
Electronic Notes in Theoretical Computer Science 85 No. 1 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume85.html 21 pages

Grail: a functional form for imperative mobile
code

Lennart Beringer 1 Kenneth MacKenzie 1 Ian Stark 2

Laboratory for Foundations of Computer Science
School of Informatics, The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK

{lenb,kwxm,stark}@inf.ed.ac.uk

Abstract

In Robert Louis Stevenson’s novel [31], Dr Jekyll is a well-regarded member of polite
society, while his alter ego Mr Hyde shares the same physical form but roams abroad
communing with the lowest elements. In this paper we present Grail, a well-behaved
first-order functional language that is the target for an ML-like compiler; while also
being a wholly imperative language of assignments that travels and executes as Java
classfiles. We use this dual identity in the Mobile Resource Guarantees project,
where Grail serves as proof-carrying code to provide assurances of time and space
performance, thereby supporting secure and reliable global computing.

1 Introduction

A general technique for compiling functional languages onto imperative hard-
ware is to transform the functional program into progressively more restrictive
sublanguages, until arriving at a form that we can manageably translate across
into some imperative assembler like C or Java bytecode. In this paper we take
the process to its limit, and present a simple functional language which re-
quires no translation at all for imperative execution. Programs in Grail, such
as that in Figure 1, can either be evaluated functionally with a call-by-value
semantics, or executed imperatively with state and goto — with both routes
giving exactly the same result. In the functional reading “x = 5” is a lexically-
scoped declaration; on imperative execution it updates a named storage cell.

On the theory side, these two semantics allow us to make precise some
folklore correspondences between imperative and functional compilation, in

1 Supported by the Mobile Resource Guarantees project (MRG) funded by the EC under
the FET proactive initiative on Global Computing (IST-2001-33149).
2 Supported by an Advanced Research Fellowship from the UK EPSRC.

c©2003 Published by Elsevier Science B. V.

Beringer, MacKenzie and Stark

method static int fib (int n) =
let

val a = 0 // Local variable declarations
val b = 1

fun loop (int a, int b, int n) = // Local function declaration
let

val b = add a b // Lexically scoped variables
val a = sub b a // hide outer declarations
val n = sub n 1

in
test(n,a,b) // Tail recursive function call

end

fun test (int n, int a, int b) = // Another function declaration
if n<=1 then b else loop(a,b,n) // Conditional recursive call

in
test(n,a,b) // Main expression

end

Fig. 1. Grail code for the Fibonacci number Fn. For speed, we keep track of both
Fk and Fk+1 together in accumulating parameters a and b. Appendix A shows a
complete program.

the spirit of Appel’s observations on SSA [3]. In particular we show results re-
lating liveness analysis in Grail to the free variables of recursive functions, and
connect dataflow information on imperative single-use registers to a functional
linear type system.

More practically, the motivation for Grail comes from implementation con-
cerns of proof-carrying code. In the Mobile Resource Guarantees project we
plan to annotate mobile code with proofs of time and space usage. These
proofs will be generated from various resource-aware type systems that have
been developed for high-level functional languages [25,15,14,1,6,16]. For this
we need a form of mobile code that is raw enough to execute on common
platforms, yet sufficiently well-behaved to support such proofs.

The design of Grail aims to satisfy these demands: our programs execute
as Java bytecode, yet the proofs address a readable ML-like form whose op-
erational semantics we have formalized in the Isabelle theorem prover [28].
Simplifications from both the functional and imperative viewpoints combine
to give code that is manageable for automated reasoning and efficient to ana-
lyze.

1.1 Proof-Carrying Code

Proof-carrying code (PCC, [26]) has emerged as an important component
of trustworthy global computation. Complementing aspects of authenticity

2

Beringer, MacKenzie and Stark

and secrecy, it provides a mechanism for guaranteeing intensional properties
of code such as adherence to security policies or resource limitations. The
central idea is that when a piece of software passes from a code producer to
a code consumer, it is equipped with a compact formal proof of its safety.
The consumer then mechanically checks this proof before executing any code.
The computationally more challenging task of creating proofs lies with the
code producer and may be achieved using arbitrary means, including program
analysis and programmer intervention. Security is assured without relying
on networks of trust to link producer and consumer — indeed, it may not
always be necessary to know the identities of code and proof providers. Any
tampering with the proof or program during the transmission is either detected
during proof checking or is irrelevant as far as the satisfaction of the safety
policy is concerned.

