Multi-Strategy Trading Utilizing Market Regimes

Hynek Mlnařík ¹
Subramanian Ramamoorthy ²
Rahul Savani ¹

¹Warwick Institute for Financial Computing
Department of Computer Science
University of Warwick

²Institute of Perception, Action and Behaviour
School of Informatics
University of Edinburgh
The Portfolio Allocation Problem

Dynamically allocate working capital in a portfolio of instruments
The Portfolio Allocation Problem

Dynamically allocate working capital in a portfolio of instruments – over time, as market conditions continually change.
Dynamically allocate working capital in a portfolio of instruments – over time, as market conditions continually change.

- Classic problem with established theory, e.g., mean-variance optimization and modern extensions.
Dynamically allocate working capital in a portfolio of instruments – over time, as market conditions continually change.

- Classic problem with established theory, e.g., mean-variance optimization and modern extensions.

- These are “model-based” methods. So, one makes assumptions (e.g., known expected returns) that may turn out to be troublesome.
The Portfolio Allocation Problem

Dynamically allocate working capital in a portfolio of instruments – over time, as market conditions continually change.

- Classic problem with established theory, e.g., mean-variance optimization and modern extensions.
- These are “model-based” methods. So, one makes assumptions (e.g., known expected returns) that may turn out to be troublesome.
- This issue spurred research into “model-free” approaches.
“Model-free” Portfolio Allocation

- Point of departure: Classic work on optimal bet sizing (Kelly 1956, Breiman 1961) - how much to bet given odds?

- Universal portfolio (Cover 1991) - Sequential portfolio allocation to match the best constantly rebalanced portfolio in hindsight (for an arbitrary market process).

- Many extensions and follow-on work: multiplicative updates (Helmbold et al. 1998), efficient online computation (Kalai et al. 2002), Anticor (Borodin et al. 2004), kernel-weighted allocation (Győrfi et al. 2006).
Point of departure: Classic work on optimal bet sizing (Kelly 1956, Breiman 1961) - how much to bet given odds?

Constantly rebalanced portfolios (Thorp 1971, Markovitz 1976, Bell+Cover 1988, Algoet+Cover 1988) - keep relative allocation of capital constant (still assuming known market return distributions).
“Model-free” Portfolio Allocation

- Point of departure: Classic work on optimal bet sizing (Kelly 1956, Breiman 1961) - how much to bet given odds?

- Universal portfolio (Cover 1991) - Sequential portfolio allocation to match the best constantly rebalanced portfolio in hindsight (for an arbitrary market process).
“Model-free” Portfolio Allocation

- Point of departure: Classic work on optimal bet sizing (Kelly 1956, Breiman 1961) - how much to bet given odds?

- Universal portfolio (Cover 1991) - Sequential portfolio allocation to match the best constantly rebalanced portfolio in hindsight (for an arbitrary market process).

- Many extensions and follow-on work: multiplicative updates (Helmbold et al. 1998), efficient online computation (Kalai et al. 2002), Anticor (Borodin et al. 2004), kernel-weighted allocation (Györfi et al. 2006).
Utilizing Market Context

Market processes are not *entirely* arbitrary

Statistical view of Universal Portfolios (Belentepe 2005): Weights (constrained to a partition of unity) are conditional expectation of a multivariate normal distribution, $w \sim \mathcal{N}(\bar{\Sigma}^{-1}t\bar{r}_t, 1_t\bar{\Sigma}t)$.

Unconstrained version is the standard log-optimal investment. Major contribution of universal algorithms is an online procedure to solve this problem, within a target portfolio class. We seek online procedures that also allow us to utilize context in the spirit of (non-parametric) statistics.
Market processes are not *entirely* arbitrary – how to utilize odds without overly restrictive assumptions?
Market processes are not *entirely* arbitrary – how to utilize odds without overly restrictive assumptions?

- Statistical view of Universal Portfolios (Belentepe 2005): Weights (constrained to a partition of unity) are conditional expectation of a multivariate normal distribution, $w \sim N(\Sigma_t^{-1}\bar{r}_t, \frac{1}{t}\Sigma_t)$.
Market processes are not *entirely* arbitrary – how to utilize odds without overly restrictive assumptions?

