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ABSTRACT

Systems biology can provide unique insights into molec-
ular evolution, but most existing work in this domain uses
one-off methods and tools. In this paper, we advocate
development of generic frameworks for evolutionary sys-
tems biology and discuss in some detail key characteris-
tics it should possess to be most applicable and useful. We
offer one such framework ourselves, and evaluate it with a
case study of a mitogen-activated protein kinase cascade.

1. INTRODUCTION

Recent years have witnessed an increased interest in ad-
dressing evolutionary questions using the techniques of
systems biology [1, 2]. At the heart of these efforts lies the
realisation that the key evolutionary duality between geno-
type and phenotype is akin to the relationship of a formal
model to the outcome of its execution. In other words, a
formal model can serve as a proxy for genotype and its
execution as a proxy for development, i.e. the determina-
tion of phenotype. With reactive computational models
used by systems biology one can thus gain insight into the
mechanics of development and the causal links between
genotype and phenotype, all of which are inaccessible to
the established purely mathematical formalisms (cf. [3]).

In this paper we focus on evolutionary systems biol-
ogy of cellular processes, in particular signalling and reg-
ulatory pathways. Typically, the first step of a theoreti-
cal research project in this domain consists of setting up
a class of formal models of molecular networks. Once
the appropriate class of models is defined, one can per-
form in-silico evolution according to a predefined fitness
function and mutation schemes, explore the distribution of
evolutionary properties of interest over this class (usually
by sampling), or both. Recent examples of such work in-
clude: simulated evolution of the MAPK cascade [4] and a
chemotaxis pathway [5], classification of small networks
according to their response to a standardised signal [6],
analysis of the causes and mechanisms of canalisation [7]
and redundancy [8] in regulatory networks.

All studies reported above employ different classes of
models of molecular networks, usually based on the no-
tion of a graph (or, equivalently, a matrix), and purpose-
built to study a concrete biological problem. The impor-
tant exception is the MAPK study of Dematté et al. [4],
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who used idealised computer programs instead of graph
nodes to represent molecules (cf. §2), and presented their
work as a generic framework rather than one-off method.
We believe that such standardised approaches have the po-
tential to greatly advance evolutionary systems biology,
for they provide a common platform on which to study
and compare evolution of different systems. In this paper
we analyse key requirements that such a platform should
satisfy and propose our own prototype.

Let us loosely define a framework for evolutionary
systems biology (framework for short) to mean a mod-
elling formalism for molecular networks together with for-
mal notions of model transformation (i.e. mutation) and
model execution (i.e. development). While this definition
may appear narrow in view of the great diversity of evo-
lutionary research, it does capture a significant portion of
the evolutionary system biology studies of which we are
aware, including all works cited above. In our opinion, in
order to be maximally applicable and useful, a framework
should satisfy the following requirements:

(1) Be agent-centric rather than reaction-centric,

(2) Support dynamic complex formation,

(3) Execute individual models deterministically, but

(4) Admit a variety of secondary execution modes.

The agent-centric (e.g. boolean networks [9]) and
reaction-centric (e.g. kappa [10]) modelling approaches
differ in what they consider to be first-citizen entities: bio-
chemical substrates or biochemical reactions. The require-
ment that a framework be agent-centric is an expression
of the fact that all reactions arise from the properties of
individual molecular agents, in particular DNA/RNA se-
quences and 3D shapes. The step from agents to reactions,
therefore, is already a non-trivial part of the genotype-
phenotype translation. Moreover, and most importantly,
evolutionary transformations of reactions always proceed
through alterations of individual substrates, and hence a
definition of faithful mutation schemes in a reaction-centric
framework is likely to be problematic. While it is certainly
not impossible in principle to overcome these difficulties,
we wish to stress that they have to be explicitly addressed
by any reaction-based approach.

Dynamic complex formation is the ability of two agents
in a model to form a molecular complex that has not been



pre-specified by the modeller. The task of specifying not
only the agents that are present in the system’s initial state,
but also all the potential complexes of agents is often im-
practical for models of cellular signalling, where com-
plexation is ubiquitous, and may be downright impossible
in the case of evolutionary modelling, where the modeller
would in principle have to account for all evolutionarily
possible complexes. This problem is tightly linked to the
phenomenon known as combinatorial explosion, and our
requirement could be rephrased in these terms.