Any PCC framework must fix on a representation for transmitted pro-
grams, and a logic to formulate proofs about them. Typically code will be in
some machine language, with a logic tailored to its properties. However, there
are pragmatic tradeoffs here, so for example foundational PCC takes a very
general logic and within the logic itself prepares a fully formal description of
the execution of a real processor [4,5].

From a global computing perspective the usage of raw machine language is
undesirable – we can greatly increase code mobility by choosing some widely-
deployed virtual machine such as that for Java or .NET [10,19,23]. The logic
is then given in terms of a virtual machine model whose validity is either as-
sumed or certified at lower levels of abstraction. In addition, these frameworks
provide standard mechanisms for type-checking and otherwise validating mo-
bile bytecode, which gives us an environment more amenable to formal proofs.

1.2 Mobile Resource Guarantees

Figure 2 presents a general outline of the MRG system. We have a high-
level ML-family language Camelot, which compiles by transformation into
functional Grail [22]. To support reasoning and proofs about Grail programs,
we have a formal encoding in Isabelle of their behaviour and resource usage,
together with a prototype Hoare logic and verification condition generator.

For transmission to the code consumer, we assemble the Grail into Java
classfile binaries; proofs of resource usage may travel either separately, or
wrapped with the classfile in a jar archive. On arrival the consumer extracts
the original Grail and checks it against their resource policy using the proof
provided. If this succeeds then the binary itself is passed to the Java VM for
execution.

At the moment the consumer side is carried out by a number of distinct
programs, as the system is still under development. We propose eventually
to integrate these as a specialised classloader within the standard Java frame-
work.

3

Beringer, MacKenzie and Stark

gdf gf
?

?

?

6

-

6

-

?

resource proof

JVM class file

source program
Camelot high-level

Code Producer

⊗
Grail

Compiler

Code Consumer

Resource policy

Proof checker

execution
VM

Grail

OK?

Fig. 2. Outline of the MRG framework for resource-aware proof-carrying code.

Although our current implementation is on the Java virtual machine, one
aim for Grail is to keep it within the intersection of Java, JavaCard [32],
and the CIL bytecode of the Microsoft .NET framework [23]. We anticip-
ate supporting any of these three formats equally well, from the same Grail
sources [21].

Whatever the platform, we want mobile proofs to take advantage of the
abstraction Grail provides over raw VM code. For this, the conversion between
the two must be efficient to implement, reversible, and cost-preserving with
respect to a VM resource model [9]. A brief survey of Grail’s functional and
imperative sides will show how we achieve this.

1.3 Functional Grail

Figure 1 shows Grail code to calculate Fibonacci numbers. The accompanying
comments highlight its reading as a conventional strict first-order functional
language:

• call-by-value function invocation;

• lexical scoping for variables;

• mutually recursive local function declarations;

• strict static typing.

Within this, Grail makes several simplifications appropriate to its role as a
compiler target language. For example, local function declarations may not
nest, only tail calls are allowed, and expressions can contain just one operation.
Section 2 puts these into a grammar for Grail; later we shall see some further
constraints on control and dataflow.

This Fibonacci code is the body of a single method. Above this, Grail
provides precisely the class and object structure built into the Java virtual

4

Beringer, MacKenzie and Stark

method static int fib (int n) =
let

val a = 0 // Initial assignment
val b = 1 // to variables

fun loop (int a, int b, int n) = // Labelled basic block, with
let // live variable annotation

val b = add a b
val a = sub b a // Sequence of assignments
val n = sub n 1 // updating named registers

in
test(n,a,b) // Goto, with live variable

end // annotation

fun test (int n, int a, int b) = // Another labelled basic block
if n<=1 then b else loop(a,b,n) // Conditional return or jump

in
test(n,a,b) // Initial entry label

end

Fig. 3. Imperative Grail code to calculate the Fibonacci number Fn. Comments
indicate semantics for execution on the Java virtual machine.

machine. Hence the basic expression operators contain not just add and sub
but also primitives to create and manipulate objects. These update the Java
heap, and are used in Camelot to compile algebraic datatypes.

These side-effecting operators are necessary both to capture the actual re-
source behaviour of the JVM, and also to implement update-in-place optimisa-
tions enabled by resource-aware type systems such as Hofmann’s LFPL [6,14,16].