- Statistical view of Universal Portfolios (Belentepe 2005): Weights (constrained to a partition of unity) are conditional expectation of a multivariate normal distribution,
 \[w \sim N(\bar{\Sigma}_t^{-1}\bar{r}_t, \frac{1}{t}\bar{\Sigma}_t). \]
 - Unconstrained version is the standard log-optimal investment.
Market processes are not *entirely* arbitrary – how to utilize odds without overly restrictive assumptions?

- Statistical view of Universal Portfolios (Belentepe 2005): Weights (constrained to a partition of unity) are conditional expectation of a multivariate normal distribution, \(w \sim \mathcal{N}(\bar{\Sigma}_t^{-1}\bar{r}_t, \frac{1}{t}\bar{\Sigma}_t) \).
 - Unconstrained version is the standard log-optimal investment.

- Major contribution of universal algorithms is an online procedure to solve this problem, within a target portfolio class.
Market processes are not entirely arbitrary – how to utilize odds without overly restrictive assumptions?

- Statistical view of Universal Portfolios (Belentepe 2005): Weights (constrained to a partition of unity) are conditional expectation of a multivariate normal distribution, \(w \sim N(\overline{\Sigma}^{-1}\overline{r}_t, \frac{1}{t}\overline{\Sigma}) \).
 - Unconstrained version is the standard log-optimal investment.

- Major contribution of universal algorithms is an online procedure to solve this problem, within a target portfolio class.

- We seek online procedures that also allow us to utilize context in the spirit of (non-parametric) statistics.
Portfolio Allocation – Our Approach

Dynamically allocate capital in a portfolio of trading strategies.
Portfolio Allocation – Our Approach

Dynamically allocate capital in a portfolio of trading strategies.

- Use a set of primitives, i.e., simple strategies (e.g., rules used by traders).
Dynamically allocate capital in a portfolio of trading strategies.

- Use a set of primitives, i.e., simple strategies (e.g., rules used by traders).
 - Individually, no primitive strategy is well suited (i.e., reliably profitable) under changing market contexts.
Dynamically allocate capital in a portfolio of trading strategies.

- Use a set of primitives, i.e., simple strategies (e.g., rules used by traders).
 - Individually, no primitive strategy is well suited (i.e., reliably profitable) under changing market contexts.

- Represent changing market context by regimes - loosely, subsets of strategies that are successful under this context.
Portfolio Allocation – Our Approach

Dynamically allocate capital in a portfolio of trading strategies.

* Use a set of primitives, i.e., simple strategies (e.g., rules used by traders).
 * Individually, no primitive strategy is well suited (i.e., reliably profitable) under changing market contexts.

* Represent changing market context by regimes - loosely, subsets of strategies that are successful under this context.
 * Make use of historical data to non-parametrically model regimes.
Dynamically allocate capital in a portfolio of trading strategies.

- Use a set of primitives, i.e., simple strategies (e.g., rules used by traders).
 - Individually, no primitive strategy is well suited (i.e., reliably profitable) under changing market contexts.

- Represent changing market context by regimes - loosely, subsets of strategies that are successful under this context.
 - Make use of historical data to non-parametrically model regimes.

- Devise online algorithm for dynamically rebalancing portfolio, shaped by contextual information.
Our Approach – Two Major Concepts

- **Weighted Strategies**: Robust portfolios may be constructed by weighting the working capital allocated to primitive strategies.
Our Approach – Two Major Concepts

- Weighted *Strategies*: Robust portfolios may be constructed by weighting the working capital allocated to primitive strategies.
 - A small change, but as we will argue, a very useful one.
Our Approach – Two Major Concepts

- **Weighted Strategies**: Robust portfolios may be constructed by weighting the working capital allocated to primitive strategies.
 - A small change, but as we will argue, a very useful one.

