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Proteus: lighting up the lung, detecting disease

Clinical Need
“diagnosing bacterial infections relies on a slow process of detection followed by
biopsy and lab-based culture growth – procedures that are prone to contamination and
can result in late treatment.”

Vision
“a fully integrated system that will provide the necessary rapid and accurate diagnosis
of bacterial infection”
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FCFM: How does it work?

Fibered Confocal Fluorescence Microscopy

• Fiber optic imaging cable is inserted to the distal lung through a bronchoscope
• Imaging is performed by counting emitted photons through fibre optic
• Smartprobe (chemical compound) is delivered to make bacteria fluoresce
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FCFM: What do we see?

Before smartprobe After smartprobe

• Background composes of autofluorescent elastin (connective lung tissue)
• Autofluorescent cells appear as round objects
• Bacteria appear as ‘blinking dots’.
• Our objective is to detect and count the bacteria and cell in each frame.
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Machine learning problem

Task: At each pixel, predict if there is an object (bacterium or cell)

Why is it interesting?

1 Noisy images: motion blur etc.

2 Limited annotations: time consuming etc.

3 Noisy annotations: manual error etc.

4 Imbalanced dataset: few objects per frame

Overview of approach:

1 Create a set of annotated images with the help of a clinician

2 Represent each pixel by an appropriate feature vector

3 Use the annotated images to train a classifier

4 Use cross-validation to find the best feature representation and classifier

5 Use the best classifier and feature representation to count objects in test videos

Two same pipelines for cells and bacteria respectively.
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1. Annotations

• We designed an interface for clinicians to annotate objects.
• To help the annotator capture the ‘blinking effect’, the present frame was

annotated in the context of the past and future frames.
• We randomly chosen some frames to annotate.

Figure: FCFM image frame with bacteria annotated by a clinician in circles.
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2. Standardized multi-resolution spatio-temporal feature extraction

Image patches around annotated (red) and non-annotated (green) pixel

• Multiple resolutions provide context beside the object.
• Each spatio-temporal patch is standardized to give equal importance.
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3. Supervised learning

Task: Predict output y ∈ {0, 1} from high dimensional feature vector x ∈ Rd

Classifier: (nonlinear) template matching with radial basis fuctions (RBF)

p(y = 1) = σ

(
T

∑
i=1

αiκ(x− ti) + b

)

• κ is measures similarity, e.g., if x = t when κ = 1, and if x 6= t when κ = 0, and
• tis are feature templates learned using k-means.

How to address class imbalance?
• k-means is done with all feature vector (about 1% with bacteria or cells)
• classifier is learned using balanced samples by subsampling 1% of the features

without bacteria or cells.

Consecutive pixels have high probabilities.
• The probability values at each pixel were thresholded
• Non-maximum suppression was applied to avoid multiple detections.
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4. Cross validation using area under precision-recall curve

+ are ground truth, • are detections

+

1 TP 1 FN + 1TP1FP + 1TP

+ + + + +
+

+

1 FN1 FP 3 TP

+

1 TP 1 FN + 1TP1FP + 1TP

+ + + + +
+

+

1 FN1 FP 3 TP

+

1 TP 1 FN + 1TP1FP + 1TP

+ + + + +
+

+

1 FN1 FP 3 TP

+

1 TP 1 FN + 1TP1FP + 1TP

+ + + + +
+

+

1 FN1 FP 3 TP

P =
TP

TP + FP
, R =

TP
TP + FN

.

Seth Estimating Bacterial and Cellular Load in FCFM Imaging 9/17



4. Cross validation using area under precision-recall curve

+ are ground truth, • are detections

+

1 TP 1 FN + 1TP1FP + 1TP

+ + + + +
+

+

1 FN1 FP 3 TP

+

1 TP 1 FN + 1TP1FP + 1TP

+ + + + +
+

+

1 FN1 FP 3 TP

+

1 TP 1 FN + 1TP1FP + 1TP

+ + + + +
+

+

1 FN1 FP 3 TP

+

1 TP 1 FN + 1TP1FP + 1TP

+ + + + +
+

+

1 FN1 FP 3 TP

P =
TP

TP + FP
, R =

TP
TP + FN

.

Figure: Ground truth vs. detections: Bacteria
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Figure: Precision recall curves for different methods

• Temporal information helps.
• Performs better than unsupervised approach.
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Figure: Precision recall curves for different methods

• Temporal information does not help.
• Larger spatial frame needed.
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5. Bacterial load: FCFM videos

Before smartprobe After smartprobe
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5. Bacterial load: Case vs. control: pre- vs. post-substance: 1st cohort

Summary: 12 videos with ∼500 frames each, 3 videos (post-substance cases) with
bacteria and 9 videos (pre-substance or control) without bacteria

control control control case case case
pre-substance - - - - - -

post-substance - - - + + +

Figure: Change of bacterial load in 6 patients, pre- and post-substance

• We detect a statistically significant change in cases but not in controls.
• A fraction of frames were used for training.
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5. Bacterial load: Case vs. control: pre- vs. post-substance: 2nd cohort

Summary: 10 videos with ∼500 frames each, 2 videos (post-substance cases) with
bacteria and 8 videos (pre-substance or control) without bacteria

control control control case case
pre-substance - - - - -

post-substance - - - + +

Figure: Change of bacterial load in 6 patients, pre- and post-substance

• We detect a statistically significant change in cases but not in controls.
• A fraction of frames from first cohort were used for training.
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5. Cellular load: FCFM videos

Some cells Very cellular
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5. Cellular load: Comparison with clinical assessment

• 206 FCFM videos from 102 patients who have undergone bronchoscopy
• A fraction of frames were used for training
• A clinician annotated the videos according to their level of cellularity

Figure: Comparison of median cell count against visual assessment of cellularity.

• The estimated cellular load agrees with the visual assessment of the clinician
• A fraction of frames were used for training.
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Summary

• We address the task of estimating bacterial and cellular load in FCFM images.
• We create a database of annotated image frames.
• We observe significant fold change in the case videos before and after introducing

smartprobe, which is not observed in the control group.
• We show that the estimated cellular load agrees with the clinician’s assessment
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What is next?

More data is becoming available
• 59 patients imaged in Edinburgh till date
• 19 in ICU: all mechanically ventilated
• Average duration of procedure: 8 minutes, 3-5 passes
• No significant adverse events

• Distal lung is a “black hole”, we are developing approaches to understanding it
• Our system should be immediate, bedside, cheap, safe, accurate,and add to

decision making, so it can become part of routine care.
• It should potentially be automated: i.e., self guided to different regions of the lung

with clear sampling and external registration
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Thank you!
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