1.4 Imperative Grail

As an alternative view of the same code, Figure 3 shows how our Fibonacci
routine can be seen as a purely imperative stream of assignment statements
and jumps. Instead of local functions we have a collection of basic blocks,
function calls are merely jumps, and parameter lists now track which variables
are live. Despite this very different gloss, both functional and imperative se-
mantics give the same results. This is no accident, of course, and in Section 2.3
we show that it holds for all code satisfying certain constraints.

This imperative reading gives a direct map from Grail onto Java bytecode:
variables are JVM variables, and each statement expands to a short sequence
of instructions, which are then composed exactly as laid out in the Grail
source. For example:

5

Beringer, MacKenzie and Stark

val b = add a b
val a = sub b a
val n = sub n 1

becomes

9 iload 1 13 iload 2 17 iload 0
10 iload 2 14 iload 1 18 iconst 1
11 iadd 15 isub 19 isub
12 istore 2 16 istore 1 20 istore 0

This gives bytecode that is highly stereotyped, and we can recover the original
Grail simply by clustering instruction sequences. We can even identify variable
names from standard JVM metadata.

One of the guides for this disassembly is that the JVM operand stack is
empty between imperative Grail statements. This compares with arbitrary
bytecode, where the stack may remain nonempty for any number of instruc-
tions. Similarly, Grail variables keep the same type throughout a method
body, where general JVM registers need not do so. These features make Grail
easier to analyze than general bytecode; for example, Grail programs immedi-
ately satisfy Leroy’s conditions for efficient on-chip JavaCard verification [18].
(In fact, although the JVM in principle allows various elaborate uses of local
stack and variables, Leroy observes that current Java compilers rarely take
advantage of this.)

There still remains the issue of how to get functional code into a form
that can be treated imperatively. We use the term Grail normal form to
describe code where functions and methods have no free variables, and at
every function invocation the actual arguments are syntactically identical to
the formal parameters from the function declaration. To satisfy the first of
these we need only perform standard λ-lifting. For the second, we may have to
rename variables and even insert extra declarations to set them up before calls.
All these are legitimate functional rearrangements, but they also correspond
directly to imperative compilation techniques: namely conversion to static
single-assignment form (SSA) and then elimination of Φ-functions [3].

This is an instance of a more general observation, that low-level transform-
ations on registers and imperative variables map to functional transformations
of Grail. Thus we can carry out certain optimisations like register allocation
and sharing while still in the intermediate language of our compiler [35].

2 Syntax and operational semantics

In this section we give a formal treatment of Grail by defining the syntax
of method bodies and presenting their operational semantics from both func-
tional and imperative viewpoints. For the purposes of this paper we take
a desugared, single-typed and slightly simplified Grail, looking only at the
code within a single method declaration; for a description of the full language
see [20].

We assume mutually disjoint sets Vars of variables (ranged over by x, y,
xi, . . .), Mnames of method names (ranged over by M ,Mi, . . .) and Fnames
of function names (ranged over by f , fi, . . .). We also assume sets Consts
of constants c (with 0 ∈ Consts) and P of primitive operations p. Sample

6

Beringer, MacKenzie and Stark

primitives are the arithmetic operations on integers, as well as primitives for
object creation and manipulation, and method invocation.

The syntax of method declarations is as follows:

decl ::= method M (~y) = body

body ::= fun funblock in term end

term ::= result | if expr then result else result |
let x = expr in term

funblock ::= f (~x) = term 〈and funblock〉
result ::= x | f (~x)

expr ::= x | c | p(~x)

We always assume that method parameters yi are mutually distinct, and like-
wise the formal arguments xi of function declarations. Furthermore, we as-
sume that each called function is declared exactly once, that the arity of
function calls and function declarations match and that primitive operations
are applied with the correct number of arguments. We let VarsM denote the
set of variables x occurring in decl (including the method parameters) and use
fv(.) to denote the sets of syntactically free variables for the various phrase
classes which are given as usual.

2.1 Functional semantics

The functional interpretation of a method method M (y1, . . . , yn) = body is
given by a call-by-value big-step evaluation relation over the following semantic
domains. Value environments E : VarsM ⇀ Consts and closure environments
Σ associating triples (E , ~x, term) to function names are modelled as partial
maps. We write dom E for the domain of E , [] for the empty map, E [x 7→ c]
for the update operation and E �V for the restriction of E to the domain V ,
where V ⊆ Vars . Similar notation is used for closure environments and other
maps. In order to cater for potential side effects of primitive operations we
also include a domain of heaps H but leave their internal structure unspecified.