- **Regimes**: Characterize context by relative profitability of primitive strategies.
Our Approach – Two Major Concepts

- **Weighted Strategies**: Robust portfolios may be constructed by weighting the working capital allocated to primitive strategies.
 - A small change, but as we will argue, a very useful one.

- **Regimes**: Characterize context by relative profitability of primitive strategies.
 - Good trading strategies exploit *recurring market dynamics* that can be *more prevalent in some time periods than in others.*
Our Approach – Two Major Concepts

- **Weighted Strategies**: Robust portfolios may be constructed by weighting the working capital allocated to primitive strategies.
 - A small change, but as we will argue, a very useful one.

- **Regimes**: Characterize context by relative profitability of primitive strategies.
 - Good trading strategies exploit *recurring market dynamics* that can be *more prevalent in some time periods than in others*.
 - Trends depend on hard to model latent variables - we seek alternate state description in an action-oriented representation.
Distinguish generic behaviour of a trading rule (e.g., contrarian investment) from specific instantiations.
On Trading Strategies

Distinguish generic behaviour of a trading rule (e.g., contrarian investment) from specific instantiations.

- **Qualitative Strategies**: Set of strategy functions whose algorithmic description is identical up to a fixed set of parameters.
Distinguish generic behaviour of a trading rule (e.g., contrarian investment) from specific instantiations.

- **Qualitative Strategies**: Set of strategy functions whose algorithmic description is identical up to a fixed set of parameters.
 - Allows us to target behaviours somewhat independently of unknown parameters.

Quantitative Strategies: Specific subset of strategy functions obtained by assigning parameter values.

Implementation requires fully specified quantitative strategies. But, it is helpful to differentiate the static structure implied by the qualitative strategy from the dynamic evolution of regimes.
Distinguish generic behaviour of a trading rule (e.g., contrarian investment) from specific instantiations.

- **Qualitative Strategies**: Set of strategy functions whose algorithmic description is identical up to a fixed set of parameters.
 - Allows us to target behaviours somewhat independently of unknown parameters.

- **Quantitative Strategies**: Specific subset of strategy functions obtained by assigning parameter values.
On Trading Strategies

Distinguish generic behaviour of a trading rule (e.g., contrarian investment) from specific instantiations.

- **Qualitative Strategies**: Set of strategy functions whose algorithmic description is identical up to a fixed set of parameters.
 - Allows us to target behaviours somewhat independently of unknown parameters.

- **Quantitative Strategies**: Specific subset of strategy functions obtained by assigning parameter values.

Implementation requires fully specified quantitative strategies. But, it is helpful to differentiate the static structure implied by the qualitative strategy from the dynamic evolution of regimes.
Distinguish generic behaviour of a trading rule (e.g., contrarian investment) from specific instantiations.

- **Qualitative Strategies**: Set of strategy functions whose algorithmic description is identical up to a fixed set of parameters.
 - Allows us to target behaviours somewhat independently of unknown parameters.
- **Quantitative Strategies**: Specific subset of strategy functions obtained by assigning parameter values.

Implementation requires fully specified quantitative strategies.
Distinguish generic behaviour of a trading rule (e.g., contrarian investment) from specific instantiations.

- **Qualitative Strategies**: Set of strategy functions whose algorithmic description is identical up to a fixed set of parameters.
 - Allows us to target behaviours somewhat independently of unknown parameters.

- **Quantitative Strategies**: Specific subset of strategy functions obtained by assigning parameter values.

Implementation requires fully specified quantitative strategies.

But, it is helpful to differentiate the static structure implied by the qualitative strategy from the dynamic evolution of regimes.
Three major steps:

- **(Optional)** Use historical data to infer set of regimes, i.e., relative order between strategies.
Portfolio Allocation Algorithm: A Template

Three major steps:

- **(Optional)** Use historical data to infer set of regimes, i.e., relative order between strategies.

