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Abstract

Studying molecular transformations on an ultrafast time-scale is vital for under-
standing chemical reactivity, but interpreting the relevant experiments is challeng-
ing because chemical dynamics need to be inferred from an indirect and often
incomplete sequence of observations. We propose a method that uses a form of
variational recurrent neural network to tackle the problem of inversion of time-
resolved X-ray scattering from molecules recorded on a detector. By training our
model with molecular trajectories, dynamic correlations and constraints associated
with molecular motion can be learned. We show this leads to a more accurate
inversion from a detector signal to atom-atom distances, compared to the traditional
frame-by-frame approach.

1 Introduction

Understanding the rapid transformations in the molecular structure during a reaction has profound
implications for our ability to control chemistry – from designing new materials and drugs to
controlling reaction products and intermediates. Ultrafast X-ray Scattering (UXS) is one of the few
techniques, which allows a direct time-resolved imaging of these structural changes. While the
sequence of X-ray scattering images collected on a detector in a typical UXS experiment (Figure
1) bears naïve resemblance to motion pictures, “inverting” it to extract the molecular motion is not
straightforward.

In this work, we focus on the important case of a dilute gas phase which is in a thermal equilibrium
before triggering the molecular motion so that the scattering signal is free from intermolecular
effects [1, 2]. We approach the isotropic component of the signal, which encodes the internal
molecular motion via the full set of atom-atom distances [3, 4, 5]. Physically, the pattern on the
detector at any given time is connected to the electron density of the molecule, and there exists a
mathematical relation between the two based on the Fourier transform [6].

In theory, taking any individual detector snapshot and applying an inverse sine-transform gives direct
access to the distribution of atom-atom distances in the molecule at this time. In practice, the finite
size of the detector reduces the available data and renders the procedure impractical. To overcome
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Figure 1: (Left) Schematic of a prototypical UXS experiment performed at an X-ray Free Electron
Laser facility. After excitation with an optical laser, the molecular structure begins to evolve.
Ultrashort X-ray pulses are used to probe the dynamics at a series of time points. The isotropic,
radial, part of the signal is a function of the magnitude of the scattering vector, q, which measures
the distance from the centre of the detector. Here, we represent the signal at time t as a fractional
signal change, ∆S(q, t), with respect to the signal at t0. (Right) Inference and generation process at
a given time step, the same process applies for previous and future time steps. We aim to decode the
atom-atom distances, RAB(t), from detector images, ∆S(q, t).

this issue, theoretical models are often fitted to the experimental signal to elucidate the dynamics.
For example, the scattering patterns for a set of plausible molecular geometries is first calculated
theoretically, and then fitted to the experimental data to determine the set of atom-atom distances that
best reproduces the experimental signal on the detector at time t in a χ2 sense [7, 8, 9].

Importantly, such methods are applied on a frame-by-frame basis and, thus, ignore the time-
dependence of the experimental data. In this article, we propose a model based on [10], where
the inference of the atom-atom distances from the detector signal can be learned from quantum
molecular dynamics trajectories, so that the time-dependence is accounted for. We demonstrate that
this outperforms the traditionally used frame-by-frame inversion on three different molecules.

2 Methods

2.1 Molecular dynamics and X-ray scattering simulations

Table 1: Quantum molecular dynamics simulations used to train,
validate and test our model. The table reports only the number
of intermediate time steps used in our model. The numbers in
brackets are the trajectories that do not show dissociation. All three
simulations use CASSCF ab initio level of theory.

Molecule NMM CS2 C2H4
Method SHARC SHARC [11] AI-MCE [12]

Electronic states X/3s/3p S0–S3, T1–T4 S0–S2

Simulated time 1 ps 1 ps 150 fs
Time steps 201 201 151

# Train 85 753 800
# Val 11 94 (26) 100 (82)

# Test 11 95 (32) 100 (87)

We utilise simulated data to
train, validate and test our
model, which is done sepa-
rately for each molecule. We
use previously published full-
dimensional quantum molec-
ular dynamics (MD) simula-
tions for three molecules – N-
Methylmorpholine (NMM) [8],
carbon disulfide (CS2) [13], and
ethene (C2H4) [14], which
are are summarised in Table 1.
When taken collectively, the
full set of trajectories for a
given molecule gives a statisti-
cal representation of the molec-
ular wave packet. Here, we use
them independently as if they represent different modes of motion that the molecule may exhibit.
Thus, our approach ignores phenomena such as wave packet width, dispersion and bifurcation.
Nonetheless, the trajectories obey the physical principles of propagation (energy conservation, conti-
nuity, etc.) and, thus, encode the relevant physics of molecular motion. This is crucial because, as
detailed in the introduction, the inversion problem is under-determined – the simulated trajectories
provide meaningful constraints on the type of motion. It should also be pointed out that complexity