Evaluation is defined structurally: invoking M with arguments c1, . . . , cn

in heap H evaluates to c if H ` M (c1, . . . , cn) ⇓ c,H′ is derivable for some H′

using the rules in Figures 4 to 7. In rule F-PRIM, p represents the semantic
operator corresponding to the primitive operation p – its evaluation possibly
depends upon, and affects, the heap. Notice that one global environment for
functions suffices as all functions are defined at the same (top) level.

2.2 Imperative semantics

The imperative semantics interprets function names as labels, treats variables
imperatively and translates function calls into jumps. We define it as a small-
step execution relation T ` (σ, term) → (σ′, term ′) between states

σ ∈ State = (Var ⇀ Consts)× Heap

7

Beringer, MacKenzie and Stark

F-INV
([y1 7→ c1, . . . , yn 7→ cn],H) ` body ⇓ c,H′

H ` M (c1, . . . , cn) ⇓ c,H′

F-MB
(E , []) ` funblock ⇓ Σ (E ,H,Σ) ` term ⇓ c,H′

(E ,H) ` fun funblock in term end ⇓ c,H′

Fig. 4. Functional semantics: method invocation and method bodies

F-VAR
x ∈ dom E

E ,H ` x ⇓ E(x),H
F-CONST

E ,H ` c ⇓ c,H

F-PRIM
∀i.E ,H ` xi ⇓ ci,H

E ,H ` p(x1, . . . , xn) ⇓ c,H′ p(H, c1, . . . , cn) = (c,H′)

Fig. 5. Functional semantics: phrase class expr

F-CALL
E ,H ` xi ⇓ ci,H (E2,H,Σ) ` term ⇓ c,H′

(E ,H,Σ) ` f (~x) ⇓ c,H′

{
Σ(f) = (E1, ~z, term)
E2 = E1[zi 7→ ci]

F-RET
E ,H ` x ⇓ c,H

(E ,H,Σ) ` x ⇓ c,H

F-IFT
E ,H ` expr ⇓ 0,H′ (E ,H′,Σ) ` result1 ⇓ c,H′′

(E ,H,Σ) ` if expr then result1 else result2 ⇓ c,H′′

F-IFF
E ,H ` expr ⇓ c1,H′ (E ,H′,Σ) ` result2 ⇓ c,H′′

(E ,H,Σ) ` if expr then result1 else result2 ⇓ c,H′′ c1 6= 0

F-LET
E ,H ` expr ⇓ c1,H′ (E [x 7→ c1],H′,Σ) ` term ⇓ c,H′′

(E ,H,Σ) ` let x = expr in term ⇓ c,H′′

Fig. 6. Functional semantics: phrase classes result and term

F-FDEC
(E ,Σ) ` f (~x) = term ⇓ Σ′

{
V = fv(fun f (~x) = term)
Σ′ = Σ[f 7→ (E�V , ~x, term)]

F-FBLK
(E ,Σ′) ` funblock ⇓ Σ′′

(E ,Σ) ` f (~x) = term and funblock ⇓ Σ′′

{
V = fv(fun f (~x) = term)
Σ′ = Σ[f 7→ (E�V , ~x, term)]

Fig. 7. Functional semantics: phrase class funblock

which is given by the rules in Figures 8 and 9, where T : f ⇀ term maps
labels to basic blocks. Notice the absence of closures and the fact that jumps
ignore the arguments associated to the label.

Invoking M with arguments c1, . . . , cn in H results in c if the judgement

8

Beringer, MacKenzie and Stark

I-CONST
(s,H) ` c ↓ c,H

I-VAR
(s,H) ` x ↓ s(x),H

x ∈ dom s

I-PRIM
(s,H) ` p(x1, . . . , xn) ↓ c,H′

{
∀i.xi ∈ dom s

p(H, s(x1), . . . , s(xn)) = (c,H′)

Fig. 8. Imperative semantics: phrase class expr

I-LET
(s,H) ` expr ↓ c,H′

T ` ((s,H), let x = expr in term) → ((s[x 7→ c],H′), term)

I-IFT
(s,H) ` expr ↓ 0,H′

T ` ((s,H), if expr then result1 else result2) → ((s,H′), result1)

I-IFF
(s,H) ` expr ↓ c,H′ c 6= 0

T ` ((s,H), if expr then result1 else result2) → ((s,H′), result2)

