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Abstract—As physically embodied agents, robots can use a
diversity of modalities to sense and affect their surrounding
environment. Unfortunately, such high-dimensional streams of
information are hard for human comprehension, making human-
robot interaction and teaching nontrivial. Thus, we pose the
problem of interpretable learning from demonstration as an op-
timisation one over a probabilistic generative model. To account
for the high-dimensionality of the data, a high-parameter neural
network is chosen to represent the model. Its latent variables are
explicitly aligned with high-level notions and concepts, manifested
in the demonstrations. We show that such alignment can be
achieved through the usage of restricted user labels. The method
is evaluated in the context of table-top dabbing (pressing against
a surface with a sponge) with a PR2 robot which provides us with
visual information, arm joint positions and arm joint efforts.

I. INTRODUCTION

Learning from demonstration (LfD) [3] is a commonly
used paradigm where an inexperienced demonstrator desires
to teach a robot how to perform a particular task in its
environment. Most often this is performed through a com-
bination of kinaesthetic teaching and supervised learning—
imitation learning [24]. However, such approaches do not
allow for elaborations and corrections from the demonstrator
to be seamlessly incorporated. As a result new demonstra-
tions are required when either the demonstrator changes the
task specification or the agent changes its context—typical
scenarios in the context of interactive task learning [19]. Such
problems mainly arise because the demonstrator and the agent
reason about the world by using notions and mechanisms at
different levels of abstraction. A modifiable LfD setup requires
establishing a mapping from the high-level notions humans
use—e.g. spatial concepts, different ways of applying force—
to the low-level perceptive and control signals robot agents
utilise—e.g. joint angles, efforts and camera images. With
this in place, any constraints or elaborations from the human
operator, must be mapped to a behaviour on the agent’s side
that is consistent with the semantics of the operator’s desires.

More concretely, we need to be able to ground [28, 10]
the specifications and symbols used by the operator in the
actions and observations of the agent. Often the actions and the
observations of a robot agent can be very high-dimensional—
high DoF kinematic chains, high image resolution, etc.—
making the symbol grounding problem non-trivial. However,
the concepts we need to be able to ground lie on a much-lower-
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Fig. 1: User demos through teleoperation and a variety of
modalities (left) are used to fit a common low-level disentan-
gled manifold (middle) which contributes in an interpretable
way to the generative process for robot behaviour (right).

dimensional manifold, contained in the high-dimensional data
space [9]. For example, the concept of pressing softly against a
surface technically lives in the 7 DoF real-valued space of joint
efforts, spread across multiple time steps. However, the idea
of what a soft press must look like can easily be summarised
conceptually. The focus of this work is finding a nonlinear
mapping (represented as a high-parameter neural model) be-
tween the low-dimensional manifold and the high-dimensional
data space. Moreover, we argue apart from finding such a
mapping, we can also shape and refine the low-dimensional
manifold by imposing specific biases and structures on the
neural model’s architecture and training regime.

In this paper, we propose a framework which allows human
operators to teach a PR2 robot about different spatial and
force-related aspects of a tabletop dabbing task. Our main
contributions are:
• A learning method which incorporates information from

multiple high-dimensional modalities—vision, joint an-
gles, joint efforts—in order to instill a disentangled low-
dimensional manifold. We use weak expert labels during
the optimisation process, the manifold eventually aligns
with ’human common sense’ notions in a controller way
without the need of post-hoc interpretation—see Figure
2 (left).

• A quantitative and qualitative evaluation of the eventual
generative model and how closely do behaviours sam-
pled from it, conditioned on an optional specification,
align with the demonstrated concepts by the human—see
Figure 2 (right).
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Fig. 2: Overall model sketch - multiple different modalities are encoded to a common latent space c which is used both for
reconstructing trajectories x and predicting weak labels y, coming from the demonstrator (left); final generative model for
new robot trajectories, given an environment context image and an optional specification. The optional specification plays the
role of a hierarchical prior over some of the latent dimensions—we know what they mean as an artefact of the latent-axis-
concept-group alignment—e.g. an axis in c1 determines if we’ll dab to the left or to the right of the cube, an axis in c2
determines if we’ll dab softly or hardly. Unaligned axes—c3—sample from their Gaussian prior (right).

