
Automatic Verification of Java Design Patterns

Alex Blewitt, Alan Bundy, Ian Stark
Division of Informatics, University of Edinburgh

80 South Bridge, Edinburgh EH1 1HN, UK
Alex.Blewitt@ioshq.com

A.Bundy@ed.ac.uk
Ian.Stark@ed.ac.uk

Abstract

Design patterns are widely used by object oriented de-
signers and developers for building complex systems in ob-
ject oriented programming languages such as Java. How-
ever, systems evolve over time, increasing the chance that
the pattern in its original form will be broken.

We attempt to show that many patterns (implemented in
Java) can be verified automatically. Patterns are defined
in terms of variants, mini-patterns, and constraints in a
pattern description language called SPINE. These specifi-
cations are then processed by HEDGEHOG, an automated
proof tool that attempts to prove that Java source code
meets these specifications.

1. Introduction

A design pattern, or simply a pattern is a specification of
a set of classes and methods that work together to achieve
a specific effect. Patterns have been studied for a number
of years and are well known by the object oriented design
community.

It is desirable to be able to verify that a pattern has
been correctly implemented. Although designers may un-
derstand patterns well, developers may not have as much
experience with them. This leads to the possibility that
the pattern will be implemented incorrectly, or that coding
errors which break a pattern may be introduced at a later
stage.

In this paper, we present a way of representing patterns
in a language called SPINE such that they may be verified
by an automated proof tool, HEDGEHOG.

2. Design patterns

There are a number of books which catalogue and de-
scribe design patterns [4, 1, 6] including an informal de-
scription of the key features and examples of their use.
However, at the moment there are no books which attempt
to formalise these descriptions, possibly for the following
reasons:

1. The implementation (and description) of the pattern is
language-specific.

2. There are often several ways to implement a pattern
within the same language.

3. Formal language descriptions are not common within
the object oriented development community.

Instead, each pattern is presented as a brief description,
and an example of its implementation and use. Designers
and developers are then expected to learn the ‘feel’ of a pat-
tern, without referring to any formal specification.

2.1. Types of pattern

In [4], patterns are broadly categorised into three differ-
ent types:

Creational Patterns which are used to create new instances
(such as Factory)

Structural Patterns that constrain classes’ structural rela-
tionships (such as Bridge)

Behavioural Patterns whose implementation performs a
common solution (such as Command)

The implementation of the patterns for each of these
groups is not significantly different; the key difference is
the pattern’s intent. Most patterns (in [4], for instance) fall
into the Structural category; few fall into the Creational cat-
egory, and only a small number exist in the Behavioural
category.

2.2. Implementation of patterns

The implementation (and specification) of a pattern is
dependent on the target language. Although most object
oriented languages support common features (inheritance,
dynamically dispatched methods, instance variables), there
are subtle differences (automatic or manual memory man-
agement, strong or weak typing, compile-time or run-time
linking) which can have a profound affect on the way that a
pattern may be implemented.

For example, when implementing the Proxy pattern
in a untyped language (such as Smalltalk), only a single
method (doesNotUnderstand) has to be implemented.
(This method is automatically called whenever a Smalltalk
instance receives a message that it does not understand.)
In contrast, in a typed language (such as Java), a separate
method has to be implemented for each message that it may
receive.

Given such differences between target languages, it is
not possible to create a concrete specification of patterns
for all languages. The two solutions that present themselves
are;

• Create an abstract specification for patterns.

Eden has proposed a formalised graphical representa-
tion language for patterns, LePUS [3], which relates
patterns at a higher level. In his language, a Proxy
could be formulated graphically, with a rough trans-
lation of ‘All messages received by the proxy are for-
warded to the delegate’. However, such abstract state-
ments may not be easy to verify.

• Create a concrete specification for patterns for a
specific target language.

Unlike an abstract approach, creating a concrete set
of definitions for a target language can use some
language-specific knowledge of how the pattern may
be implemented. Instead of verifying an abstract spec-
ification, it can refer to ways in which the pattern may
be implemented, and perform static analysis on the
code itself.

HEDGEHOG takes the latter approach, using Java as the
target language. In order to do this, the pattern must first be
specified.

