide perception and enable robots to instantiate

symbolic plans without prior knowledge about the symbol

instances present in the environment. This type of situations



are inevitable if we are to deploy autonomous robots in actual

human environments so that they can improve our daily lives.

We have demonstrated that fixation programs in the con-

text of plan execution provide not only information about

where people look at, but also why they look there. This

property has enabled us to develop a generative probabilistic

model for fixation programs together with an efficient in-

ference algorithm. The proposed instance learning algorithm

attempts to answer the last question about what people see

when they look at a particular location. Thus, GLIDE is able

to interpret unknown symbol references present in single

instructions or entire plans by mapping them to 1) a location

within the environment and 2) a corresponding physical

appearance. We demonstrated the capabilities of GLIDE on

experimental data where 73% of the symbols were correctly

localised and the physical appearance of 71% of the symbols

was successfully learnt.

One of the main limitations of the proposed inference

algorithm is that it will fail to segment the fixation program

properly if informative actions such as searching are executed

by the demonstrator. One way to resolve this issue is to add

a prior over the number of fixation clusters in the fixation

program. However, the planner should also be able to predict

such actions. In fact, the planner adds another constraint

which should be discussed. We assume that the planner is

able to generate all possible plans for accomplishing the task.

This is possible for tasks with low branching factor where

the order is important. If we consider a task which has a

high branching factor and the order does not matter then the

number of plans grows exponentially rendering an exhaustive

search approach infeasible. A potential solution of this issue

is to keep a recursive estimate of the most probable plan

currently being executed. This, however, will not work if no

knowledge about the environment is available. Therefore, it is

left for future work to integrate natural language instructions

in GLIDE in order to learn the symbolic plan and then

instantiate it in the environment.

VII. CONCLUSION

In this paper, we introduced GLIDE - a framework for

simultaneous Grounding and Learning Instances through

Demonstration and Eye tracking. We demonstrated that it

successfully manages to ground symbols and learn their ap-

pearance by applying it to experimental data. The key insight

was the definition of fixation programs as associated traces

of demonstrations and fixation sequences. This enabled us

to explore how eye tracking can guide the instantiation

of high level plans as well as perception and environment

understanding. Those are key capabilities necessary for the

successful deployment of robots in human environments.

In conclusion, GLIDE is a tool enabling robots to deal with

high level instructions without assuming any prior knowledge

about the symbol instances present in the environment.
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