II. RELEVANT WORK

Dynamic movement primitives [26] are commonly used to
model dynamical systems as point-mass attractors with a non-
linear forcing term. However, due to their high-dimensionality
they don’t easily scale outside of their training distribution.
Probabilistic movement primitives [21] provide a way to
sample a more diverse set of trajectories at test time by
conditioning on the training data distribution, instead of using
fixed control parameters that are fit over a single demonstra-
tion. However, the resultant control parameters can still be
high-dimensional and unintuitive to manipulate. Performing
dimensionality reduction on the fit control parameters [8] or
imposing hierarchical priors over the parameter space [25] are
both ideas present in the literature as a means of making
the high-dimensional parameter space more meaningful to
the human demonstrator, for the sake of having a clearer
idea of how changes in the optimised parameters results in
deterministic changes in the generated behaviours. However,
most of these approaches limit themselves to end-effector
trajectories, or at most making use of visual information [18].

Simultaneously, there has been a steady push in the rep-
resentation learning community for methods which utilise
high-parameter neural models to learn disentangled low-
dimensional representation by either tuning the optimised loss
function [11, 6], imposing crafted priors over the latent space

[7, 2] or using weak supervision [13, 12, 22]. A disentangled
representation in this context is any representation where
independence between data-generative factors of variation is
preserved as such in the learned latent codes—e.g. the size of
an object in a given image is independent of its color and po-
sition, etc. While being able to produce representations which
align with ’human common sense’, most of these approaches
focus on modelling visual data and respectively visually-
manifested concepts, with minor exceptions—e.g. modelling
motion capture data [2]. Disentangled representations from
multiple modalities, which is much closer to the robotics
community, is what we are focusing on in this paper.

The work of Noseworthy et al. [20] does explore disentan-
gling task parameters from manner of execution parameters,
in the context of pouring. They utilise an adversarial training
regime, which helps for the better separation of the two types
of parameters in the latent space. However, it is assumed that
the task parameters are known a priori and only a single data
modality is used—the end effector orientation along the Z
axis. Moreover, interpretation of the learned codes is done
post-training by perturbing latent axis values and qualitatively
inspecting generated trajectories (standard evaluation tech-
nique for models which are trained unsupervised). We argue
that through the use of weak discrete labels we have finer
control and better guarantees about the meaning of the latent
dimensions.



III. IMAGE-CONDITIONED TRAJECTORY & LABEL MODEL

We want to control where and how does a robot press
against a table-top surface by using a set of coarse labels as a
specification—e.g. ”press softly and slowly behind the cube in
the image”. Let, in that context, x denote a K×T dimensional
trajectory for K robot joints and a fixed length T , y denote a
set of discrete labels semantically grouped in N label groups
G = {g1, . . . , gN} (equivalent to multi-label classification
problem) and i denote an RGB image1. The labels y describe
qualitative properties of x and x with respect to i—e.g. left
dab, right dab, hard dab, soft dab, etc. We aim to
model the distribution of demonstrated robot-arm trajectories
x and corresponding user labels y, conditioned on a visual
environment context i. This problem is equivalent to that of
structured output representation [29, 27, 5]—finding a one-to-
many mapping from i to {x,y} (one image can be part of the
generation of many robot trajectories and labels). For this we
use a conditional generative model, whose latent variables c
can accommodate the upper-mentioned mapping—see Figure
3. The meaning behind the different types of latent variables—
cs, ce and cu—is elaborated on in section IV. As a result
we want the variability in the trajectory and label data to be
concisely captured by c. We design the dimensionality of the
latent variables to be much lower than the dimensionality of
the data. Therefore, c is forced to represent abstract properties
of the robot behaviour which still carry enough information
for the behaviour to be generated—absolute notions like speed,
effort, length, and relative spatial notions which are grounded
with respect to the visual context. More concretely, given a
latent representation of a demonstration and a context, we
should be able to tell whether the robot pressed softly or
hard against the table, whether it pressed in front of or
behind the visual landmark contained in i.