I-JMP
T ` (σ, f (~x)) → (σ, T (f))

f ∈ dom T

Fig. 9. Imperative semantics: phrase classes result and term

H ` M (c1, . . . , cn) ↓ c,H′ is derivable for some H′ using the rules

I-INV
([y1 7→ c1, . . . , yn 7→ cn],H) ` body ↓ c,H′

H ` M (c1, . . . , cn) ↓ c,H′

I-MB
Tfunblock ` (σ, term) →∗ ((s,H), x)

σ ` fun funblock in term end ↓ s(x),H
x ∈ dom s

where

Tfunblock =

{
[f 7→ term] if funblock ≡ f (~x) = term

Tfunblock1
[f 7→ term] if funblock ≡ f (~x) = term and funblock 1

and →∗ is the reflexive transitive closure of →.

2.3 Coincidence of functional and imperative semantics

As promised, we demonstrate that the functional and imperative operational
semantics coincide, but only for a particular class of well-formed programs.

Definition 2.1 A declaration method M (~y) = fun funblock in term end is
in Grail normal form (GNF) if

• fv(funblock) = ∅ (local functions are closed),

• fv(term) ⊆ {y1, . . . , yn} (all free variables are amongst the method para-
meters) and

• for each call f (~x), the declaration of f is exactly f (~x) = . . .

The first condition requires all functions to be fully λ-lifted. As a con-
sequence, value environments in closures will always be empty, so that dy-
namic binding and static binding coincide. The third condition ensures that

9

Beringer, MacKenzie and Stark

the calling functions deposit the values “in the right variables” - indeed, rule
F-CALL simplifies to

F-CALL1
(E�{x1,...,xn},H, Σ) ` term ⇓ c,H′

(E ,H, Σ) ` f (~x) ⇓ c,H′

{
Σ(f) = ([], ~x, term)
{x1, . . . , xn} ⊆ dom E

and no copying of values between registers is necessary. Finally, the first and
second condition in combination ensure that the side-condition {x1, . . . , xn} ⊆
dom E here is always fulfilled, so even the inclusion of surplus variables in a
list of function parameters will not lead to a difference in behaviour.

This is enough for the functional and imperative semantics to match.

Theorem 2.2 Let method M (y1, . . . , yn) = body be a method declaration in
GNF. Then H ` M (c1, . . . , cn) ⇓ c,H′ if and only if H ` M (c1, . . . , cn) ↓
c,H′.

The proof proceeds by first stating a lemma on the coincidence of expres-
sion evaluation, followed by an induction on the structure of derivations.

The correspondence between functional and imperative semantics extends
to a precise matching of resource usage: for example, the stern condition on
function parameters means that when function calls are mapped to imperat-
ive jumps, there is no hidden cost of register rearrangement. This is naturally
relevant for our PCC application, where the systems we have available for
inferring high-level information about time and space usage of programs work
with strongly-typed functional languages [1,6,14,15,16,25]. Accordingly, Cam-
elot is such a language, and we compile it by successive transformations into
functional Grail. Of course, the code is then transmitted and executed as
imperative Java bytecode; but the close semantic correspondence means that
resource guarantees remain valid.

3 Liveness analysis and function parameters

In this section, we show that the formal parameters of local functions are
intimately linked to the imperative concept of liveness. This is relevant for
the assertions of our Hoare logic and the generation of verification conditions.

Following the framework of [27], we present liveness analysis as a dataflow
analysis where elementary statements carry labels `, `i, . . . from an infinite set
Lab. Formally, labelled methods arise from ordinary methods if we replace
the phrase class term by

term ::= [result]` | if [expr]` then [result]` else [result]` |
let [x = expr]` in term

For the remainder of this paper, let decl ≡ method M (~y) = body be a fixed
labelled method declaration with body ≡ fun funblock in term end and T =
Tfunblock , such that the labelling is a bijection between the subset LabM of
labels occurring in body and the labelled phrases.

10

Beringer, MacKenzie and Stark

Initial labels and the set of flow edges in M are given by

phrase ph init(ph) flow(ph)

method M (~y) = body init(body) flow(body)
fun funblock in term end init(term) flow(funblock) ∪ flow(term)

[x]` ` ∅
[f (~x)]` ` {(`, init(T (f)))}

let [x = expr]` in term1 ` {(`, init(term1))} ∪ flow(term1)

if [expr]` then [result1]
`1

else [result2]
`2 ` ∪2

i=1(flow([result i]
`i) ∪ {(`, `i)})

where flow(funblock) = ∪f ∈dom T flow(T (f)). The reverse flow of M is given
by rflow(M) = {(`′, `) | (`, `′) ∈ flow(decl)} and the set of final labels of M is
given by final(M) = {` | @`′.(`, `′) ∈ flow(decl)}.

