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Abstract

Artificial Intelligence is essential to achieve a reliable human-
robot interaction, especially when it comes to manipula-
tion tasks. Most of the state-of-the-art literature explores
robotics grasping methods by focusing on the target object or
the robot’s morphology, without including the environment.
When it comes to human cognitive development approaches,
these physical qualities are not only inferred from the object,
but also from the semantic characteristics of the surround-
ings. The same analogy can be used in robotic affordances
for improving objects grasps, where the perceived physical
qualities of the objects give valuable information about the
possible manipulation actions. This work proposes a frame-
work able to reason on the object affordances and grasping
regions. Each calculated grasping area is the result of a se-
quence of concrete ranked decisions based on the inference
of different highly related attributes. The results show that
the system is able to infer on good grasping areas depending
on its affordance without having any a-priori knowledge on
the shape nor the grasping points.

INTRODUCTION
Humanoid robots are playing increasingly important roles
when it comes to indoor applications. Consider a robot as-
sisting humans by finding, collecting and delivering an ob-
ject. In such complex and dynamic environments, it is hard
to provide the system with every possible representation of
objects. This limitation can confuse the system into reach-
ing very similar objects with completely different purposes,
such as a candle for a glass full of liquid. Thus, the impor-
tance of a rich common sense library on object affordances
that holds the start of robust robotics grasps.

Affordance is defined as “an opportunity for ac-
tion” (Greeno 1994). Thus the interest in robotics on ob-
jects affordances and in artificial intelligence to investigate
the best procedure to imitate the cognitive human develop-
ment on how to interact with objects (Horton, Chakraborty,
and Amant 2012). There is a wide range of theories that try
to explain the human thinking, none of them taken as the
ground truth one.
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Figure 1: Affordances map model to create a correlation be-
tween the objects properties and their environment to im-
prove on robotic grasps.

Thus, it is not surprising that the development of artificial
intelligence is still a wide area of research. Humans heav-
ily rely on shapes and environments to identify and cate-
gorise objects in order to infer an action (de Beeck, Torfs,
and Wagemans 2008; Oztop, Bradley, and Arbib 2004). As
a result, humans succeed at generalising an action towards
objects of the same category with significantly different
shapes, e.g. glasses: wine, tumbler, martini, etc., and differ-
entiate how to manipulate objects with similar shapes but for
different purposes, e.g. bowling pin vs water bottle.

In robotics, the most common approach to affordances is
to learn direct mappings to labels (Bonaiuto and Arbib 2015;
Hermans, Rehg, and Bobick 2011; Lenz, Lee, and Saxena
2015; Montesano et al. 2008). However, this mapping accu-
racy is constrained by the amount of data needed to learn the
grasping areas in each of the affordance groups. These learn-
ing methods do not reveal what are the features that encode
the good object affordances? Namely, these affordances do
not strictly belong to the object itself. Instead, they are the
result of the relationship established between them and the
surroundings. Moreover, to engage in an interaction with hu-
mans, the robot has to be able to represent and reason with
different sources of knowledge and decrease the already em-
inent uncertainty in the environment (Pairet et al. 2018b).

Studies on the development of human cognitive methods
demonstrate that humans improve the interactive learning
process with objects not only based on previous experience
with them (or similar ones) but also by inferring in the con-
text of the environment where these objects reside (Wertsh
and Tulviste 1990). As a result, creating a relationship be-



tween the object, the scenario where it is more likely to be
found, and the set of possible actions to interact with. Using
the same analogy, in robotics, obtaining the grasp actions de-
pending on the object affordances can be improved by inte-
grating semantic attributes of the object and the environment
in which these objects are usually found.

This paper summarises an architecture to address the chal-
lenges previously described. The presented solution builds
upon the assumption that, the robot visual feedback rep-
resents a good source of information. Thus, the focus on
the improvement of affordances reasoning and actions. The
work establishes its foundations on the affordances map
presented in Figure 1 (Montesano et al. 2008), particularly
on its context element where the affordance identification
resides. In this work the context C = {c1, c2, ..., cn} is
modified to be the set of semantic attributes of the ob-
ject and the environment that build upon the affordance;
while A = {a1, a2, ..., an} the set of available actions and
E = {e1, e2, ..., en} the effects of performing those actions
are kept as the original model.