Another way to think of c is as a continuous version of y
which can therefore incorporate nuances of the same label. In
the existing literature discrete labels are usually represented as
discrete latent variables—e.g. digit classes [17]. However, the
discrete labels humans use are a rather crude approximation to
the underlying continuous concepts—e.g. we have the notion
for a soft and a softer dab even though both would
be labelled as soft. For this reason we use continuous
latent variables, learned from discrete labels, to represent these
subjective concepts.

The joint distribution over x and y, conditioned on i,
is modelled according to Equations 1 and 2. We place an
isotropic Gaussian prior over the latent variables c which are
independent of the conditioned image.

p(x,y|i) =
∫
p(x,y|i, c)p(c)dc (1)

p(x,y|i, c) = p(x|c, i)p(y|c) (2)

1What i actually represents is a lower-dimensional version of the original
RGB image. The parameters of the image encoder are jointly optimised with
the parameters of the recognition and decoder networks

x y
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Fig. 3: The lower-dimensional encoding i of the environment
context I is observed. Conditioned on i and the latent variables
c, sampled from the prior over c, we get a distribution over
possible robot trajectories x and user labels y.

We choose to represent the distribution over x and y
as Gaussian and Multinomial distributions respectively. The
parameters of these distributions are defined as nonlinear
functions (of the image context and latent variables) which are
represented as the weights θ of a neural network pθ—µθ(·)
is a vector of means, σθ(·)2 is a vector of standard deviations
and πθ(·) is a vector of probabilities.

pθ(x|c, i) = N (µθ(c, i),σθ(c, i)) (3)

pθ(y|c) = Cat(y|πθ(c)) (4)

The parameters of pθ are optimised by maximising the
variational lower bound (VLB) of the data distribution—see
Equation 5. We additionally optimise a recognition network
qφ, parametrised by φ, which acts as an approximation to the
posterior of c, also modelled as a Gaussian.

log p(x,y|i) ≥ Eqφ(c|x,i)(log pθ(x,y|c, i))−
DKL(qφ(c|x, i)||p(c))

(5)

qφ(c|x, i) = N (µφ(x, i),σφ(x, i)) (6)

The recognition network qφ is used to find good candidates
of c, for given x and i, thus making the optimisation of θ,
tractable [16]. The posterior is conditioned on the environment
context as well, since i and c are conditionally dependent,
once x is observed [14]. Intuitively, we want for the some
of the latent variables to represent relative spatial concepts—
e.g. left of the cube in the image. For such concepts,
under the same robot trajectory x we should get different
latent codes, given different contexts i. The fact that qφ is
not conditioned on y too means the recognition network has
to utilise both the input image and the trajectory, in order to
be able to ”reconstruct” the trajectory and the labels (note
that we don’t reconstruct the image). The omission of y
from qφ also means that we might not be able to fully close
the gap between the data distribution and its VLB (making
the inequality into an equality), leading to a less efficient
optimisation procedure. That is mainly owing to the fact
that we use weak supervision—only for some demonstrations
labels y are present. The full derivation of and comments on
the optimised VLB is provided in the supplementary chapters.

2In practice we only set up µ as a function of x, parametrised by θ, and
fix σ for numerical stability during optimisation.