To each label from LabM we associate two sets kill(`), gen(`) ⊆ VarsM

Occurrence of ` kill(`) gen(`)
[x]` ∅ {x}
[f (~x)]` ∅ ∅
let [x = expr]` in . . . {x} fv(expr)
if [expr]` then . . . ∅ fv(expr)

Notice that the arguments of function calls do not generate liveness, in accord-
ance with the standard definition of gen(`) in an analysis for an imperative
language.

Definition 3.1 A pair lv = (lventry , lvexit) of functions lventry , lvexit : LabM →
2VarsM is called a liveness solution for m if the constraints

LVexit(`)⊇
{
∅ if ` ∈ final(M)
∪(`′,`)∈rflow(M)LVentry(`

′) otherwise
(1)

LVentry(`)⊇ (LVexit(`) \ kill(`)) ∪ gen(`) (2)

are satisfied for the substitution [lventry/LVentry , lvexit/LVexit]

For methods in GNF, the method parameters and the formal parameters
of local functions correspond to liveness at the associated program points.

Theorem 3.2 If decl is in GNF then there is a solution lv = (lventry , lvexit)
for M such that lventry(init(body)) = {y1, . . . , yn} and for all f ∈ dom T ,
lventry(init(T (f))) = {x1, . . . , xn} where fun f (x1, . . . , xn) = . . . is the declar-
ation for f in funblock.

Conversely, each liveness solution determines a transformation of decl
where the formal parameters of functions are exactly the live-in variables.

Theorem 3.3 Let decl be in GNF and lv a solution for M which fulfils
lventry(init(body)) = {y1, . . . , yn}. For each ` ∈ LabM choose an enumera-

11

Beringer, MacKenzie and Stark

tion Entry(`) of lventry(`). Define

decl ′ ≡ method M ′(~y) = fun funblock ′ in term ′

where for each f ∈ dom T , the formal parameters of f ’s declaration are mod-
ified to Entry(init(T (f))) and function calls are updated accordingly. Then
decl ′ is a method declaration in GNF and is functionally equivalent to decl ,
i.e. H ` M (c1, . . . , cn) ⇓ c,H′ holds exactly if H ` M ′(c1, . . . , cn) ⇓ c,H′.

In the PCC setting, these results allow the code consumer to recover the
formal parameters by performing a liveness analysis. Alternatively, we may
communicate the formal arguments in the meta-information or as part of the
proof and only verify their consistency with the free variables. The latter
task does not require a fixed point iteration and is thus conceptually and
computationally simpler.

4 Read-once variables and linear typing

We can extend the close relationship between functional variables and imper-
ative registers to more fine-grained usage properties. In this section we sum-
marise a generalisation of liveness analysis which detects when a value written
to a register is accessed exactly once. This has applications to memory man-
agement and operand forwarding in asynchronous processors; for full details
of the analysis and its motivation, see Beringer’s thesis [8]. We then outline a
linear type system for achieving the same task in the functional interpretation.
While the notion of linearity differs slightly from that usually considered in
the literature, the correspondence between dataflow analysis and type system
may again be made formally precise: each typing derivation gives imperative
read-once information, and each solution to the dataflow system determines a
typing derivation.

4.1 Imperative read-once analysis

The analysis targets the use of variables in the first component (store) of
imperative states (s,H). A variable x is called to be read-once if any read
access to x may be implemented destructively, i.e. result in the removal of the
entry for x in s.

An appropriate (conservative) dataflow analysis for identifying read-once
variables was presented in [8], and generalises the liveness analysis. Instead
of associating elements from 2VarsM to labels, we use the lattice (S,⊥,v,t)
illustrated below:

12

Beringer, MacKenzie and Stark

>
��

�� ??
??

0
??

?? 1

��
��

⊥

⊕ ⊥ 0 1 >
⊥ ⊥ ⊥ 1 >
0 ⊥ 0 1 >
1 1 1 > >
> > > > >

equipped with a commutative and monotone operation ⊕. The ⊥ element
represents unknown information, > indicates contradictory usage in different
branches or existence of more than one use, and elements 0 and 1 represent
exactly none and exactly one use, respectively.