The framework allows the system to model an unknown
object and to reason on its affordance by correlating fea-
tures from the target and its environment. This with the
objective of calculating the best possible grasping region
which is highly related to the object’s affordance group.
Each abstract grasping area is the result of a sequence of
concrete ranked decisions based on the inference of differ-
ent highly related attributes. The system combines object re-
construction methods based on geometrical approaches and
deep learning techniques that delivers an efficient Knowl-
edge Base (KB) for object affordances grasping behaviours
useful in indoor environments.

RELATED WORK
Despite the wide range of methods for robotic grasps, this
summary focuses on those that do not need a-priori infor-
mation about the object in order to reconstruct it and meth-
ods that focus on the object affordance independently of the
object grasp action.

Object Modelling for Grasping Based on Geometry
There are works that profit from superquadric modelling to
then extract the possible grasps of an object using classi-
fiers, (Goldfeder et al. 2009; Vezzani, Pattacini, and Natale
2017). (Goldfeder et al. 2009) integrates shape primitives
and superquadrics, but the object representation is a multi-
level superquadric tree. This tree is created using a decom-
position of the initial model, which contains the shape primi-
tives. After a pruning routine, a subspace containing a set of
suitable grasps is obtained. (Vezzani, Pattacini, and Natale
2017) uses the superquadric modelling for both the object
and the end-effector showing the method to be successful at
computing the grasping area of the object and the desired
pose of the end-effector.

Object Affordances for Grasping
Many methods extract viable grasping points on the objects,
independently if the object is known or novel to the system,

thus not explicitly considering the target’s affordance. Ex-
amples of such works are (Ardón, Dragone, and Erden 2018;
Lenz, Lee, and Saxena 2015; Zech and Piater 2016), to men-
tion some. Others focus on learning the robot’s control and
dynamic models to achieve a grasp, such as (Stoytchev 2005;
Bonaiuto and Arbib 2015). The latter learn grasp affor-
dances from motor parameters to plan grasps using trial-
and-error reinforcement learning. (Stoytchev 2005) follows
psychology theories such as the ones presented in (Greeno
1994) to learn from exploratory behaviours the invariants in
the resulting set of observations for the grasps.

There are also those who focus on the object affordances
themselves without taking into account the grasping region.
An example is (Moldovan et al. 2012) that implement a
Bayesian network probabilistic method to learn to differen-
tiate affordances models among two objects. Their proposed
method shows good results under uncertainty.

In the vast repertoire of learning methods connecting af-
fordances, not necessarily limited to objects, some works
try to mimic the human reasoning by building a KB of ac-
tions based on tasks built upon reinforcement learning (Zhu,
Fathi, and Fei-Fei 2014; Sridharan 2017). Instead, (Monte-
sano and Lopes 2009; Kraft et al. 2009; Madry, Song, and
Kragic 2012) learn the visual descriptors of the objects us-
ing classifiers, such as support vector machine (SVM), to
categorise the objects and obtain the possible grasps. Others
such as (Nguyen et al. 2017; Do, Nguyen, and Reid 2018)
use classifiers alone to build a model using deep Convolu-
tional Neural Networks (CNN) based on the visual objects
features, resulting in a plausible generalised method given
the robustness of their data.

PROPOSED SOLUTION AND SYSTEM
INTEGRATION

The proposed framework is divided into two sub-stages as
shown in Figure 2. This method focuses on modelling the
object and extracting the valuable features of the target and
its surrounding environment. These sets of features allow
the system to deduce the target’s affordance to improve the
grasping actions.
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Figure 2: (a) Proposed solution to a grasping framework us-
ing affordances theory, where the context consists not only
of the object but also of the environment features.



Object Modelling
Learning techniques are part of the state-of-the-art when it
comes to extracting the grasping points on objects. How-
ever, they bring some limitations, such as to collect or find
a suitable dataset that maps the two-dimensional (2-D) im-
ages to the labelled three-dimensional (3-D) grasping points.
This approach models the object using a combination of su-
perquadric modelling and Delaunay triangulation allowing
the system to grasp novel objects without any a-priori infor-
mation. Superquadrics are a family of geometric shapes sim-
ilarly defined as ellipsoids and other quadrics, except that the
squaring operations are replaced by arbitrary powers that are
the ones that adapt the shape to the surface of the perceived
object. The framework starts by approximating the object to
a superquadric model (Jaklic, Leonardis, and Solina 2013):

F (x, y, z,λ) :
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) 2
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(
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) 2
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(
z
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) 2
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,

(1)
where (x, y, z) is a 3-D point in the superquadric model and
λ = [λ1, ..., λ5] defines the superquadric shape. Equation 1
provides a simple test whether a given point lies inside or
outside a superquadric:

P (x, y, z) =


F < 1, inside

F = 0, on surface

F > 0, outside

(2)

Nonetheless, one of the known problems of superquadrics
is that it samples more points around the curvatures of the
perceived shape (Jaklic, Leonardis, and Solina 2013).