The preference for deterministic over non-deterministic
or stochastic dynamics stems from one of the primary ap-
plications of the postulated framework, namely sampling
of the space of models. As a rule, deterministic investi-
gation of molecular dynamics is orders of magnitude less
expensive than the corresponding stochastic one; in our
case this disparity translates directly to orders of magni-
tude differences in practicable sample sizes. Ideally, how-
ever, a framework should support various ways of execut-
ing a given model, including qualitative as well as con-
tinuous and stochastic, in order to facilitate the study of
evolution at different points of the accuracy-cost trade-off
and detailed analyses of isolated models of particular in-
terest.

2. A CANDIDATE FRAMEWORK

In the late 1990s, A. Regev and E. Shapiro realised that
molecular dynamics can be successfully modelled by the
so-called process algebras—a family of formal languages
used in computer science to study concurrent computing
systems [11, 12]. The key correspondence they identified
was between processes (short, idealised computer programs)
and molecules, and between the independence of concur-
rent computing threads and the spatial independence of
molecules in the cell. Since Regev’s work, many exist-
ing process algebras have been used in biochemical mod-
elling, and many other have been designed from scratch to
tackle specific aspects of biological complexity.

In this section we present a framework for evolution-
ary systems biology based on the continuous π-calculus
(cπ), a process algebra which we have designed specifi-
cally for this purpose. Unfortunately, for reasons of space
we cannot make the present treatment self-contained and
we are forced to make certain simplifications; instead, we
attempt to provide sufficient intuitions to follow the rest
of the paper and refer to the comprehensive presentation
elsewhere [13, 14].

2.1. The continuous π-calculus

A basic notion in cπ is a species, a formal entity corre-
sponding to a kind of a biochemical substrate, and defined
as follows:

A,B :: = 0 | D(~a) | Σn
i=0πi.Ai | A|B | (νM)A

Hence, the are five kinds of species: the inactive form 0;
the recursive call D(~a) (always accompanied by an equa-
tion of the form D(~b)

∆
= B and behaving roughly like

B); the choice Σn
i=0πi.Ai, where πis are mutually ex-

clusive atomic actions, after which the species becomes
the appropriate Ai; the parallel composition A|B, where
A and B proceed concurrently; and finally, the restric-
tion (νM)A, which limits the interaction potential of A
to those actions that are not listed in M .

From species modelling individual substrates we build
processes, which model biochemical solutions:

P,Q :: = c ·A | P ||Q ,

where c · A is species A at concentration c, and P ||Q is a
mixture of P and Q.

In Regev’s abstraction the active sites of molecules are
represented as names, which are components of the πi ac-
tions and thus of species. This interpretation is followed in
cπ, where we specify the properties of names, and conse-
quently of active sites, using an undirected weighted graph
termed the affinity network. Two names linked in the affin-
ity network by an edge denote two interaction sites that
can interact according to the mass-action principle, with
the rate constant given by the edge label.

Finally, a complete cπ model is a triple (D, P,N),
where P is a process describing the initial state of the sys-
tem, N is an affinity network specifying the complemen-
tarity and binding affinities of the active sites of the agents
in the model, and D contains the definitions of all species
appearing in P . A prototype software tool has been imple-
mented to extract Ordinary Differential Equations (ODEs)
from such models.

2.2. Variation operators

We have designed 11 formal transformations of cπ mod-
els, which we have termed variation operators. The oper-
ators correspond to mutations commonly occurring in bio-
chemical networks, including gene duplication and loss,
evolution of interaction and binding and regulatory changes.
Formally, variation operators are inference rules; for ex-
ample the operator RATE-SITE modelling a mutation of
the active site of a molecule is rendered as:

a ∈ N f : N → R≥0
RATE-SITE

(D, N, P ) −→ (D, N �f a, P )

The above rule states that the affinity network of any cπ
model can be altered by changing the connectivity of one
name and one name only (a). The new affinities of a are
encoded by a real function f , and the new affinity net-
work is formally obtained with the help of a custom opera-
tion �. Observe that the constituent molecular agents (D)
and the initial state of the system (P ) remain unchanged
in this transformation and that all modified affinities in-
volve a. Hence, the RATE-SITE operator precisely models
the mutation of a single active site.

For full discussion of the remaining ten variation op-
erators we refer once more to their presentation in [14].



