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Abstract

Dynamic Bayesian networks (DBNs) are a general
model for stochastic processes with partially ob-
served states. Belief filtering in DBNS is the task
of inferring the belief state (i.e. the probability dis-
tribution over process states) based on incomplete
and uncertain observations. In this article, we ex-
plore the idea of accelerating the filtering task by
automatically exploiting causality in the process. We
consider a specific type of causal relation, called pas-
sivity, which pertains to how state variables cause
changes in other variables. We present the Passivity-
based Selective Belief Filtering (PSBF) method,
which maintains a factored belief representation and
exploits passivity to perform selective updates over
the belief factors. PSBF is evaluated in both syn-
thetic processes and a simulated multi-robot ware-
house, where it outperformed alternative filtering
methods by exploiting passivity.

1 Introduction

Dynamic Bayesian networks (DBNs) [Dean and Kanazawa,
1989] are a general model for stochastic processes with par-
tially observed states (cf. Figure 1a). Belief filtering in DBNs
is the task of inferring the belief state, i.e. the probability distri-
bution over process states, based on incomplete and uncertain
observations. This can be a costly operation in processes with
large state spaces, requiring efficient approximate methods
[Koller and Friedman, 2009; Murphy, 2002].

In this article, we are interested in the application of DBNs
as representations of actions in partially observed decision pro-
cesses, such as POMDPs [Kaelbling ef al., 1998] and their
many variants. Decision processes often exhibit high degrees
of causal structure [Pearl, 2000], by which we mean that a
change in one part of the process may cause a change in an-
other part. Such causal structure may be used to make the
filtering task more tractable, because it can tell us that beliefs
need only be revised for certain aspects of the process. For ex-
ample, if the variable x5 in Figure la changes its value only
if variable x; changed its value (i.e. a change in z; causes a
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Figure 1: (a) Variables ¢ and /1! represent the process state

attimes t and ¢ + 1, and y§i+1 represent the observation at time
t + 1. Arrows indicate dependencies between variables.

change in x5), then it seems intuitive to use this causal relation
when deciding whether to revise one’s belief about x5.

We refer to the above type of causal relation (between x
and x2) as passivity. Intuitively, we say that a state variable
x; is passive in a given action if, when executing that action,
there is a subset of state variables that directly affect x; (i.e.
x;’s parents in the DBN representing the action) such that
x; may change its value only if at least one of the variables
in this subset changed its value. Passivity occurs naturally in
many planning domains, such as in the robot arm shown in
Figure 1b. If we assume that the joint orientations are absolute
(e.g. 8; = 0° means that joint 7 points exactly to the right),
then the action of turning joint ¢ leaves variables 0, passive,
because they change their values only if the corresponding
preceding variable 6;_; changed its value.

How can passivity be exploited to accelerate the filtering
task? In the robot arm example, if we choose to rotate joint 3,
then the fact that joints 1 and 2 are passive means that they are
unaffected by this action. Thus, it seems redundant to revise
beliefs for the orientations of joints 1 and 2. However, this
is precisely what current filtering methods do. (See the full
article for a discussion of related work.)

The purpose of this article is to formalise and evaluate the
idea of automatically exploiting causal structure for efficient
belief filtering in DBNs, using passivity as a concrete example
of a causal relation. We present the Passivity-based Selective
Belief Filtering (PSBF) method, which maintains a factored
belief representation and exploits passivity to perform selective
updates over the belief factors. PSBF produces exact belief



states under certain assumptions and approximate belief states
otherwise. Our method is evaluated in both synthetic processes
and a simulated multi-robot warehouse, where it outperformed
alternative filtering methods by exploiting passivity.

2 Technical Preliminaries

We consider a decision process which, at each time ¢, is in
a state s° € S and an agent is choosing an action a®. After
executing a’ in s, the process transitions into state s'*! €
S with probability 7% (s, s**1) and the agent receives an
observation o't € O with probability Q% (s'*1, 0f*1). We
assume factored representations of states and observations,
S =X; x..xX,and O = Y7 x ... xY,,, with finite
domains X;,Y;. We write s; to denote the value of X; in state
s, and analogously for o; and Y;j

The agent chooses action a® based on its belief state b,
which is defined as a probability distribution over the state
space S of the process. Belief filtering is the task of updating
the belief state b* — b'*! based on the observation o' 1.