- **In-Sample:** Identify the order (by performance) over regimes within a moving window, i.e., estimate current context.
Three major steps:

- **(Optional) Use historical data to infer set of regimes, i.e., relative order between strategies.**

- **In-Sample: Identify the order (by performance) over regimes within a moving window, i.e., estimate current context.**

- **Out-Sample: Allocate working capital assuming persistence of the identified in-sample context.**
Simplest Instantiation: Trade with Best In-Sample Strategy

In: Identify best quantitative strategy
Out: Allocate capital to the best in-sample strategy
Simplest Instantiation: Trade with Best In-Sample Strategy

In: Identify best quantitative strategy

Out: Allocate capital to the best in-sample strategy
Simplest Instantiation: Trade with Best In-Sample Strategy

- **In**: Identify best quantitative strategy
- **Out**: Allocate capital to the best in-sample strategy
Performance: Trading with Best In-Sample Strategy

[Graph showing performance over time with various strategies and their performance metrics.]
Observations: Trading with Best In-Sample Strategy

Can be profitable. However,

- Sensitivity to parameter choice, e.g., window size.
- Need fine-grained trading to follow changing trends.
- Wasteful chatter between different strategies.
 - Diversification could help solve some of these problems.
Another Simple Instantiation: k–NN

Execute the weighted average action derived from k-nearest market states in a historical database.
Another Simple Instantiation: k-NN

Execute the weighted average action derived from k-nearest market states in a historical database.

This is more diversified, but tends not to suffice. – we will see a few empirical results later in this presentation.
Regimes - Layered Graph of Strategies

- Regimes: weighted groups of strategies exhibiting correlated behaviour according to a fitness function.
Regimes - Layered Graph of Strategies

- Regimes: weighted groups of strategies exhibiting correlated behaviour according to a fitness function
Regimes: weighted groups of strategies exhibiting correlated behaviour according to a fitness function.
Regimes: weighted groups of strategies exhibiting correlated behaviour according to a fitness function.
Regimes: weighted groups of strategies exhibiting correlated behaviour according to a fitness function.

During training, weights are adjusted between strategies according to fitness.

Fitness of a regime is defined as a weighted sum of its strategy fitnesses, similar to a mixture model.

The effective number of regimes may be significantly smaller than the number of underlying strategies.

Dimensionality reduction would aid the state identification step.

Previous instantiations may be considered special cases.

Possible to build predictive models in a space that is different from standard latent variable time series models.
Regimes - Layered Graph of Strategies

- Regimes: weighted groups of strategies exhibiting correlated behaviour according to a fitness function.
- During training, weights are adjusted between strategies according to fitness.

Fitness of a regime is defined as a weighted sum of its strategy fitnesses, similar to a mixture model. The effective number of regimes may be significantly smaller than the number of underlying strategies. Dimensionality reduction would aid the state identification step. Previous instantiations may be considered special cases. Possible to build predictive models in a space that is different from standard latent variable time series models.
Regimes - Layered Graph of Strategies

- Regimes: weighted groups of strategies exhibiting correlated behaviour according to a fitness function.
- During training, weights are adjusted between strategies according to fitness.

Fitness of a regime is defined as a weighted sum of its strategy fitnesses, similar to a mixture model.

The effective number of regimes may be significantly smaller than the number of underlying strategies.

Dimensionality reduction would aid the state identification step.

Previous instantiations may be considered special cases.

Possible to build predictive models in a space that is different from standard latent variable time series models.
• Regimes: weighted groups of strategies exhibiting correlated behaviour according to a fitness function
• During training, weights are adjusted between strategies according to fitness
• Fitness of a regime is defined as a weighted sum of its strategy fitnesses, similar to a mixture model
Regimes - Layered Graph of Strategies

- Regimes: weighted groups of strategies exhibiting correlated behaviour according to a fitness function.
- During training, weights are adjusted between strategies according to fitness.
- Fitness of a regime is defined as a weighted sum of its strategy fitnesses, similar to a mixture model.

The effective number of regimes may be significantly smaller than the number of underlying strategies.

