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Abstract—Learning from demonstration is associated with ac-
quiring a solution to a task by mimicking a teacher demonstrator.
Understanding the underlying reasons and in turn preferences
that lead to a demonstration can yield better task comprehension.
We present a generative model that describes a table-top task
in terms of a causal model with respect to known concepts
(e.g., the notion of a fork). Causal reasoning in the latent space
of this generative model fully describes the meaning of the
demonstration, e.g., that we would like to move far away from
the fork. We show that by sampling from the model latent
space, we can learn a solution to the problem that defines the
task being demonstrated. We use a simulated Kkitchen table-
top environment to show changes in the underlying trajectory
preference of demonstrations for different objects. The ability
to generate additional data through introspection of the latent
space allows us to confirm the causal model for the problem.

I. INTRODUCTION

As we move from robots dedicated to specific pre-
programmed tasks to more general purpose tasks, there is a
need for easy re-programmability of these robots. A promis-
ing approach to such easy re-programming is learning from
demonstration, i.e., by enabling the robot to mimic behaviours
shown to it by a human expert.

With such a setup, we can abstract away from having to
handcraft rules, and allow the robot to learn by itself, including
the preferences exhibited by the teacher within the demonstra-
tion. Often these innate preferences are not explicitly articu-
lated and are mostly biases resulting from experiences with
other unrelated tasks sharing parallel environmental corpora
- Figure. ml. The ability to notice, understand and reason
causally about these deviations, whilst learning to perform the
shown task is of high interest.

Similarly, other methods for learning from demonstration
(LfD) as discussed by Argall et al. [1] are focused in finding
a general mapping from observed state to an action, thus
modeling the system or attempting to capture the hight level
user intentions into a plan. The resulting policies are not
generally used as generative models. And as highlighted by
Stinderhauf et al. [[15] one of the fundamental challenges with
robotics is the ability to reason about the environment, beyond
a state-action mapping.

Thus, when receiving a positive demonstration, we should
aim to understand the causal reasons differentiating it from a
non-preferential one, rather than purely learning the particular
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Fig. 1: (1) Demonstrations that satisfy the human thought
behind their preference of using trajectories that pass further
away from dangerous objects (i.e. a knife), but do not have
problems moving close to others (i.e. plates). (2) A specific
environment can have multiple clusters of varying distributions
of valid trajectories in its latent space. (3) Underlyingly, the
validity of trajectories with respect to the human preference
can be represented as a causal model. Whether a trajectory is
part of a cluster (Z) is affected by the specific path (X) and
the environment (Y).

trajectory. When people demonstrate a concept, they rarely
refer to the specific trajectory alone, but rather a set of
trajectories that display particular features. In other words, we
want to find groups of trajectories with similar characteristics
that may be viewed as clusters. We are interested in learning
these clusters and their boundary, so that subsequent new
trajectories can be classified according to whether they are
good representatives of the class of feasible behaviours.

It is often the case that in problems that allow for great
flexibility in their solution, different experts may generate
solutions that are part of different clusters - Figure. [1]2. In
cases where we naively attempt to perform statistical analysis,
we may end up collapsing to a single mode, or merging
the modes in a semantically senseless manner (i.e. averaging
trajectories for going left/right around an object).

We present a method for introspecting in the latent space
which allows us to relax some of the assumptions illustrated
above and more concretely to:

« find valid, varied solutions of a problem through sampling

a generative model, which we learn

« show boundaries of the valid clusters of the demonstration

in its latent space

o use those boundaries and given key environmental fea-

tures within the demonstration to counterfactually reason



about the underlying feature preference of the demonstra-
tion and build a causal model describing it.

The method relies on generating a latent space from un-
labeled environmental observations with the demonstrator’s
trajectories. The teacher’s positive and negative examples are
used as a guide for estimating the preferences and validity of
the trajectory parametrization.

In the following section we will show relevant work in the
field of learning from demonstration as well as causality. In
the next section we will discuss the methodology for building
a model to describe the mental preference of the demonstrator.
It is followed by the capability of extracting a structured causal
model by counterfactual reasoning. We show our results and
add concluding notes.

II. RELATED WORK
A. Learning from Demonstration

Learning from demonstration has involved a variety of dif-
ferent methods for approximating the policy. In some related
work, the state space is partitioned and the problem is viewed
as a classification approach. This allows for the environment
state to be in direct control of the robot and to command its
discrete actions - using Neural Networks (J Matari’c [10]),
Bayesian Networks (Inamura [9]]), Gaussian Mixture Models
(Chernova and Veloso [3]]). Alternatively, it can be used to
classify the current step in a high level plan Thomaz and
Breazeal [16] and execute predetermined low level control.

In cases where a continuous action space is preferred,
regressing from the observation space can be achieved by
methods like Locally Weighted Regression Cleveland and
Loader [4].