2



of nuclear motion necessitates a case-by-case approach [15], which means that the network needs to
be trained on the specific molecule under consideration, and the inversion of real-life data would only
be as good as the simulated trajectories used to train the model.

We also use synthetic detector images calculated from these trajectories as follows.2 To a first
approximation, the electrons in the molecule can be considered to be bound to the atomic nuclei, the
so called Independent Atom Model (IAM), in which case the elastic X-ray scattering recorded on the
detector is proportional to the Debye scattering formula:

I(q, t) =
∑
A

|fA(q)|2 +
∑
A

∑
B 6=A

fA(q)fB(q)
sin(qRAB(t))

qRAB(t)
, ∆S(q, t) =

I(q, t)− I(t, t0)

I(q, t0)
.

(1)

In Eq. (1), the scattering intensity, I(q, t), is function of the delay time between optical laser and the
X-rays, t, and the magnitude of the scattering vector, q. fA(q) and fB(q) are tabulated quantities.
RAB(t) denotes the interatomic distance between atoms A and B. In addition to the terms in Eq. (1),
the intensity on the detector, I(q, t), has a contribution from inelastic X-ray scattering, which to a
first approximation is constant that does not evolve with time. To ensure that the approach is valid
beyond the approximations implied in the IAM, our CS2 data set used a more advanced method to
calculate the scattering signal directly from the ab initio electron density of the molecule [16].

2.2 Inversion with dynamics constraints

We are interested in recovering all atomic distances as a function of time, RAB(t), from a sequence
of detector images ∆S(q, t). Neural network based approaches have been explored in simulating
molecular dynamics [17, 18] as well as inverse problems in challenging physics domains such as
reservoir simulations [19], light scattering by nanoparticles [20], deblending galaxy images [21] and
fluid flow prediction [22] and many more [23]. We use the vid2param method proposed in [10], where
the parameters of a bouncing ball dynamics system are encoded from videos, using a variational
recurrent neural network (VRNN) [24]. The VRNN model extends a standard variational autoencoder
(VAE), by introducing an RNN encoding the dynamics of the latent space and conditioning the
encoder and decoder part of the VAE on the hidden state of that RNN. An additional negative
log-likelihood is used to enforce consistency between part of the latent space and the parameters of
interest.

The model allows the detector image at each time step, together with the dynamics carried by the
recurrent part of the model, to be encoded into a latent space. Part of that latent space is simultaneously
trained to represent the different distances in the given trajectory. As such, the model can account for
time dependencies of the detector images and atomic distances, unlike traditional frame-by-frame
methods, while also interpolating between the training examples.

3 Results and Discussion

As two of the molecules exhibit dissociation of the molecule structure, in two of the simulations
we explicitly separate out this hard-to-tackle phenomenon. Therefore, we perform a set of five
experiments – all NMM, all CS2, all C2H4, and separately with only the dissociation-free CS2 and
C2H4 trajectories. We use a frame-by-frame χ2 structural fitting as a baseline. More specifically, at
each time step, we compute the sum of squared residuals (SSR) between the current detector image
and all the reference detector images from the training data. We then assign the atom-atom distances
from that reference detector image that has the lowest SSR.