- Dimensionality reduction would aid the state identification step.
 - Previous instantiations may be considered special cases.
- Possible to build predictive models in a space that is different from standard latent variable time series models.
Algorithm: Regime Detection and Strategy Optimization

Training - Acquire regimes from data
- Explicitly specified by expert

Find significantly correlated events among possible combinations of events e.g. using permutation tests
Algorithm: REgime Detection and STRategy OPrimization

Training - Acquire regimes from data
- Explicitly specified by expert
 - e.g., all possible combinations of strategies
Algorithm: **RE**gime **D**etection and **S**trategy **O**ptimization

Training - Acquire regimes from data
- Explicitly specified by expert
 - e.g., all possible combinations of strategies
- Unsupervised learning
Algorithm: **REGime Detection and STRategy OPTimization**

Training - Acquire regimes from data
- Explicitly specified by expert
 - e.g., all possible combinations of strategies
- Unsupervised learning
 - Find significantly correlated events among possible combinations of events e.g. using permutation tests
Algorithm: **RE**gime **D**etection and **ST**rategy **OP**timization

Trading - Allocate capital based on regime-level performance

- **In-sample period (Estimation of current regime):**
 1. Compute values of all regimes by taking a weighted sum of the strategy fitnesses in the in-sample period
Algorithm: REgime Detection and STrategy OPtimization

Trading - Allocate capital based on regime-level performance

- In-sample period (Estimation of current regime):
 1. Compute values of all regimes by taking a weighted sum of the strategy fitnesses in the in-sample period

```
0   0.5    100   -100   0
```

- Out-of-sample period (Trading): Multiplicative weight update for allocation between regimes
Algorithm: **RE**gime **D**etection and **ST**rategy **OP**timization

Trading - Allocate capital based on regime-level performance

- In-sample period (Estimation of current regime):
 1. Compute values of all regimes by taking a weighted sum of the strategy fitnesses in the in-sample period
Algorithm: **RE**gime **D**etection and **ST**rategy **OP**timization

Trading - Allocate capital based on regime-level performance

- In-sample period (Estimation of current regime):
 1. Compute values of all regimes by taking a weighted sum of the strategy fitnesses in the in-sample period
 2. Recalculate the weights of regimes proportionally to these weights
Algorithm: **RE**gime **D**etection and **ST**rategy **OP**timization

Trading - Allocate capital based on regime-level performance

- **In-sample period (Estimation of current regime):**
 1. Compute values of all regimes by taking a weighted sum of the strategy fitnesses in the in-sample period
 2. Recalculate the weights of regimes proportionally to these weights

- **Out-of-sample period (Trading):** Multiplicative weight update for allocation between regimes
Performance of RED-STOP Algorithm

![Graph showing the performance of RED-STOP Algorithm from Jan 06 to Jan 09. The graph plots various metrics such as max, knn, RS, RS - above 0, and RS - max, with data points for each month.]
Performance of RED-STOP Algorithm
Performance of RED-STOP Algorithm

![Graph showing the performance of RED-STOP Algorithm over time, with lines for max, knn, RS, RS - above 0, and RS - max. The x-axis represents months from January 2006 to January 2009, and the y-axis represents values ranging from -50,000 to 2,400.](image)
Discussion

- Relationship to alternate regime-switching models:
Discussion

- Relationship to alternate regime-switching models:
 - Possible to devise sophisticated time-series models based on EM and MCMC techniques but they can be fragile in on-line ‘covariance-shifted’ scenarios.

- What is the role of historical data? Or, what happens in novel scenarios?
 - Data allows us to identify possible correlation patterns within strategy space – structure induced by latent market dynamics – no parametric assumptions regarding the latent dynamics. Structure in this space (e.g., low-dimensional regime subspaces) can be exploited to devise more efficient strategies.
Discussion

Relationship to alternate regime-switching models:

Possible to devise sophisticated time-series models based on EM and MCMC techniques but they can be fragile in on-line ‘covariance-shifted’ scenarios.