IV. WEAK LABELLING AND USER SPECIFICATION

A. Interpretability through Weak Labels

Even though the latent variables are constrained to be useful
both for the tasks of trajectory and label generation, nothing
constrains them to carry the intuitive absolute and relative
notions described in section III in a factorised fashion—e.g. c1
corresponds to encoding whether the robot pressed softly or
hard against the table, c2 corresponds to whether the robot
pressed quickly or slowly against the table, etc. Those
notions would still be contained in c but nothing guarantees
that they will be contained in an interpretable way—namely
c to be disentangled. We achieve disentanglement in the latent
space by establishing a one-to-one correspondence between a
subset of the latent axes—cs, ce—and the concept groups in
G [12, 13]. The rest of the latent dimensions—cu—encode
features in the data which don’t align with the semantics of
the labels and their concept groups but are still necessary for
good trajectory reconstruction. Under these assumptions the
label likelihood from Equation 4 is rendered as:

pθ(y|{cs, ce}) =
|G|∏
j

1{yj 6=∅}Cat(yj |πj(cj)) (7)

Labelling is weak/restricted since each demonstration is
given just a single label from a single concept group. This
is meant to represent a more natural LfD scenario, where
the main task of the expert is still to perform a number of
demonstrations, rather than exhaustively annotate each demon-
stration with relevant labels from all groups. For example, a
demonstrator might say ”this is how you press softly” and do
the demonstration. The shown behaviour might have also been
slow and short but the human was not explicitly thinking
about these notions while demonstrating. The missing label
values for some of the concept groups is incorporated with an
indicator function in Equation 7.

B. Condition on User Specification

Apart from being used in the optimisation objective, the
weak labels are also used in an additional conditioning step at
test time. Currently, the generative process we have consists
of first sampling values for c from its Gaussian prior, passing
those, together with i though pθ in order to get distribu-
tions over x and y, from which we can sample. However,
what we are rather interested is being able to incorporate
provided information about the labels y into the sampling
of the semantically aligned parts of c. Specifically, we are
interested in being able to generate robot behaviours which
are consistent with fixed values for y (what we call a user
specification). Post-optimising the θ and φ parameters, we
choose to approximate the posterior over cj for each label i
in each concept group j with a set of Gaussian distributions
N (µ

(i)
j , σ

(i)
j ). We use Maximum Likelihood Estimation for

µ
(i)
j and σ

(i)
j over the j-th dimension of a set of samples

from c. The samples are weighted with the corresponding
label likelihood pθ(yi|π(j)

θ (cj)). As a result, the process of

generating a trajectory x is additionally conditioned on an
optional user specification y = {y1, . . . , y|G|} and is governed
by Equations 8 and 9.

cj ∼ p(cj |yj) =

{
N (0, 1), if yj = ∅ or j > |G|
N (µ

(i)
j , σ

(i)
j ), otherwise

(8)

x ∼ pθ(x|i, c,y) = pθ(x|i, c)
|c|∏
j

p(cj |yj) (9)

Conditioning on a user specification y is optional. If no
label is given for group j, then the corresponding semantically-
aligned latent dimension cj also samples from the Gaussian
prior. This revised generative process for x is graphically
described by Figure 2 (right) and Figure 3 (after reversing
the direction of the edges that lead from c1 and c2 to y.

V. METHODOLOGY

In terms of a concrete model architecture, our model is
a Conditional Variational Autoencoder (CVAE) [27] with an
encoding network qφ and a decoding network pθ. The param-
eters of both networks are optimised jointly using methods
for amortised variational inference and a stochastic gradient
variational bayes estimation [16]3.

A. Encoding Networks

Due to the diversity of modalities that we want to use, qφ
is implemented as a combination of 2D convolutions (for the
image input), 1D convolutions (for the trajectory input) and an
MLP that brings the the output of the previous two modules
to the common concept manifold c. We additionally have a
set of linear classifiers, each of which sources its input form a
single dimension in c. Even though we think of our model as a
CVAE, the only part of the data that we are auto-encoding are
the robot trajectories. During the parameter optimisation the
images serve only as an input and the weak labels as outputs.
In principle, assuming we had no labels y, nothing prevents
the model from ignoring the image modality and learning what
a standard VAE would. This is sometimes accounted for by
introducing adversarial terms in the optimised loss function
which force different parts of latent space to pay attention
to different input modalities [20]. However, in our case we
can utilise the weak labels that the demonstrator has given us,
some of which can only be inferred if information both from
the trajectory and image inputs has been used—the labels of
relative spatial nature. The only potential problem might be
that since the labels are weak, the likelihood function that we
are trying to maximise—Equation 7—won’t be active for most
of the time. We account for that by introducing a coefficient
γ for the label likelihood term—see Equation 10.