Figure 1. Structure of the MAPK cascade. Boxes are ki-
nases, ovals are phosphotases, and Ras is the input signal;
asterisks denote phosphorylation levels.

3. EVOLUTION OF THE MAPK CASCADE: A
CASE STUDY

3.1. System

The mitogen-activated protein kinase (MAPK) cascades
are important components of many signal transduction path-
ways. Found in all eukaryotes, they help to control a num-
ber of cellular processes, most notably cell growth and
cell division. Here, we restrict our analysis to a subfam-
ily of MAPK architectures considered in [15] (Figure 1),
and use protein names specific to the human MAPK. The
initial signal (Ras) promotes the activation (phosphory-
lation) of the order 3 protein kinase (Raf). Once acti-
vated, Raf (now Raf∗) acts as a catalyst for the phos-
phorylation of the order 2 kinase (MEK). Doubly phos-
phorylated MEK activates (again, twice) the order 1 kinase
(ERK), whose fully activated form (ERK∗∗) is considered
the output signal of the cascade. Every kinase has a cor-
responding phosphatase, which performs the opposite ac-
tion, namely dephosphorylates its target. This multi-tiered
architecture (i.e. three different kinases) promotes sensi-
tivity to the input signal and reduces response time; as
a result, the pathway is a fast, sensitive, amplifying relay.
The MAPK cascade is among the most often modelled and
best-understood signalling systems and often serves—as it
does here—as a benchmark for new systems biology tech-
niques.

3.2. Setup

We modelled the cascade in cπ using 12 species defini-
tions corresponding to 12 distinct protein species in Fig-
ure 1, an affinity network with 16 nodes modelling 16 ac-
tive sites on the surfaces of these proteins, and initialised
the model with a process containing Ras, the three inac-
tive kinases (Raf, MEK and ERK) and the three phospho-
tases (PP2A1, PP2A2 and MKP3) in biologically realistic
relative amounts. Incidentally, this model can be built in-
crementally from the null model by applications of varia-
tion operators alone.

The RATE-SITE variation operator was then used to
generate 16× 216 = 1048576 variants of this model, cor-

responding to effects of all 65536 qualitatively different
mutations for each of the 16 sites, and thus constituting
a sample of models of the evolutionary neighbourhood of
the initial system. The resulting models were translated to
sets of ODEs and solved on a parallel cluster.

The time-series e = (ei)
720
i=0 of the output signal of

the cascade (concentration level of ERK∗∗) was the basis
for two types of analysis: fitness distributions and signal
classification. Under our assumptions regarding the input
signal (Ras), a functional cascade should produce a peak
of the ERK∗∗ concentration at around 200 time units. In-
spired by the work of Dematté et al. [4], we defined the
fitness of a cascade as

fitness(e) df
=

135∑
i=0

ei −
720∑

i=302

ei ,

where the cut-off time points 135 and 302 correspond to
the exponentially decaying input signal reaching 1/16 and
1/256 of the initial strength. Thus, the formula above re-
wards (the first sum) a quick and strong response to the
initially strong signal and simultaneously punishes (the
other sum) a late or incomplete reaction to the input signal
falling to negligible levels.

In addition to the assessment of fitness, the general
shape of the output signal was classified into four cate-
gories: peak (signal starts low, reaches a high level, then
falls low again), switch (starts low, reaches a high level
and remains there), oscillatory (two or more consecutive
peaks) and noise (all other signals); here we are inspired
by a study of Soyer et al. [6]. The classification itself
was performed using LTL model checking [16], a com-
mon analysis technique for process algebras, here adapted
to the degenerate case of fully linear transition systems
(i.e. time series).

3.3. Results

Over 45% of the analysed cascade variants exhibit the
switch phenotype, while a further 7% maintain the peak
characteristic, suggesting a degree of robustness of the os-
tensibly fragile and refined MAPK architecture (cf. Fig-
ure 1). Not a single one of the variants showed oscillatory
dynamics.

The analysis of fitness revealed that a great majority
(almost 96%) of mutations were deleterious, with a sig-
nificant fraction of mildly deleterious ones, which is in
broad agreement with a body of experimental and theo-
retical data on distributions of mutational effects. Among
the 16 fitness distributions corresponding to collections of
mutants of each of the 16 active sites in the base model,
many exhibited pronounced low-fitness peaks (Figure 2).
We readily established that the cause of the peaks was a
loss of one or more functional phosphotases, either by a
direct loss of function, or by engaging in spurious inter-
actions with other molecules. On the other hand, higher
than base fitness was usually due to the acquisition of a
feed-forward architecture (e.g. Raf∗ catalysing the phos-
phorylation of ERK).