Variable usage in expressions is captured by functions use(expr) : VarM →
S

use(c)(x) = 0

use(y)(x) =

{
1 if x = y
0 otherwise

use(p(x1, . . . , xn))(x) =

{
⊕n

i=1use(xi)(x) if n > 0
0 if n = 0

(3)

and the usage in elementary blocks is defined by usage : LabM → VarsM → S

Occurrence of ` usage(`)(x)

[y]` use(y)(x)
[f (~x)]` 0
let [x = expr]` in . . . use(expr)(x)
if [expr]` then . . . use(expr)(x)

The dataflow equations for ROexit , ROentry : LabM → VarsM → S are given
pointwise by

ROexit(`)(x) =

{
0 if ` ∈ final(M)⊔

(`′,`)∈rflow(M) ROentry(`
′)(x) otherwise

(4)

ROentry(`)(x) =

{
usage(`)(x) if x ∈ kill(`)
ROexit(`)(x)⊕ usage(`)(x) otherwise

(5)

Definition 4.1 A pair ro = (roentry , roexit) of functions

roexit , roentry : LabM → VarsM → S

is a solution for M if (4) and (5) are fulfilled for [roexit/ROexit , roentry/ROentry],
and for all x ∈ VarsM , roentry(init(body))(x) w 1 implies x ∈ ~y.

This is a true generalisation of liveness, in that each read-once solution ro
determines a liveness solution lvro.

Proposition 4.2 For a solution ro for M define lvro
entry and lvro

exit pointwise by

lvro
exit(`) = {x ∈ VarM | roexit(`)(x) w 1}

lvro
entry(`) = {x ∈ VarM | roentry(`)(x) w 1}.

Then lvro = (lvro
entry , lv

ro
exit) is a liveness solution for M .

13

Beringer, MacKenzie and Stark

Read-once usage of a variable x can be read off from the roexit component
of a solution in the same way as usefulness can be read off from the lvexit

component of a liveness solution.

Definition 4.3 A variable x ∈ VarsM is read-once for solution ro if

(i) for all ` ∈ LabM , x ∈ kill(`) implies roexit(`)(x) = 1,

(ii) roentry(init(decl))(x) 6= >, and

(iii) x ∈ {y1, . . . , yn} iff roentry(init(decl))(x) = 1.

A variable x is read-once if there is some solution ro for M for which x is
read-once.

To show the analysis sound it is enough to follow [8] and give an extended
dynamic semantics which marks read-once variables as being unavailable after
the first read access.

4.2 Linear usage typing

We formalise the corresponding functional analysis as a linear type system [13].
To do this we refine the context into a purely linear and an intuitionistic
component, and also split the set of variables into two syntactic categories:
linear variables a, b, . . . ∈ LVars and intuitionistic variables r , t , . . . ∈ IVars .
This is similar to some other linear type systems [7,33]. However, there are
certain differences to these systems, as we aim to track usage of registers rather
than the values within them.

As our set of constants is unrefined, we use a single type, ◦. Contexts
are partial functions from variables to types, and can always be split into the
form Θ; Γ where dom Θ ⊆ IVars and dom Γ ⊆ LVars . We use − to denote
empty context components, and stipulate that juxtaposition Γ1Γ2 implicitly
requires the domains of Γ1 and Γ2 to be disjoint. The type system is given by
the following rules.

T-CONST
Θ;− ` c : ◦

T-IVAR
r : ◦,Θ;− ` r : ◦

T-LVAR
Θ; a : ◦ ` a : ◦

T-PRIM
∀i.Θ;Γi ` xi : ◦

Θ;Γ1 . . .Γn ` p(x1, . . . , xn) : ◦
T-RES

Θ;Γ ` x : ◦
Θ;Γ ` [x]` : ◦

T-CALL
∀i. Θ;Γi ` xi : ◦

Θ;Γ1 . . .Γn ` [f (x1, . . . , xn)]` : ◦

T-ILET
Θ;Γ1 ` expr : ◦ r : ◦,Θ;Γ2 ` term : ◦
Θ;Γ1Γ2 ` let [r = expr]` in term : ◦

T-LLET
Θ;Γ1 ` expr : ◦ Θ;Γ2, a : ◦ ` term : ◦
Θ;Γ1Γ2 ` let [a = expr]` in term : ◦