2.3. Constraints

A pattern specification may be thought of as a set of
constraints which defines associations between classes, or
between methods within a class. We categorise these con-
straints into:

Structural constraints How classes are related to each
other through inheritance or polymorphic interfaces

Static semantic constraints How classes are related to
each other by one-to-one or one-to-many relationships,
and whether these are required or optional

Dynamic semantic constraints How implementations of
particular methods operate; for example, a method
may instantiate other classes, or may affect the runtime
relationship between classes

A pattern specification can then be defined as a set of
constraints on one or more classes. For example, in the
Proxy pattern may be defined as:

• Class C implements interface I (structural constraint)

• Class C has instance variable V of type I (structural
constraint)

• V cannot be null (semantic constraint)

• For each method M in interface I, C.M invokes V.M
(semantic constraint)

Design Pattern

Mini-pattern Mini-pattern

Mini-pattern IdiomIdiom

IdiomIdiom

Figure 1. Relationship between patterns,
mini-patterns and idioms

A number of these constraints may be combined to cre-
ate a mini-pattern [2] or an idiom (see Figure 1). These
mini-patterns may then in turn be used in the specification
of other patterns. For example, the constraint “V cannot
be null” is a common requirement across several patterns.
This can be specified as a mini-pattern:

• V is assigned a non-null value during construction;
and

• V is not updated by any other method

However, there are other possible implementations; for
example, for any method, the variable is never assigned a
(non-null) value.

2.4. Variations

Since there is generally more than one way to implement
a pattern, we must formalise the specifications to allow dif-
ferent variations of a pattern. In order to show that a class C

is a Proxy, it is sufficient to show that the class implements
InterfaceProxy (shown above) or SubclassProxy
(not shown).

Another example is the Singleton pattern, which can
be defined by several variations; the LazySingleton
(which lazily instantiates the singleton instance), the
FinalFieldSingleton (which instantiates a final field
during construction) or the StaticSingleton (which is
an implicit singleton since all the methods being static).

3 Formal specifications of patterns

In order to specify a pattern, we must first have a lan-
guage for describing it. We have created SPINE, a typed
first-order logic for describing patterns.

The format of the language is similar to Prolog; atomic
terms start with a lower case letter, variables start with an
upper case letter, and compound terms are denoted using
parentheses to indicate sub-terms. However, unlike Prolog,
each term has an associated type. The typing system is rich,
and includes both primitive types such as boolean as well
as Java meta-types such as Class, Method and Field.

Additionally, terms may be evaluated to re-
sult in a value. For example, the SPINE term
“methodsOf(‘java.lang.String’)” can be eval-
uated to return a list of Methods. This can be used with the
forAll term, such as “forAll(M in methodsOf(
‘java.lang.String’), hasModifier(M ,
public))”

It is then possible to encode pattern specifications using
this language, as shown in Figure 2.

forAll(F in fieldsOf(ClassName),
or(

hasModifier(F,static),
hasModifier(F,final),
and(
hasModifier(F,private),
forAll(M in methodsOf(ClassName),

not(modifies(M,F))
)

)
)

)

Figure 2. Specification of the Immutable pat-
tern
Each constraint in the specifications falls into one of the

categories mentioned in Section 2.3; for example, has-
Modifier() is a structural constraint, whilst modi-
fies() is a semantic constraint.

Note that it is possible to discharge some semantic con-
straints statically. For example, if a method does not contain

any assignments, nor does the method call any other meth-
ods which contain assignments, then it cannot modify any
variable.

We distinguish between the two types of semantic con-
straints as static semantic and dynamic semantic. Whilst
both are associated with run-time semantics, it is possible to
verify the former statically. This is an important considera-
tion, because static semantic analysis is significantly easier
than the dynamic semantic analysis.

Furthermore, most patterns do not require dynamic se-
mantics to be specified. Although this is not a complete
approach, it still has sufficient power to be able to prove
many examples of real-world pattern uses.

4. HEDGEHOG

We have created a proof system HEDGEHOG, which is
capable of reasoning about a simple subset of the Java lan-
guage and associated patterns. It considers structural con-
straints (packages, inheritance, instance methods and fields,
class methods and fields), and some static semantic con-
straints (such as modifies, forwards, nonNull and
inert – a method is inert if it does not change or cause
the change of any instance variable). It does not consider all
aspects of the Java language; notably absent is support for
inner classes and synchronization.

The proof system attempts to prove that a pattern in-
stance is correctly implemented by a given class or set of
classes. This may be annotated in the source code as a com-
ment (such as @pattern: Singleton) which would
allow the tool to scan the source for suspected patterns and
to perform automatic verification.

Structural analysis allows HEDGEHOG to prove simple
Java-related constraints, such as inheritance relationships
and interface implementations. These requirements can be
matched by direct appeal to the structure of the Java class.