3The models are implemented in PyTorch [1] and optimised using the Adam
optimiser [15]



min
θ,φ,w

L(x,y, I) = βDKL(qφ(c|x, I)︸ ︷︷ ︸
amortised
posterior

|| pθ(c)︸ ︷︷ ︸
prior

) + αEqφ(c|x,I)(log pθ(x|c, I)︸ ︷︷ ︸
MSE

) + γ

|G|∑
i

1{yi 6=∅}H(ciw
T
i , yi)︸ ︷︷ ︸

SCE

(10)

B. Decoding Network

For the decoding network we implement a temporal convo-
lutional network [4] which is often used in seq2seq models.
It takes a sequence of length T and transforms it to another
sequence of length T by feeding it through a series of dilated
convolutions. However, the concatenation h of a single concept
embedding c and a single image encoding is equivalent to a
sequence of length 1. Thus, we tile the concatenated vector T
times and to each instance of that vector hi, i ∈ {1, . . . , T},
we attach a time dimension ti =

i
T . This broadcasting tech-

nique has previously shown to achieve better disentanglement
in the latent space both on visual [30] and time-dependent data
[20]. As mentioned in section III, we only set up the mean µθ
of the predicted distribution over x to be a non-linear function
of [h; t] while σ is fixed, for better numerical stability during
training. This allows us to use the L2 distance—Mean Squared
Error (MSE)—between the inferred trajectories µθ (we use the
mean as a reconstruction) and the ground truth ones.

C. Label Predictors

For each concept group gj we take values from the corre-
sponding latent axis cj feed it through a single linear layer,
with a softmax activation function, to predict a probability
vector π(j). Maximising the label likelihood is realised as
a Softmax-Cross Entropy (SCE) term in the loss function.
Optimising this term gives us better guarantee that the some of
the latent axes will be semantically aligned with the notions in
the label groups. The fact that some labels might be missing
is accounted for with an indication function which calculates
∇θ,∇φ with respect to the SCE, only if yj is present.

D. Weighted Loss

The full loss function that we optimise is presented in
Equation 10. Instead of maximising the VLB (Equation 5), we
choose to minimise its negation. Notably, we have three main
terms—the trajectory MSE (equiv. to the negative trajectory
log likelihood), the label SCE (equiv. to the negative weak
label log likelihood) and the KL divergence between the fit
amortised posterior over c and its standard Gaussian prior.
The concrete values of the three coefficients—α, β, γ—are
discussed in the Supplementary Materials.

VI. EXPERIMENTS

Our experiments on a physical PR2 robot show that under
the proposed model we can more reliably sample behaviours,
consistent with a given spatial or force-related user specifica-
tion, as compared to a baseline VAE model.

The setup used in the experiments consists of a PR2 robot,
an HTC Vive controller and headset, and a tabletop with a
single object on it—a red cube. Multiple dabbing motions
on the surface of the table are demonstrated by teleoperating

the right-arm end effector of the robot. The latter is achieved
by mapping the pose of the end effector with respect to the
robot’s torso to be the same as the pose of the controller (held
by the demonstrator) with respect of the headset (behind the
demonstrator in Figure 4).

Fig. 4: Physical setup for teleoperating a PR2 end-effector
through an HTV Vive controller.

A. Data

The data captured from the PR2, over all 200 total demon-
strations, consists of 3 main modalities (+ weak labels):
• Scene image from a Kinect2 sensor—initial frame of each

demonstration; 128x128 pixels, with RGB channels;
• Joint angle position information from the 7 joints of the

right arm - fixed size trajectory of 240 time steps;
• Joint effort information from the 7 joints of the right arm

- fixed size trajectory of 240 time steps;
• 5 groups of discrete weak labels, describing either the

spatial or force-related aspects of a demonstration;
Each demonstration has a single label attached to it. In total

we have 4 spatial symbols—where in the image, with respect
to the red cube, do we dab—and 6 force-related symbols—
how do we dab:

spatial (where)
Initial Image + Joint Positions

effort (how)
Joint Efforts

left & right soft & hard
front & behind short & long

quick & slow

TABLE I: All labels given in the demonstrations together with
the modalities necessary for the inference of the labels.