Thus, in order to extract grasping points along the whole
surface of the object, the superquadric is combined with a
Delaunay triangulation. A Delaunay triangulation considers
a set P of points in the (D-dimensional) Euclidean space.
An example is shown in Figure 3. For a triangulation to be
Delaunay no point in P should be inside the circumcircle
shaped by the D-dimensional triangulation DT, with the an-
gle vectors composed by the points in P, DT(P), formed by
four chosen points inside P (Lee and Schachter 1980). In
two dimensions, one way to detect if a point D lies in the
circumcircle of A, B, C is to evaluate the determinant∣∣∣∣∣∣∣∣

Ax Ay A2
x +A2

y 1
Bx By B2

x +B2
y 1

Cx Cy C2
x + C2

y 1
Dx Dy D2

x +D2
y 1

∣∣∣∣∣∣∣∣ > 0, (3)

where A, B and C are sorted counterclockwise. This deter-
minant is then positive, if and only if, D is inside the cirum-
circle. The vertices of the Delaunay triangulation are the
ones extracted as the grasping points of the object.

Figure 4 shows the process of visualising the grasping re-
gion on the object. A superellipsoid is matched using the
dimensions of iCub humanoid robot end-effector (Metta et
al. 2008). This superellipsoid and the robot’s hand model
are portrayed in Figures 4(a) and 4(b), and an example of a
modelled object with the obtained grasping region is shown
in Figures 4(c) and 4(d) respectively.
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Figure 3: Delaunay Triangulation example. (a) Delaunay tri-
angulation, (b) not a Delaunay triangulation

Building the Knowledge Base
While the previous module does not need any a-priori infor-
mation on the object to obtain a model, reasoning about the
object affordance needs a library of features that gives some
background about its correct affordance group. Knowledge
Base (KB) methods are growing in artificial intelligence.
They learn a set of general rules and features that allow the
system to infer about an object or an action. Moreover, this
method is not restricted to the output task, but it also allows
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Figure 4: End-effector and object modelling. (a)-(b) show
iCub humanoid Robot end-effector CAD model with its su-
perellipsoid in yellow (axis colors: x is red, y is green and
the z is blue); (c) target object used for the sample recon-
struction; (d) point cloud reconstruction using superquadrics
and Delaunay triangulation, the detected grasping points are
shown in green and the final location of the end-effector in
yellow.
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Figure 5: Objects used for our framework from the Wash-
ington dataset and the different affordances groups.

the system to query a larger array of questions regarding the
features involved in the process.

In this work, a KB graph is used as a predictive model to
an object affordance. The system collects a set of attributes
about the objects and the environment, to then connect them
in a graph style based on a set of general rules that defines
the relationship among these attributes. Consequently, al-
lowing the system to reason about the affordance group and
the previously calculated grasping points. This KB consists
of two steps: collecting data and learning this data relation-
ship to reason on the affordance for grasping.

Collecting data: This is the repository of images collected
from two datasets that are finally organised in the affor-
dance categories shown in Figure 5. The first one is the
Washington-RGB dataset that contains 300 objects and 51
different classes, providing the point clouds and the 2-D im-
ages for each one of the instances (Lai et al. 2012). The sec-
ond dataset is the MIT Indoor scene recognition that con-
tains 15620 different images of 67 different indoor environ-
ments (Quattoni and Torralba 2009).

Both datasets are split into 70% for training and the re-
maining 30% for testing. These subsets are used to train and
test a battery of classifiers that help with defining good ob-
ject affordances features.

Learning the knowledge base using the environment: A
KB is visualised as a graph representation as illustrated in
Figure 6 where the entities (nodes) are connected by general
rules (edges). In this proposed solution, the entities include
the target object, the object attributes and the resulting affor-
dances groups. The general rules are the attribute to attribute
relation. Weights define this relation, where the higher the
weight, the higher the correlation between the two entities.
The previously collected repertoire of images is used to de-
fine the attributes portrayed in Table 1 about the object:

• Shape attributes: This is defined as the set of visual at-
tributes that describe the objects geometrical appearance,

• Texture attributes: Are a set of categories based on visual
characteristics of the objects materials,

• Categorical attributes: Reflecting the semantic under-
standing of the object. For example, an apple is food, and
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Figure 6: Example of a cleaning object and the extracted
attributes used to build the KB graph learning the positive
weights Ψ (shown in red) that result in an affordance group.