Full-blown Java semantics are not necessary to prove all
patterns; instead, weaker specifications can be proven. Such
constraints can be proven based on the static structure of the
code; for example, the expression “new Object()” can
never return a null value.

5. Results so far

A manual process of searching the Java Language source
code [5] resulted in a set of 15 different types of pattern that
can be found in many of the core classes. Some patterns
occur infrequently; for example, the Singleton pattern
is implemented by System, Runtime and few others;
whereas others occur frequently; for example, the Fac-
tory pattern is implemented by URL, Date, String,
Color and many others.

These examples were then processed with HEDGEHOG

tool to determine whether or not the pattern instances were
correctly implemented. All of the Singleton and Im-
mutable instances were correctly verified, as were most
of the Factory instances.

An unexpected and interesting result occurred verifiy-
ing the instance of the Bridge pattern in the AWT (GUI)
Component classes. The specification of the Bridge pat-
tern states that for every subclass of an abstract data struc-
ture ADT, there exists a corresponding subclass of ADT-
Peer. Whilst the original Java AWT used the peerage sys-
tem, the newer Swing user interface does not. Since the
JComponent Swing user interface component is a sub-
class of Component, the newer Swing classes break this
pattern. Therefore, the Java AWT classes do not fully im-
plement the Bridge pattern.

Of the different types of patterns described in Sec-
tion 2.1, the most successful results have been obtained with
the structural category of patterns. In part, this is because
the logic for proving classes implement a structural pattern
is much simpler than for those that implement specific op-
erations.

Success has been made with creational patterns such as
Factory and Pool. However, it is not as simple to prove
that these patterns are correct, which explains why some of
the patterns can be verified and some cannot within the Java
language source code.

No success has been made with the behavioural patterns.
In most cases, this is due to difficulty in specifying the be-
haviour for the classes. As an example, the Command pat-
tern is almost impossible to verify, since there are very lim-
ited constraints which can be identified in such a pattern.
Instead, most of the pattern is encoded in the actual intent of
the command implementation. Since the commands can im-
plement radically different operations (for example, open-
ing a file or printing a document) it is very hard to encode a
specification that could be used to verify it sensibly.

6. Conclusion

We have presented a methodology for verifying patterns
in Java code, using a set of declarative specifications of de-
sign patterns and variations.

This methodology has been applied successfully to both
structural and creational patterns such as Bridge and
Factory, and been used to verify the existence of pattern
implementations in the Java Language source. It has also
been used to discover an incomplete pattern implementa-
tion.

Restricting the verification to a particular target language
(Java) means that patterns can be more strongly specified
than if a generic approaches such as LePUS are used. These
stronger specifications then allow more instances of patterns

to be verified. It may be possible to use the same methodol-
ogy with other target languages (such as Smalltalk or C++)
by redefining the patterns’ specification.

Specifying the patterns as structural and static semantic
constraints allow the pattern to be compared directly with
the source code. Even with this incomplete specification,
many different patterns can be verified. The main problem
with this approach is that it suffers when a pattern’s imple-
mentation does not match that of a known specification.

Since the pattern specifications (and variants) are defined
in external text files, the system is extensible and allows the
user to add the definitions of new patterns at a later stage.

7. Acknowledgements

This paper was funded under EPSRC grant number
98315335 in conjunction with International Object Solu-
tions Limited. We are also grateful for the help of Richard
Boulton who helped with earlier work.

References

[1] F. Buschmann. Pattern-oriented Software Architecture: A
System of Patterns. Wiley, April 1996.

[2] M. Cinnéide and P. Nixon. A methodoloy for the automated
introduction of design patterns. In Proceedings of the In-
ternational Conference on Software Maintenance, Oxford,
September 1999.

[3] A. Eden. LePUS - A Declarative Pattern Specification Lan-
guage. PhD thesis, Department of Computer Science, Tel
Aviv University, 1998. http://www.cs.concordia.
ca/˜faculty/eden/lepus/.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of reusable object-oriented software. Pro-
fessional Computing Series. Addison Wesley, 1994. ISBN
0-201-63361-2.

[5] J. Gosling, B. Joy, and G. Steele. The Java Language Specifi-
cation. Addison Wesley, 1996. http://java.sun.com/
docs/books/jls/html/index.html.

[6] J. Vlissides. Pattern Hatching: Design Patterns Applied.
Software Pattern Series. Addison Wesley, July 1998.