A dynamic Bayesian network [Dean and Kanazawa, 1989]
for action a, denoted A%, is an acyclic directed graph (cf. Fig-
ure la) consisting of:

— State variables X*={z%, ...zl }, Xt ={a{"! . a1}
with xf, xﬁ“ € X, representing the process states at time

t and t + 1, respectively.

— Observation variables Y ={y{*!, ... gt} withy/ ™' €

Y;, representing the observation at time ¢ + 1.

— Directed edges E, C (X! x X)) U (X" x X" U

(X x YY) U (Y x YD), specifying dependen-
cies between variables.

— Conditional probability distributions P,(z |pa,(z)) for
each variable z € X1 U Y**! specifying the probability
that z assumes a certain value given a specific assignment
to its parents pa,(z) = {z'| (¢/, 2) € E,}. We also define
pal(z) = X' Npag(z) and palt'(2) = X" Npag(z).

The functions 7% and 2¢ are defined via £/, and P, as

n
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where we use the notation pa, (1) <= (s, s") to specify that

the parents of z! ™ in X* and X**! assume their correspond-
ing values from s and s’, respectively.

3 Passivity

A state variable 2t is called passive in action a if there exists
a subset of 2/7!’s parents in X? (in the DBN A®) such that
xﬁ“ may change its value only if at least one of the variables
in this subset changed its value. Formally:

Definition 1 (Passivity). Let action a be specified by DBN A“.
A state variable x?l is called passive in A® if there exists a

Figure 2: Non-example of passivity.

set @, ; C pat (i) \ {z!} such that:

- t41 1
(i) Vol € @i (scj+ s ) € E,

and

(ii) for any two states s* and s**! with T%(s?, s'*1) > 0:

t t t+1 t t+1
(ij €Dy izs; = str )= sl =si"
A state variable which is not passive is called active.

Clause (i) requires that there is an edge from xz.“ to xﬁ“

for all x§ € ®,,;. As an example, see Figure 1a in which we

assumed that the variable xé“ was passive with respect to the
variable xﬁ Clause (ii) defines the core semantics of passiv-
ity by requiring that xﬁ'H remain unchanged if all variables in
®, ; remain unchanged. Note that this means that the distribu-
tion P, for z! ™! may specify any deterministic or stochastic

behaviour if the variables in ®,,; change their values.

To clarify the role of clause (i), consider the “non-example”
shown in Figure 2 (observation variables omitted for clarity).
The dynamics of the process are such that binary variables z;
and 2 swap their values at each time step. It is easy to verify
that both state variables satisfy clause (ii). However, note that
these variables are in fact not passive. Passivity is a causal re-
lation and as such it must imply a causal order [Pearl, 2000].
However, there is no causal order between x; and x>, because
there is no edge between z‘*! and 5. Moreover, passiv-
ity means that a variable may change its value only if another
variable with respect to which it is passive (a variable in ®, ;)
changed its value. However, the variables in the example de-
pend only on values at time ¢. Clause (i) resolves these issues
by requiring that every passive variable ;zﬁ“ must depend on
both past and new values of the variables in @, ;.

See the full article for a simple procedure which detects
passive variables based on their conditional probability tables.

4 Passivity-based Selective Belief Filtering

Passivity-based Selective Belief Filtering (PSBF) uses a two-
step update in which the belief state is first propagated through
the process dynamics (transition step b* — bt*1) and then con-

ditioned on the observation (observation step bt — bt+1).
We focus on the transition step in this abstract since this is
where passivity is exploited, and leave the details of the obser-
vation step to the full article.

4.1 Belief State Representation

PSBF uses a factored belief state b(s):]_[kK:1 bk (s) in which
each belief factor by, is a probability distribution defined over
the set S(Ck) = X +1¢¢, Xi for a cluster C C Xt such



that C; U...UCk = X'+, The clustering should be such that
strongly correlated variables are in a common cluster while
independent or weakly correlated variables are in different
clusters [Boyen and Koller, 1998]. Clusters can be specified
manually or generated automatically using methods such as the
ones described in Section 6.1 of the full article. See Example 4
in the full article for example clusterings.