Figure 5 provides a graphical depiction demonstrating the
differences between the different force-relate groupings qual-
itatively.

All trajectories are standardised to be of fixed length—the
length of the longest trajectory—by padding them with the
last value for each channel/joint. Additionally, both the joint
positions and efforts are augmented with random noise or by
randomly sliding them leftwards (simulating an earlier start)



(a) (b) (c) (d) (e) (f)

Fig. 5: Example effort trajectories from the training data for a single robot joint—shoulder lift joint—and the
corresponding user-given labels across 6 different demonstrations—(a) and (b) designate the maximal exerted effort, (c) and
(d) designate the length for which the maximal effort was maintained, (e) and (f) designate the time for which the maximal
effort in the demonstration was reached (slope).

and padding accordingly. The size of the total dataset after
augmentation is 2000 demonstrations which are split according
to a 90-10 training-validation ratio.

The size of latent space is chosen to be |c| = 8. In
the context of the problem formulation in section III, cs =
{c0, c1}, ce = {c2, c3, c4} and cu = {c5, c6, c7}.

To fully close the loop, the trajectories which we sample
from the model could further be executed on the physical robot
through a hybrid position/force controller [23]. However, such
evaluation is beyond the scope of the paper.

B. Evaluation

1) Quantitative: We use the Gaussian distributions we fit
for each label i in each concept group j—N (µ

(i)
j , σ

(i)
j )—

to sample and generate trajectories that are consistent with
the meaning of a particular label. For a set of 5 test images,
which have not been seen during training, we sample 100
samples of c per image for each of the 10 labels. For each
label we then judge whether the generated trajectories match
the semantics of the corresponding label we have conditioned
on through a series of heuristics. Average accuracy across all
images and all samples is reported for each label. For the labels
of spatial nature, for each 7-dimensional (7 DoFs) robot state
xi,x = {x1, . . . , xT }, we compute the corresponding end-
effector pose pi through the forward kinematics K of the robot.
Afterwards, using the camera model of the Kinect2 sensor,
each pose pi is projected in the image we condition on. Both
the kinematic and image projection transformations are deter-
ministic ones. We report the Mean Absolute Error (MAE) in
normalised pixel coordinates between the dab location and the
landmark location (in pixel coordinates) for the misclassified
trajectories. This gives us a sense of how far from the desired
ones are the generated samples. The dab location is inferred
as the point in the end-effector pose trajectory with lowest z
coordinate. For example, if we have conditioned on the left
label but some of the sampled trajectories result in a dab to
the right of the cube in the image, we report how far off
from being left did the robot touch the table.

2) Qualitative: We additionally report qualitative results
from perturbing individual axes in the latent space which are
meant to convey specific semantics—e.g. axes in c1, c2. We
draw 5 consecutive samples for each axis in the range of

[−2, 2], keeping the other latent axes fixed at 0, and visualise
the generated trajectories (joint positions and efforts). We
also project the virtual end effector positions, following the
generated trajectories, in the image plane, using the known
robot model and its forward kinematics, allowing us to judge
whether perturbing a force-aligned latent dimension results in
spatial changes of the end-effector and vice-versa.

VII. RESULTS & DISCUSSION

Our evaluation shows that the model which uses the weak
labels achieves better alignment between the latent axes and
the high-level concepts, as compared to a model which ignores
any user label information (γ = 0 in Equation 10). Tables II
and III present the results from the qualitative evaluation of
both models. We can see that the model which utilised the
weak labels can sample consistently correct robot trajectories
which satisfy the label we have conditioned on. We can also
see that the VAE model, unlike the full one, experiences mode
collapse, especially in the context of the effort labels. This can
be partly explained by the fact that due to the lack of the weak
labels, which utilise the image input, for the VAE there is no
term in the loss function to incentivise that.

left right front back
Model Acc MAE Acc MAE Acc MAE Acc MAE
VAE 0.80 0.026 0.82 0.031 0.86 0.050 0.96 0.030
Full 0.95 0.031 0.87 0.026 0.92 0.027 0.99 0.018

TABLE II: Accuracy (higher is better) and MAE (lower is bet-
ter) for sampled trajectories under the two models, conditioned
on a fixed spatial label.

