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ABSTRACT
As robots and autonomous systems become more adept at handling
complex scenarios, their underlying mechanisms also become in-
creasingly complex and opaque. This lack of transparency can give
rise to unverifiable behaviours, limiting the use of robots in a num-
ber of applications including high-stakes scenarios, e.g. self-driving
cars or first responders. In this paper and accompanying video, we
present a system that learns from demonstrations to inspect areas
in a remote environment and to explain robot behaviour. Using
semi-supervised learning, the robot is able to inspect an offshore
platform autonomously, whilst explaining its decision process both
through both image-based and natural language-based interfaces.
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1 INTRODUCTION
Recent advancements have made robots and autonomous systems
a valuable asset in unsafe environments as a way to keep humans
out of danger, such as in the nuclear or energy domains [6, 7, 10,
13, 17, 20]. These domains often require navigating highly dynamic
scenarios and executing time-critical actions successfully. We focus
here on offshore energy platforms as part of the EPSRC ORCA Hub
programme [6], where robots are expected to maintain and operate
parts of the platform autonomously, whilst communicating with
remote operators through a human-robot interface.
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Machine learning is an important part of modern robots, with
more accurate and sophisticated algorithms being deployed over
time. However, it requires a high amount of data, which is chal-
lenging and costly to obtain, particularly in hazardous domains.
Using semi-supervised machine learning, we have shown that a
robot can learn inspection strategies from a demonstration by a hu-
man operator [19]. This method provides several advantages over
both supervised and unsupervised machine learning algorithms:
it does not require expensive data collections and it leverages un-
supervised learning methods to extract information not explicitly
available. More importantly, the robot successfully adapts to unseen
conditions, which is imperative in changing situations.

Nevertheless, typically a single robot is not able to perform the
multitude of tasks needed for complex operations. Thus, operators
often have to supervise several types of robots at the same time
(e.g. ground robots with hoses to extinguish fires and aerial drones
for inspections). This is exacerbated by the remote nature of the
environment, as remotely-controlled robots often instil less trust
than those co-located [1, 9]. Maintaining a correct and clear operator
mental model is thus necessary for the deployment of multiple
adaptive robots simultaneously.

Dynamic robot behaviours may be difficult to understand, in
particular to non-experts and novice operators. We provide a way
to communicate these clearly through natural language messages
synthesised from the semi-supervised learning algorithm. Present-
ing the robot behaviour in words can increase situation awareness,
helping to better understand what the robot is doing and why, as
well as helping the operator know when to intercede if the robot is
not operating correctly [4, 16].

In this video and paper, we describe a system that combines
semi-supervised learning and natural language explanations of
behaviour to learn from demonstrations and clarify or verify the
behaviours displayed by the robot.

2 BEHAVIOURAL MODEL LEARNING
We train DNNs as behavioural models based on demonstrations
carried out by robot operators [19]. In this LfD (learning from
demonstration) configuration (Fig. 1a), a user teleoperates a Husky
robot in an inspection scenario. The operator receives exterocep-
tive information about the robot from an on-board camera and
drives it controlling linear and angular velocities. We recorded five
demonstrations varying the location of obstacles, but maintain-
ing the same points on the remote platform as inspection goals.
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(a) System architecture (b) Explainable inteface

Figure 1: (a) Explainable learning from demonstration architecture. Green blocks represent input modules to the system. The
yellow blocks represent the semi-supervised learning of behavioural models. Red blocks are the main outputs of the system
in graphical and natural language form. (b) Interface including Natural Language Generation (NLG).

First, following [3], we extract goals in the demonstrations as the
most likely position on the platform to where the robot is being
directed. Using a sequential importance sampling algorithm, we
extract the goals and parameters of the proportional controllers
that satisfy them. We filter the goals using their likelihood of being
part of the actual path taken by the robot and their saliency in a
path-prediction model. Once the system has inferred the goals, we
label each step of the original demonstration to learn goal-based
Deep Neural Networks (DNNs). These models take the state of the
robot as input and predict the most likely path to be followed by
the robot for the next 5 seconds.

We use the behavioural models for different tasks (red blocks
in 1a). First, we can control the robot in an MPC (model-predictive
control) way. Second, we explain the path prediction from the
models with causal inference. Using sensitivity analysis, we are
able to point out the objects around the robot that are important
for behaviour prediction. Also, using counterfactual analysis, the
system can inform a user about the required modifications to follow
a specific path [18]. Finally, the combination of these behavioural
explanations can be translated to natural language.

3 NATURAL LANGUAGE INTERFACE
Although robots that adapt are more useful in certain environments,
this ability to adapt can make their behaviour obscure to non-
experts. This decreased understanding can have a negative effect
on the operator’s trust, and thus on the human-robot collaboration.
Improving the robot’s transparency is important for explainability
and trust [14, 21] and it is crucial for a clear operator mental model,
which can prevent issues such as wrong assumptions, misuse, disuse
or over-trust [4]. Amore faithful mental model also helps to increase
the operator’s confidence and performance [2, 11].

Previous works have communicated the robot’s actions through
natural language during and after the tasks [4, 8, 12, 15]. They
provide information through automatic reports or real-time dia-
logue, yet, unlike our case, these robots often have well-defined
behaviour that could be initially described by an expert or coded
from domain-specific knowledge.

The system, described here (see Fig. 1b) and illustrated in the
video generates updates about the actual direction of the robot
(‘Heading’) based on the robot’s internal measurement unit (IMU),
a list of objects that are sensitive for the prediction (‘Objects’), the
current behaviour (‘Behaviour’) based on the predicted path fol-
lowed by the MPC and the position of salient objects, and an overall
mission status. Combining these outputs using template based gen-
eration, the system provides easy-to-digest explanations about the
robot’s behaviour and deviations from its standard trajectory. Some
examples are “Turning left to avoid a barrel” or “Making a u-turn
towards South-West goal”. These are shown on the operator’s user
interface to help increase understanding and situation awareness.

4 CONCLUSION AND FUTUREWORK
In this demonstration, we have shown a robot that autonomously
navigates an environment and produces updates about what it is
doing and why. The robot’s behaviour is learned from an operator
demonstration, from which a program is synthesised and then ex-
ecuted using a semi-supervised learning algorithm. The updates
adapt to the robot’s behavioural model and can be used to keep
operators informed about what the robot is thinking of doing next.
In the future, we would like to extend this to more types of up-
dates and allow one to more closely examine the robot’s actions
through free-chat. Explanations could become crucial if we want to
better understand highly autonomous, adaptive robots that show
behaviour that may be too complicated even for experts to under-
stand. Evaluating and optimising natural language explanations
is also left for future work [5]. Finally, this work could also open
the door to live debugging of robots and automatically-synthesised
programs, to verify that the robot is acting as it should or explain
why it did not correctly learn from the demonstration.
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