4.2 Exploiting Passivity in Transition Step

The idea behind PSBF is to exploit passivity to perform selec-
tive updates over the belief factors by, in the transition step. To
do this, we require a procedure which performs the transition
step independently for each factor. We obtain such a procedure
by introducing two assumptions:

(Al) Va:z'™'e Cp — paltt(zith) C Gy
(A2) VE#E :CprNCy =10

The first assumption, (A1), states that the clusters must be
uncorrelated (i.e. there are no edges in X**! between clusters),
and the second assumption, (A2), states that the clusters must
be disjoint. Note that neither assumption implies the other.

Assuming (A1) and (A2), we can perform the transition step
b* — b**+! independently for each belief factor as

b k) =m D T (s [T bl Gow)
5€ S(pa;,, (Cr)) k’:[ﬂw?rlec’k/ :wEEpa;t (Ck)]

where 7; is a normalisation constant and
T35, ) = [ [ Pa(ei™ = (sk)i | paa(afth) = (3,5%)) -

m§+1€ Ck

The assumptions (A1)/(A2) guarantee that the transition
step is performed exactly. They can be violated to obtain ap-
proximate belief states, and the full article discusses the vari-
ous roles of these assumptions.

Given this procedure, we can exploit passivity to perform se-
lective updates over the belief factors by. Theorem 1 provides
the formal foundation:

Theorem 1. If (A1) and (A2) hold, and if all J:EH € C are

passive in A“t, then
Vs € S : b (si) = bl (sk).

Theorem 1 states that if the clusters C1, ..., Ck are disjoint
and uncorrelated, and if all variables in cluster C}, are passive
in AY' , then the transition step for the corresponding belief
factor b}, — ZA)ZH can be skipped without loss of information.

How does Theorem 1 translate into situations in which
(A1)/(A2) are violated? The key assumption is (A1). We can
enforce (A1) by modifying the distributions P, of xﬁ“ € Cy
to marginalise out variables in pa';fl (xf“) which are not in
Cy,, for all clusters C.. However, this modification may cause
xf“ to lose its passivity property, in the sense that it may no
longer satisfy the clauses in Definition 1. Consequently, we
would always have to perform the transition step for Cy, even
if the unmodified variables in C are all passive.

To alleviate this effect, one can check if there is a chance
that the unmodified variables in the cluster change their values.
It can be shown that this is the case whenever there is a causal
path from any active variable to a variable in the cluster:

Definition 2 (Causal path). A causal path in A%, from an

active variable xﬁ“ to another variable xz.“, is a sequence

(zM) 2@ 2(@) such that vV = ! 2(Q) = mﬁ-“, and
foralll < ¢ < Q:

6 (m(Q)’x((I"’l)) €F,

(ii) (9D is passive in A® with respect to (9

Intuitively, a causal path defines a chain of causal effects
(such as between joints 1 and 3 in Figure 1b): since the active
variable (4 may have changed its value and (971 is passive
with respect to 2(9), z(¢T1) may also have changed its value,
etc. Hence, in the absence of observing these changes, the
mere existence of a causal path from z(!) to 2(?) is reason to
revise our beliefs about z(?). Thus, as a general update rule,
we can skip the transition step b}, — bt™! if all unmodified
variables in C, are passive in A“t, and if there is no causal
path from any active variable in A to any variable in C},.

See the full article for a procedure which implements this
rule, as well as discussions of computational complexity and
approximation errors of PSBF.

5 Experimental Evaluation

The PSBF method was evaluated in synthetic processes with
varying sizes and degrees of passivity, as well as a simulation
of a multi-robot warehouse system.

5.1 Synthetic Processes

Synthetic processes of four sizes were generated: S (10,3), M
(20,6), L (30,9), XL (40,12), where brackets show the number
of binary state/observation variables. Each process consisted
of two action DBNs which were chosen randomly at each time
step. A passivity of p% means that p% of state variables were
made passive. We used three automatic clustering methods,
called {pc), (moral), (modis).

PSBF was compared to a selection of alternative methods:
PF [Gordon et al., 1993]; RBPF [Doucet et al., 2000]; BK
[Boyen and Koller, 1998]; and FF [Murphy and Weiss, 2001].
For comparison, PF/RBPF/FF were configured to approximate
the speed or accuracy of PSBF/BK.