Model soft hard short long slow fast
VAE 0.05 0.95 0.96 0.59 0.93 0.52
Full 0.92 1.0 1.00 0.90 0.95 0.70

TABLE III: Accuracy for sampled trajectories under the two
models, conditioned on a fixed effort label.

Figures 6 to 10 present the qualitative results from per-
turbing in a controlled way the latent space optimised under
the full model. For figure the first row of plots represents the
generated joint angle positions for each of the 7 joints, for
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Fig. 6: Linearly interpolate c0 (≡ from dabbing to the left to dabbing to the right of the visual landmark in the scene.)
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Fig. 7: Linearly interpolate c1 (≡ from dabbing to the front to dabbing to the back of the visual landmark in the scene.)
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Fig. 8: Linearly interpolate c2 (≡ from dabbing hardly to softly)
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Fig. 9: Linearly interpolate c3 (≡ from dabbing for a long period of time to dabbing for a short period of time)

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(a) shoulder pan

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(b) shoulder lift

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(c) upper arm roll

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(d) elbow flex

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(e) forearm roll

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(f) wrist flex

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(g) wrist roll

C4=-2.0
C4=-1.0
C4=0.0
C4=1.0
C4=2.0

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(h) shoulder pan

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(i) shoulder lift

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(j) upper arm roll

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(k) elbow flex

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(l) forearm roll

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(m) wrist flex

0 100 200
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(n) wrist roll

C4=-2.0
C4=-1.0
C4=0.0
C4=1.0
C4=2.0

C4=-2.0
C4=-1.0
C4=0.0
C4=1.0
C4=2.0
Start
End
Dab Location

Fig. 10: Linearly interpolate c4 (≡ from dabbing quickly to dabbing slowly)

each of the 5 drawn samples, the second row—the generated
joint efforts—and the third row the corresponding end-effector
positions, from the forward robot kinematics, projected in the
image plane. Joints which exhibit more variance have been
highlighted for clarity. As we can see, perturbing c0 and
c1 corresponds to clear and consistent movement of the end
effector (through the generated joint position profiles) while
there is not much change in the generated effort profiles—
Figures 6 and 7. Simultaneously, we observe the opposite
effect in other 3 Figures. Perturbations in c2 correspond solely
changes in the output efforts in the shoulder lift and upper
arm rolls joints—Figure 8 (i) and (j). Perturbations in c3
correspond to changes in length for which the joint efforts are
exerted but does not change their magnitude or where they
are applied on the table—Figure 9. And finally, perturbations
in c4 correspond to changes on how quickly the maximum
efforts are reached - most noticeable in the changing slope of

the shoulder lift and upper arm rolls joints—Figure 10 (i) and
(j). As a result, we can conclude that the latent dimensions,
which we aligned with the semantically grouped weak labels,
have indeed captured the notions and concepts which underlie
the labels.

VIII. CONCLUSION

We have presented the problem of interpretable multi-modal
LfD as equivalent to formulating a conditional probabilistic
model. In the context of table-top dabbing, we utilise weak
discrete labels from the demonstrator to represent abstract
notions, manifested in a captured multi-modal robot dataset.
Through the usage of high-parameter neural models and meth-
ods from deep variational inference we have demonstrated
how to align some of the latent variables of the formulated
probabilistic model with the demonstrated high-level notions.
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APPENDIX A
VARIATIONAL LOWER BOUND DERIVATION