We claim, and demonstrate, the benefit of a more direct ‘action-oriented’ representation.
Discussion

- Relationship to alternate regime-switching models:
 - Possible to devise sophisticated time-series models based on EM and MCMC techniques but they can be fragile in on-line ‘covariance-shifted’ scenarios.
 - We claim, and demonstrate, the benefit of a more direct ‘action-oriented’ representation.
Discussion

- Relationship to alternate regime-switching models:
 - Possible to devise sophisticated time-series models based on EM and MCMC techniques but they can be fragile in on-line ‘covariance-shifted’ scenarios.
 - We claim, and demonstrate, the benefit of a more direct ‘action-oriented’ representation.
- What is the role of historical data? Or, what happens in novel scenarios?
Discussion

- Relationship to alternate regime-switching models:
 - Possible to devise sophisticated time-series models based on EM and MCMC techniques but they can be fragile in on-line ‘covariance-shifted’ scenarios.
 - We claim, and demonstrate, the benefit of a more direct ‘action-oriented’ representation.

- What is the role of historical data? Or, what happens in novel scenarios?
 - Data allows us to identify possible correlation patterns within strategy space
 - structure induced by latent market dynamics
 - no parametric assumptions regarding the latent dynamics
Discussion

- Relationship to alternate regime-switching models:
 - Possible to devise sophisticated time-series models based on EM and MCMC techniques but they can be fragile in on-line ‘covariance-shifted’ scenarios.
 - We claim, and demonstrate, the benefit of a more direct ‘action-oriented’ representation.
- What is the role of historical data? Or, what happens in novel scenarios?
 - Data allows us to identify possible correlation patterns within strategy space
 - structure induced by latent market dynamics
 - no parametric assumptions regarding the latent dynamics
 - Structure in this space (e.g., low-dimensional regime subspaces) can be exploited to devise more efficient strategies.
Conclusions

- Framework for on-line multi-strategy trading.
Conclusions

- Framework for on-line multi-strategy trading.
- Utilization of market context:
Conclusions

- Framework for on-line multi-strategy trading.
- Utilization of market context:
 - Learned from data.

Future Work:
- Systematic empirical evaluation (across multiple markets)
- Explore use of low-dimensional structure in regime space.
- Risk-sensitive optimization and predictive-modelling.
Conclusions

- Framework for on-line multi-strategy trading.

- Utilization of market context:
 - Learned from data.
 - Represented in terms of directly measurable quantities.

- Many variations on a basic template - this is ongoing work.

Future Work:
- Systematic empirical evaluation (across multiple markets)
- Explore use of low-dimensional structure in regime space
- Risk-sensitive optimization and predictive-modelling.
Conclusions

- Framework for on-line multi-strategy trading.
- Utilization of market context:
 - Learned from data.
 - Represented in terms of directly measurable quantities.
- Many variations on a basic template - this is ongoing work.
Conclusions

- Framework for on-line multi-strategy trading.
- Utilization of market context:
 - Learned from data.
 - Represented in terms of directly measurable quantities.
- Many variations on a basic template - this is ongoing work.
Conclusions

- Framework for on-line multi-strategy trading.

- Utilization of market context:
 - Learned from data.
 - Represented in terms of directly measurable quantities.

- Many variations on a basic template - this is ongoing work.

Future Work:
Conclusions

- Framework for on-line multi-strategy trading.

- Utilization of market context:
 - Learned from data.
 - Represented in terms of directly measurable quantities.

- Many variations on a basic template - this is ongoing work.

Future Work:

- Systematic empirical evaluation (across multiple markets)
Conclusions

- Framework for on-line multi-strategy trading.
- Utilization of market context:
 - Learned from data.
 - Represented in terms of directly measurable quantities.
- Many variations on a basic template - this is ongoing work.

Future Work:
- Systematic empirical evaluation (across multiple markets)
- Explore use of low-dimensional structure in regime space.
Conclusions

- Framework for on-line multi-strategy trading.
- Utilization of market context:
 - Learned from data.
 - Represented in terms of directly measurable quantities.
- Many variations on a basic template - this is ongoing work.

Future Work:
- Systematic empirical evaluation (across multiple markets)
- Explore use of low-dimensional structure in regime space.
- Risk-sensitive optimization and predictive-modelling.