• Environment attributes: The scenarios in which the ob-
jects are more likely to be found in. This attribute is added
with the purpose of facilitating the object affordances rea-
soning.

Figure 7 illustrates the hierarchical inference procedure fol-
lowed in the KB, to arrive to an affordance group. This KB is
built using four different deep learning neural networks that,
through the pre-trained CNN resnet50, (He et al. 2016), ex-
tract features from the perceived images. These four differ-
ent deep learning CNN correspond to the different attributes
that define an entity set of the graph.

The KB is then a predictive model based on the hierarchi-
cal information obtained from the different attributes of the
object (visualised as nodes in Figure 6) and the defined gen-
eral rule that correlates attributes (the edges in Figure 6 from
now on referred as weights). From each of the attributes,
a set of weights ΨAi = {ψ1, ψ2, ..., ψn} is extracted hier-
archically to infer on the next best entity candidate, where
{Ai} is an attribute and n the total number of entities in that
attribute. The higher the ψn the higher the probability that
the connected entities result in a better affordance inference.
These weights are proportional to the posterior probability
distribution obtained from the classification task. Such that
the posterior probability distribution is defined as the Bayes
rule:

P̂ (a|x) =
P (x|a)P (a)

P (x)
, (4)

Table 1: Used attributes and entities of the KB graph.
Attribute Attribute Categories

Shape box, cylinder, irregular, long, round

Texture aluminium, cardboard, coarse,
fabric, glass, plastic, rubber, smooth

Categorical container, food, personal,
miscellaneous, utensils

Environment bathroom, bedroom, children room,
closet, kitchen, livingroom, office
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Figure 7: KB representation used for the object affordance
inference. Given an image, the model estimates the attributes
features in a hierarchical manner following the stated infer-
ence rule. These attributes are then accessible information
on the KB. A predictive model is then applied to select the
object affordance.

where x is an image belonging a class a, P (a) is the pos-
terior distribution and P (x) is a normalisation constant that
consists of the sum over a of the multivariate normal den-
sity. Figure 6 depicts an example of a cleaning or to hand
over object, where the weights deduce the best path (shown
in red) to the to clean affordance.

The collected information from each of the deep CNN is
then learned using a decision tree as a predictive model,

(y, Z) = (y1, y2, y3, ..., yn, Z), (5)

where Z is the affordance group that the system is try-
ing to infer and the vector y is the set of features
{y1, y2, y3, ..., yn}, described as attributes categories in Ta-
ble 1, used for the inference task.

Selecting the new grasping points: Once the object is
classified into an affordance category, the grasping region
is limited accordingly. The system selects from the set of
grasping points obtained in the object reconstruction module
and limits the grasps depending on the affordance action-
effect of the object in the following manner:

• The grasping region should be in the middle and up-wards
for objects that are meant to contain edibles.

• For the rest of objects, it is considered as the grasping re-
gion those areas where the density of grasping points is
higher, given that the affordance action-effect is not criti-
cal (i.e., hand over, to brush, etc.).

SYSTEM RESULTS AND DISCUSSION
The results of the presented KB for object affordances in-
cluding the environment features are presented in this sec-
tion. As a reminder, the proposed framework is able to rea-
son on the object affordance. In this work, affordance is un-
derstood as an action-effect relation of an object, with the
purpose of discerning on the best possible grasps.

The current literature in affordances for grasping be-
haviours uses labelled grasping regions on the targets to train
on the object affordance. Given that this approach aims to

Table 2: Each of the deep CNN accuracy performance.
Classifier Accuracy

Shape 95.71%
Texture 98.83%

Categorical 99.91%
Environment 76.50%

reason on the object grasping affordance without having any
a-priori knowledge about its grasping regions, the presented
evaluation of the results is done qualitatively.

Reasoning on the Object Affordance
The first tests are done individually on each of the deep
learning CNN that build up the KB. 30% of the images from
the Washington-RGB dataset were used for testing the bat-
tery of classifiers. Table 2 presents a summary of their accu-
racies, whereas exhaustively presented in literature, the en-
vironment recognition is the hardest classification to boost.
Even though the aim of the proposed framework is not ex-
clusively to improve the performance of the individual clas-
sifiers, these illustrated results match the state-of-the-art re-
sults shown in (He et al. 2016; Lai et al. 2012). In order to
evaluate the overall performance of the KB the accuracy and
probabilities distributions before and after adding the envi-
ronment features were collected.