Below is a derivation of the Variational Lower Bound of the data likelihood, following Jensen’s inequality. The inequality
becomes and equality when the amortised posterior q(c|x, i) matches exactly the true posterior p(c|x, i,y). The posterior
we optimise is not conditioned on y, potentially meaning that we might never close the gap between the log of the data
distribution and the VLB, measured by DKL(q(c|x, i)||p(c|x, i,y)). However, maximising the VLB still goes in the direction
of maximising the data distribution.

log p(x,y|i) = log

∫
p(x,y|i, c)p(c)dc

= log

∫
p(x|i, c)p(y|c)p(c)dc

= log

∫
q(c|x, i)
q(c|x, i)

p(x|i, c)p(y|c)p(c)dc

= logEq(c|x,i)
p(x|i, c)p(y|c)p(c)

q(c|x, i)

≥ Eq(c|x,i) log
p(x|i, c)p(y|c)p(c)

q(c|x, i)
[Jensen]

= Eq(c|x,i) log p(x|i, c) + Eq(c|x,i) log p(y|c)− Eq(c|x,i) log
q(c|x, i)
p(c)

= Eq(c|x,i) log p(x|i, c) + Eq(c|x,i) log p(y|c)−DKL(q(c|x, i)||p(c))
= −(DKL(q(c|x, i)||p(c))− Eq(c|x,i) log p(x|i, c)− Eq(c|x,i) log p(y|c))
= −(L)

(11)

APPENDIX B
ARCHITECTURE DETAILS

The model architectures are implemented in the PyTorch framework4. The image encoder network takes as input a single
RGB 128x128 pixel image. The trajectory encoder takes a single 14-dimensional, 240 time-step-long trajectory. Their outputs
both feed into an MLP network which, after a series of nonliner transformations, outputs parameters of a distribution over the
latent space c. Trough the reparametrisation trick [16] we sample values for c. Through a residual connection, the output of
the image encoder is concatenated to the sampled latent values. The resultant vector is tiled 240 time, extended with a time
dimension, and fed into a TCN decoder network to produce reconstructions for the original 14-dimensional input trajectories.

Across all experiments, training is performed for a fixed number of 100 epochs using a batch size of 8. The dimensionality
of the latent space |c| = 8 across all experiments. The Adam optimizer [15] is used through the learning process with the
following values for its parameters—(learningrate = 0.001, β1 = 0.9, β2 = 0.999, eps = 1e − 08, weightdecayrate =
0, amsgrad = False).

For all experiments, the values (unless when set to 0) for the three coefficients from Equation 10 are:
• α = 1, β = 0.1, γ = 25

The values are chosen empirically in a manner such that all the loss terms have similar magnitude and thus none of them
overwhelms the gradient updates while training the full model.

4https://pytorch.org/docs/stable/index.html



Image Encoder
FC (4) i
FC (256)

2D Conv (k=3, p=1, c=64)
2D Conv (k=3, p=1, c=64)
2D Conv (k=3, p=1, c=64)
2D Conv (k=3, p=1, c=32)
2D Conv (k=3, p=1, c=32)

Input Image I [128 x 128 x 3]

(a) Image Encoder

Trajectory Encoder
FC (32) τ
FC (256)

1D Conv (k=7, p=3); 1D Conv (k=5, p=2); 1D Conv (k=3, p=1) [c=20]
Input Trajectory x [240 x 14]

(b) Trajectory Encoder

MLP
FC (2x8) µ, log(σ)

FC (32)
FC (32)

Concatenated [i; τ ][1 x 36]

(c) MLP

TCN Decoder
Temporal Block (dilation=4, k=5, c=14)
Temporal Block (dilation=2, k=5, c=20)
Temporal Block (dilation=1, k=5, c=20)

append time channel t
tile (240, 10)

Concatenated [i; c][1 x 10]

(d) TCN Decoder

TABLE IV: Network architectures used for the reported models. (a) is a 2D convolutional network, (b) is a 1D convolutional
network, (c) is a fully-connected MLP network, (d) is a Temporal Convolution Network, made of stacked temporal blocks and
dilated convolutions, described in [4]
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