Robotisists e.g., Siinderhauf et al. [15]], have long viewed
that reasoning as part of planning is dependent on reasoning
about objects, semantics and their geometric manifestations.
This process is based on the view that structure within the
demonstration should be exploited to better ground symbols
between modalities and to the plan.

B. Causality and state representation

The variability of environmental factors makes it hard to
build systems relying only on correlation data statistics for
specifying their state space. Methods that rely on causality,
Pearl [12]), Harradon et al. [7], and learning the cause and
effect structure, Rojas-Carulla et al. [14], are much better
suited to support the reasoning capabilities for transferring
core knowledge between situations. Interacting with the envi-
ronment allows robots to perform manipulations that can con-
vey new information to update the observational distribution
or change their surrounding and in effect perform interventions
within the world.

Learning sufficient state features has been highlighted by
Argall et al. as a future challenge for the LfD community.
The problem of learning disentangled representations aims to
generate a good composition of a latent space, separating the
different modes of variation within the data. Higgins et al.
[8], Chen et al. [2] have showed promising improvements

in disentangling of the latent space with minimal or no
assumption by manipulating the Kullback - Leibler divergence
loss of a variational auto encoder. Denton and Birodkar [3]]
shows how the modes of variation for content and temporal
structure should be separated and can be extracted to improve
the quality of the next frame video prediction task, if temporal
information is added as a learning constraint. While the
disentangled representations may not directly correspond to
the factors defining action choices, Johnson et al. [11]] adds a
factor graph and composes latent graphical models with neural
network observation likelihoods.

The ability to manipulate the latent space and separate
variability as well as obtain explanation about behavior is
also of interest to the interpretable machine learning field, as
highlighted by Doshi-Velez and Kim [6]].

III. EXPERIMENTAL SETUP

In this section we illustrate how modeling the preferences of
a human demonstrator’s trajectories, in a table-top manipula-
tion scenario within a neural network model, can be later used
to infer causal links through a set of known features about the
environment.

A. Dataset

The environment chosen for the experiment consists of
a top down view of a tabletop on which a collection of
items, O={knife, plate}, usually found in a kitchen envi-
ronment, have been randomly distributed. The task that the
demonstrator has to accomplish is to move a robotic arm from
one end on the table to the opposite (bottom left to top right)
by demonstrating a trajectory, whilst encompassing any human
preferences around the set of objects they may have.

The teacher is given a /00x100 input image I as shown on
Figure. [2] and has to produce a number of possible trajectories,
some that satisfy the solution and some that break the demon-
strators preferences - Figure. [I}1. We describe the trajectories
using a Bezier curve representation and the parameterization
is the location of the central control point parametrized by 6,
with the first at the start of the trajectory, and the last - at the
end. In the current setup, the demonstrator is implemented as
an expert system that has the human preference encoded into
its rules.

The dataset consists of 1000 randomly generated scenes
consisting of between 1 and 2 objects and 10 example tra-
jectory per scene.

Fig. 2: Examples of possible scene configurations.



B. Preference Model

The main capability that we want from our model is to
structure the latent space in a way that would not only allow
us to solve and generate good trajectories, but also to manage
the variability that would be needed to estimate the causal link
between valid trajectories and the world representation.

We use a convolutional variational auto-encoder to compress
the world representation / to a latent space z;, disjoint from the
parameterization of the trajectories zg. The full latent space is
modeled as the concatenation of the world space and trajectory
space z = 2y U zp as seen on Figure.

In order to better shape the latent space, we add a § term to
the KL divergence loss as in Higgins et al. [8]]. Additionally,
we add an extra preference binary cross-entropy loss (scaled
by ) associated with the ability of the full latent space z in
predicting whether that trajectory with the associated world
satisfy the preference of the demonstrator - v. The full loss
can be seen in Eq.

L0, ¢;1,21,29,0,0,0,7) = (D
alEq(zr|1)[logy(1]21)]
— BDxL(qe(21|1)]Ip(21))
+ 7 [vlog(C(z)) + (1 —v)log(1 — C(2))]

We evaluate the performance of the model on its ability to
correctly predict the preference exhibited by the demonstrator.
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Fig. 3: Preference model architecture. The environmental
image I is passed through an Encoder-Decoder Convolutional
Network, with a 16-8-4 number of 3x3 convolutions, followed
by fully connected layer, to create a compressed representation
Zr,Z; € R, It is passed along with the trajectory param-
eterization Zy, Zy € R? through a 3-layer fully connected
classifier network that checks the validity of the trajectory
(C(z)) with respect to the mental model behind the human
preference.

IV. CAUSAL MODELING

Naturally, we can examine our causal understanding of
the environment only with the limited set of features, O,
that we can comprehend about the world. We work under
the assumption that an object detector is available for these
objects (as the focus of this work is on elucidating the effect

of these objects on the trajectories rather than on the lower
level computer vision task of object detection per se). Given
this, we can construct specific world configurations to test a
causal model and use the above learned preference model as
a surrogate to inspect the validity of proposed trajectories.