Figures 8 and 9 show the data for both cases. Not includ-
ing the environment in the affordances has lower accuracy
than adding these features to the KB, as illustrated in Fig-
ures 8(a) and 8(b). Furthermore, Figure 8(a) also shows a
slightly higher spread among different affordance classes.
For example, the case of affordances which objects have
a general semantic categorical attribute such as “miscella-
neous” or “container”. A percentage of objects get confused
among the to contain, to brush, to eat, and to squeeze cat-
egories. Regarding grasping, this miscue represents a sig-
nificant negative effect, especially for objects which real af-
fordance is to contain and its misclassification results in the
system ignoring the lifting-up orientation of the object, thus
dropping the food or liquid inside the object. This case is re-
duced by 4.24% when adding the environment features, as
portrayed in Figure 8(b).

The posterior probability distribution of the objects
among each category is also improved. Figures 9(a) and 9(b)
show the overall increase in the median probability of the
objects in the different affordances categories. Further, there
is a notable decrement in the distribution of categories such
as to contain, to hand, to brush, and to eat meaning that the
model is more confident about the classification.

Obtained Grasping Points
The final goal is to obtain a system that, without any a-priori
knowledge about the grasping regions of the objects, is able
to reason on the affordance category and calculate the best
possible grasping region. Figure 10 shows examples of dif-
ferent objects from which the grasping areas were extracted,
before and after, inferring on the affordance of the target.
These grasp regions are analysed qualitatively according to
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Figure 8: Affordance category classification perfor-
mance. (a) Before adding environment features, showing an
average diagonal accuracy of 92.57%; (b) After including
the environment, showing an average diagonal accuracy of
96.81%.

the most likely action that a human would take in order to
obtain the less negative effect.

For example, Figures 10(a) and 10(b) show the obtained
model from a water bottle. In these images, the achieved
grasp before deducing the affordances, results on being
placed on the lid of the bottle, which would result in a neg-
ative effect if the bottle contained liquid. On the other hand,
Figure 10(b) shows the calculated grasping area after the af-
fordance has been inferred, which shows to be a more plausi-
ble solution given the risk of the object being full. The same
case can be pleaded for Figures 10(c) and 10(d). In a slightly
different case, Figures 10(e) and 10(f) show two different
grasping regions for an object which affordance has been
determined as hand over. Thus both grasping choices seem
acceptable given that there is no critical effect involved.
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Figure 9: Distributional posterior probabilities per class of
the knowledge base. (a) Distribution before the environ-
ment inclusion, and (b) after the environment features are
included.

FINAL REMARKS AND FUTURE WORK
Past research has presented approaches to the grasping prob-
lem extensively. However, grasping behaviours depending
on the object affordances is still an open challenge due to
the large variety of object shapes and robotic platforms. Fur-
thermore, the current approaches need large amounts of data
to train a model without being able to generalise among dif-
ferent classes of objects successfully, nor to distinguish the
best grasp area depending on the object’s purpose of use.

Thus, in this work, the base of a cognitive grasping frame-
work that is able to identify and encapsulate the good affor-
dance features of an object is presented. This task is not only
limited to the relationship that can be built between the target
object and the agent but also considers the surrounding envi-
ronment. The results show that without any a-priori aware-
ness on the grasping area of the object, the designed KB is
able to induce on the object’s affordance. These results are
further improved by the incorporation of the environment in
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Figure 10: Objects modelling and grasping points before
(left column) and after (right column) affordance reason-
ing, the tested objects are: first row, water bottle; second
row, bowl; and third row, scissors. The extracted grasping
points are shown in green while the region of the corre-
sponding grasp is shown in yellow.

which these objects likely reside. Thus, allowing the system
to have a better chance at deducing the grasping area of the
object. Likewise, the presented framework has room for im-
provement, which is facilitated by its modularity. Overall,
the performance of the KB can be increased by adding more
attributes to the base, as well as modifying the predictive
model in order to deal with uncertainty. Furthermore, the dy-
namics and system control schemes of the humanoid robot
are considered out of the scope of this work. Nonetheless,
(Pairet et al. 2018a) offers a learning-based framework that
combines relative and absolute robotic skills for dual-arm
manipulation suitable for dynamic environments tasks such
as grasping objects that together with the semantics of the
object offer a complete manipulation platform for humanoid
robots.
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