Figure 2. Distribution of fitness of mutants of the active
site in MEK. The darker area contains the peak variants;
the vertical line shows the position of the base model.

4. DISCUSSION

We have offered a framework for evolutionary systems bi-
ology based on a custom-built process algebra, possessing
all four properties discussed in §1. All of them conferred
significant advantages during the analysis of the MAPK
cascade. Thanks to the ability to dynamically form com-
plexes, it was not necessary to specify any of the transi-
tional aggregations of proteins (of which there are 10 in
the base model, and up to 25 in the variants). The use of
ODE dynamics ensured that the batch of over 1 million
models, each in tens of variables, could be efficiently pro-
cessed. We have used two different analysis techniques,
yielding different yet complementary insights, without the
need to redefine the underlying models. Finally, the agent-
centred perspective has enabled us to vary individual mole-
cules while remaining agnostic on the impact this varia-
tion may have on molecular interactions.

Our study revealed that our process algebra-based frame-
work, while very promising overall, has also several draw-
backs. Most importantly, the π-calculus and its derivatives
tend the be too expressive for biochemical modelling, in
the sense that it is possible to give well-formed models
that do not meaningfully represent any biochemical net-
work. It is a particularly acute issue in the case when
model transformations have to be defined, for it is of ut-
most importance that they generate no nonsensical mod-
els as variants of a legitimate one. These considerations
underlie the very conservative character and the consid-
erable degree of syntactical complexity of our variation
operators [14].

We conclude that process algebras may indeed pro-
vide the basis for a mature framework for evolutionary
systems biology. The biggest immediate challenge in this
line of research is surely implementing dynamic complex
formation in a setting which does not admit biologically
irrelevant models.
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[4] L. Dematté et al., “A formal and integrated frame-
work to simulate evolution of biological pathways,”
2007, vol. 4695 of Lect. N. Bioinformat., pp. 106–
120.

[5] O. Soyer et al., “Simulating the evolution of signal
transduction pathways,” J. Theor. Biol., vol. 241, pp.
223–232, 2006.

[6] O. Soyer et al., “Signal transduction networks:
Topology, response, and biochemical reactions,”
J. Theor. Biol., vol. 238, pp. 416–425, 2006.

[7] Mark L. Siegal and Aviv Bergman, “Waddington’s
canalization revisited: Developmental stability and
evolution,” P. Natl. Acad. Sci. USA, vol. 99, no. 16,
pp. 10528–10532, 2002.

[8] E. Borenstein and D. Krakauer, “An end to endless
forms: Epistasis, phenotype distribution bias and
non-uniform evolution,” PLoS Comput. Biol., vol.
4, 2008.

[9] S. A. Kauffman, “Metabolic stability and epigene-
sis in randomly constructed genetic nets,” J. Theor.
Biol., vol. 22, pp. 437–467, 1969.

[10] V. Danos and C. Laneve, “Formal molecular biol-
ogy,” Theor. Comput. Sci., vol. 325, pp. 69–110,
2004.

[11] A. Regev, Computational Systems Biology: A Cal-
culus for Biochemical Knowledge, Ph.D. thesis, Tel
Aviv University, 2002.

[12] A. Regev and E. Shapiro, “Cellular abstractions:
Cells as computations,” Nature, vol. 419, pp. 343,
2002.

[13] M. Kwiatkowski and I. Stark, “The continuous π-
calculus: A process algebra for biochemical mod-
elling,” 2008, vol. 5307 of Lect. N. Bioinformat., pp.
103–122.

[14] M. Kwiatkowski, A formal computational frame-
work for the study of molecular evolution, Ph.D.
thesis, The University of Edinburgh, 2010.

[15] C. Y. Huang and J. E. Ferrell, “Ultrasensitivity in the
mitogen-activated protein kinase cascade,” P. Natl.
Acad. Sci. USA, vol. 93, pp. 10078–10083, 1996.

[16] C. Baier and J.-P. Katoen, Principles of Model
Checking, MIT Press, 2008.