If we perform a search in the latent space zp, we can
find boundaries of trajectory validity as shown on Figure. [
We can intervene and counterfactually alter parameters of the
environment and see the changes of the trajectory boundaries.
By looking at the difference of boundaries in simple cases
where we can test for associational reasoning, we can infer
whether humans have different preferences between the items.

Object parameterization:
Location, type, appearance
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Fig. 4: We assume that the environment, compressed to zj, is
composed of objects, some of which parameters are known. A
trajectory is parameterized by 6, which alongside the factors
zr and v are part of the preference model.

We are interested in establishing the causal relationship
within the preference model as shown on Figure. |4 We define
our Structural Causal Model (SCM), following notation of
Peters et al. [13] as

¢:=(S,Px), S ={X;:=f;(PA;,N;)}

where nodes X = {Zy,Z;,V} and PA; =
{X1,Xs,. . X, }\{X;}. Given some observation x, we
can define a counterfactual SCM €x_y := (S,P§ ‘X:X) ,

where Py K= ._ P ix=x

We can choose a specific trajectory zg ~ p(Zy) and
environment z; ~ p(Z;) and use the preference model and
confirm the causal links Z; — v and Zy — v by showing:

E |:PUQ‘\X:X:| # E I:P1)Q‘|X:x;do(Z91229):| )
E [PUQ|X:X:| ;é E [PE\X:x;do(ZI::zz)} (3)
V. RESULTS

The preference model was trained with the full loss as
described in Eq. |1} with a« = 1, 5 = 10,y = 1le7. We compare
it to a model with the same hyper parameters with a single
example trajectory per scene, and a truncated loss, leaving
only the classification cross-entropy term o« = 0,8 =0,v =1
similar to most LfD classification methods. The accuracy on
a test set is shown on Figure. [5] The single trajectory cases
show that adding a 3-VAE loss improves the performance to
64.8% (vs 60.2%). The full model reached 92.4%.
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Fig. 5: Accuracy/Classification Loss behavior during training
on a test dataset. The learning rate (Adam, o = 1073) was
annealed in all cases by 0.95 every 20 epochs.

Preference model boundary of clusters (alpha=1.75)
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Fig. 6: On the right showing 400 samples for zy ~ p(Zy)
trajectories which are colored by compliance to the meaning
a teacher has used when demonstrating (green for valid),
given a specific latent zy, which is illustrated on the left. The
gray boundary is generated by fitting an alpha shape to the
points. The two clusters are describing trajectories that can
be summarized as “trying to stay away from the knife going
above it” and “try to go below the plate”.

The boundaries of the teacher preference within a specified
environment can be seen on Figure. We can observe
samples from different trajectory parameterizations and their
validity. In the current instance they are clustered following a
preference to traverse in the top left part of the physical space.
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Fig. 7: Shows different distributions associated with valid
trajectories with different singular objects in a world. The
expected value of valid trajectories differs between changing
the objects to [0.2361, 0.3571, 0.4303] corresponding to
[knife, either objects, plate]. It indicates that the probability of
sampling a valid trajectory with the world containing a plate is
higher than when a knife is present, indicating ease of finding
a preferred trajectory.

In the simple experiment, where a single item is placed
around the environment, we can see the expectations and
variance of the validity of a trajectory on Figure. [7] The
distributions are different indicating the human demonstrations

has exhibited different preferences in choosing a rational
trajectory with the items being part of the environment.

In the counterfactual case, we evaluate Eq[2] and [3] over a
set of 1e5 random latent space points and obtain that:

E [Ple:X} =0.26 @
E [PEIX:X?“(ZH::Z@)] —0.20 (5)
E | PeR=sdoZi=sn ] — 034 ©)

This indicates that indeed Z; and Zy causally change the
validity of a trajectory. The final SCM is shown on Figure. [§]

Relaying on the SCM we can further answer questions as:
What are possible valid trajectories, given an environment con-
figuration /? What world configurations may make a trajectory
0 as a valid?

..  Fig. 8: Final structural causal model. The
validity of the preference of a trajectory is
the effect of both the environment and the
specified trajectory.

VI. CONCLUSION

We show how in a learning from demonstration setup, we
can create a generative model for the preference teachers
exhibit whilst performing a task. Through sampling, the model
can be used to both solve a particular environment to show a
trajectory respecting the human intuition, as well as a proxy
to estimate the causal relationship between the environment,
trajectory and its validity.

In future work we want to analyse what aspects of the
objects cause the validity of the trajectory and by more
extensive parametrization of the path, find which parts of them
are breaking the expectations. Additionally, having a causal
approach to requesting demonstrations, we want to lower the
number of needed examples.
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