Figure 3 shows the relative entropy from exact belief state
to PSBF/BK, which achieved the highest accuracy among
the tested methods. The results show that PSBF produced
a higher or comparable accuracy to BK. They exhibited the
same convergent behaviour in relative entropy, showing that
the approximation error due to the factorisation was bounded
(as discussed in the full article). The relative entropy of both
methods increased with the degree of passivity in the process.
This is since a higher passivity implies a higher determinacy
and, therefore, lower mixing rates, which are a crucial factor
in the error bounds of PSBF and BK.

Figure 4 shows computation times (RBPF/FF omitted due
to low accuracy results). PSBF was able to minimise the time
requirements by exploiting passivity, where the savings grew
with both the degree of passivity and the size of the process.
While PSBF outperformed BK in our tests, their difference
decreased for lower degrees of passivity. With low passivity,
PSBF often performed full transition and observation steps,
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Figure 3: Accuracy results for synthetic processes of size S
(n = 10, m = 3). Relative entropy to exact belief state (lower
is more accurate), averaged over 1000 processes.
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Figure 4: Timing results for synthetic processes of varying
sizes. PSBF run with 1,2,4 parallel threads. PF used number
of samples to achieve accuracy of PSBF/BK.

which can be costly operations in large processes. Addition-
ally, the computational overhead of modifying variable distri-
butions and detecting skippable belief factors did not amortise
as effectively in large processes with low passivity.

5.2 Multi-robot Warehouse

We demonstrate how passivity can occur naturally in a more
complex system, and how PSBF can exploit this to accelerate
the filtering task. To this end, we simulated a multi-robot ware-
house in the style of Kiva [Wurman er al., 2008], in which
the robots’ task is to transport goods. Figure 5a shows the ini-
tial state of the simulation. Each robot can perform actions
such as moving, turning, and loading pods. Actions and ob-
servations have some uncertainty. Each robot maintains a list
of tasks such as “Bring inventory pod I to workstation W”,
which are assigned via task auctions. We used two heuristic
control modes (centralised and decentralised) to plan actions
for robots. See the full article for specifications of DBN, clus-
terings, and algorithm configurations.

Figure 5b shows the time per transition of PSBF, BK, and
PF, averaged over 20 different simulations with 100 transitions
each. PSBF outperformed BK on average by 49%/17% and
PF by 36%/32% in the centralised/decentralised control mode,
respectively. In many cases, PSBF updated less than half of the
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Figure 5: (a) Multi-robot warehouse consisting of 2 work-
stations (W1,W2), 4 robots (R1-R4), and 16 inventory pods
(I1-116). (b) Timing for (de)centralised control modes.

belief factors, which resulted in significant savings. PSBF’s
relative savings were smaller in the decentralised mode since
its corresponding DBNs had a lower passivity.

The number of states in the warehouse simulation (=~ 10%°)
was too large to compare the accuracy of the tested methods
in terms of relative entropy. Instead, we compared their accu-
racy based on the results of the task auctions and the number
of completed tasks in each simulation. In the centralised mode,
the algorithms generated over 95% identical task auctions and
completed 15.7 (BK), 15.5 (PSBF), and 15.2 (PF) tasks on
average. In the decentralised mode, they generated over 93%
identical auctions and completed 12.1 (BK), 12.2 (PSBF), and
11.7 (PF) tasks on average. These differences were not statisti-
cally significant, indicating that PSBF achieved an accuracy
similar to that of BK and PF.

6 Conclusion

Our work demonstrates the potential of exploiting causal struc-
ture to render the belief filtering task more tractable. In par-
ticular, our experiments support the hypothesis that factored
beliefs and passivity can be a useful combination in large pro-
cesses. This insight is relevant for complex processes with high
degrees of causality, such as robots used in homes and offices,
where the filtering task may constitute a major impediment
due to the often very large state space.

There are several directions for future work. For example, it
would be useful to know if the definition of passivity could be
relaxed while retaining the ability to perform selective updates,
and whether the idea of selective inference could be extended
to other methods that use factored beliefs. In this work, the
selective inference was determined by the parameterisation of
the process. An interesting alternative is to frame the selection
as a decision problem [Albrecht and Stone, 2017]. Ultimately,
the key to developing efficient filtering methods is to identify
and exploit structure in the process, such as passivity and
other recent examples [Bonet and Geffner, 2016; Vlasselaer et
al., 2016]. A grand challenge will be to unite such structural
exploitation under one theory of inference.
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