3.1 Nuclear geometry recovery

We evaluate how well we can recover the true underlying molecular geometry from a sequence of
detector images by using a mass-weighted root-mean-square deviation (RMSD) from the ground
truth. We observe that in all but one experiment the proposed method outperforms the baseline
method (Figure 2a). Our model is able to capture time dependencies and constraints associated with
movements of atoms. As exemplified in Figure 2c, the vid2param RMSD values for most individual

2Datasets, expanded results and source code can be seen at https://sites.google.com/view/mlscattering/
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Figure 2: (2a) Sum of atomic RMSD values for all time steps and all trajectories in the test part
of the five data sets. The asterisk (*) denotes the data sets where trajectories with dissociation has
been filtered out. (2b) O−N distance in a single NMM trajectory. (2c) RMSD and sum of squared
residuals (SSR) as a function of time step for the baseline and vid2param methods.

time points are indeed below the baseline. Importantly, the vid2param exhibits much smoother
behaviour compared to the large variations with time seen in the baseline. This is a manifestation of
the fact that different time points are correlated. The smooth changes in the RMSD imply that the
evolution of the molecular structure is also smooth, as expected physically.

Beyond the RMSD metric, the quality of the inversion of individual atom-atom distances depends
on two factors. Physically, X-ray scattering is dominated by atoms with many electrons, hence, the
detector signal has vanishing contributions from light atoms such as Hydrogen. Accurate estimates of
the distances between such atoms are not possible even with our model. However, we noticed that
vid2param tends to infer the correct oscillation periods, presumably, because of the correlation with
the motion of heavier atoms. The detector signal also has almost no contribution from atoms that
are far away (see Eq. 1). While sometimes correlated motion can ensure that these distances are still
adequately inferred, the process of dissociation possesses a challenge because coherence between
the fragments is lost quickly. We believe this is the reason why our experiment with CS2 where
dissociation occurs fails against the baseline method. In the case, of relatively heavy atoms and no
dissociation, both vid2param and the baseline method perform quite well as illustrated on Figure 2b.

3.2 Analytic reconstruction of detector images

In this set of experiments, we evaluate how well the detector image can be analytically reconstructed
from the estimated set of atomic distances using Eq. (1). This gives us a second metric which is not
based directly on the molecular geometry but on its scattering fingerprint. A typical SSR between the
ground truth and the reconstructed detector is illustrated also on Figure 2c. It is important to note that
we try to reconstruct only the visible part of the detector – the part of the signal that is not detected,
i.e. at large values of q, still contains vital information.
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We observe that the baseline outperforms the proposed model as seen in Figure 2c, which at first may
seem counter-intuitive. However, given the limited information in the detector image, even an exact
match of the visible part of the signal at any given time does not guarantee a perfect estimate for
the molecular structure via the atomic separations. Unlike the baseline method, vid2param learns
atomic distances and motion constraints from previous time points, hence, producing a better estimate
for the molecular structure without producing a perfect fit for the visible part of the detector image.
This again suggests that because of the limited information in a single detector image, it is useful to
incorporate time dependencies in the process of inferring the atomic distances, to carry out constraints
and information from previous time steps.

4 Conclusion

This paper presents a method for time-dependent inference of atom-atom distances in molecules
from UXS data. We perform experiments with three molecules against a standard frame-by-frame
structural fitting. We found that due to the limited information present in a single detector image, it
is beneficial to include and reason about molecular motion from the entire time-series of collected
images. In the future, it will be interesting to explore if similar methods are suitable for inferring
electronic states and treating the motion fully quantum mechanically.

Broader Impact

In this article, we address the issue of how to unravel the evolution of molecular structure given a time-series of
detector images generated by a novel experimental technique called Ultrafast X-ray Scattering (UXS). While
still in its early days, UXS has shown enormous capacity to elucidate fundamental questions in chemistry such
as how molecules move, how bonds between atoms are broken or formed, and even how electrons may change
their position inside molecules. Nevertheless, there are still big gaps in our ability to analyse and interpret such
experiments. We believe that the method presented here addresses a major limitation in the current way of
extracting information from UXS data, thus improving our ability to unravel chemical dynamics.

Inverse problems are common beyond UXS. Recent advances in light and electron sources have opened the door
for a plethora of experimental techniques for imaging ultrafast process in chemistry. While they are all based
on different physics, the fundamental setting is similar – the output from the experiment is a series of images
(spectra, diffraction patterns, etc.), and one aims to extract from it a given dynamic parameter that describes the
changes that occurred in the molecule (bond lengths, transitional energies, fragment velocities, etc.). Given the
similarity, we are confident that our method can find direct applications to such experimental techniques, which
are currently at the forefront of experimental physical chemistry.
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