T-IF
Θ; Γ1 ` expr : ◦ Θ;Γ2 ` [result1]`1 : ◦ Θ;Γ2 ` [result2]`2 : ◦

Θ;Γ1Γ2 ` if [expr]` then [result1]`1 else [result2]`2 : ◦

14

Beringer, MacKenzie and Stark

T-FBLK
[x1 : ◦, . . . , xn : ◦] ` term : ◦ 〈 ` funblock〉
` f (x1, . . . , xn) = term 〈and funblock〉

T-MBODY
` funblock Θ;Γ ` term : ◦

Θ;Γ ` fun funblock in term end : ◦

T-MDECL
[y1 : ◦, . . . , yn : ◦] ` body : ◦

` method M (y1, . . . , yn) = body : ◦
Unlike some other systems, although a linear variable may be not be copied,
its contents can be moved to an intuitionistic variable, as in

let a = 5 in let r = a in let s = r + r in s.

The bodies of local functions are typed in the context given by their formal
parameters. At call sites, the context in which a function is invoked may
contain additional intuitionistic variables (which are then discarded), but all
linear variables must be accessed. Read as a type system for non-restricted
functional programs, we thus admit a function declared by fun f(r,a,t) = a

to be called by ...in f(b,s,s), but not by ...in f(b,b,s). For methods
in GNF the syntactic restrictions of course ensure that any call has the form
...in f(r,a,t), and the correspondence to dataflow solutions indeed holds
only for programs in GNF.

4.3 From linear typing to read-once information

Usage information for variables can be read off from the judgements associated
to labelled expressions and then related to the dataflow equations.

Definition 4.4 For ` ∈ LabM and derivation C of ` decl : ◦, we let C` denote
the sub-derivation of C for the phrase labelled `.

Lemma 4.5 Let Θ; Γ `: expr : ◦ and a ∈ LVars. Then

use(expr)(a) =

{
1 if a ∈ dom Γ
0 if a 6∈ dom Γ.

Proof. Induction on the derivation for Θ; Γ `: expr : ◦. 2

We use this to show how each typing derivation determines a solution for
equations (4) and (5), restricting our attention first to variables from LVars .

Definition 4.6 Let decl ≡ method M (~y) = body and let C be a derivation
for ` decl : ◦. For all ` ∈ LabM and a ∈ LVarsM define fC = (fC

entry , f
C
exit) by

fC
exit(`)(a) =

{
0 if ` ∈ final(M)
t(`′,`)∈rflow(M)f

C
entry(`

′)(a) otherwise

fC
entry(`)(a) =

{
1 if a ∈ dom ∆`

0 if a 6∈ dom ∆`

where ∆` denotes the linear component of the final sequent of C`.

15

Beringer, MacKenzie and Stark

Proposition 4.7 If decl is in GNF then fC as defined above fulfils equations
(4) and (5) for all a ∈ LVarsM .

Proof. Satisfaction of equation (4) follows directly from the definition of fC
exit ,

while the proof of equation (5) depends on whether a ∈ kill(`) and the form
of the phrase labelled by `. 2

We can extend fC to a solution for M by combining it with any solution
for the non-linear variables.

Theorem 4.8 Let C be a derivation for ` decl : ◦, decl in GNF and a ∈
LVarsM . Then a is read-once.

Proof. We have to show that there is a solution ro = (roentry , roexit) for M
such that a is read-once for ro. For the minimal solution fmin = (fmin

entry , f
min
exit)

for M , we define ro by

roexit(`)(x) =

{
fmin
exit (`)(x) if x ∈ IVarsM

fC
exit(`)(x) if x ∈ LVarsM

roentry(`)(x) =

{
fmin
entry(`)(x) if x ∈ IVarsM

fC
entry(`)(x) if x ∈ LVarsM

Then the fact that a is read-once for ro follows by analysis of C`. 2

4.4 From read-once to linear typing

The reverse result is that we can globally replace intuitionistic variables r
which have been identified to be read-once in typing derivations by fresh lin-
ear variables. More precisely, this requires that r is not a “spurious” function
argument, in that it is in fact mentioned in the minimal parameter set gener-
ated under Theorem 3.3 from the liveness solution induced by ro. The proof
proceeds by detailing the correspondence between the lattice of usage values
and certain properties of typing derivations.

Theorem 4.9 Let decl be in GNF, ` decl : ◦ and ro be a solution for M . If
r is read-once for ro and is not spurious, then ` decl [a/r] : ◦

5 Discussion

In building a PCC framework with Java classfiles as the transport format, the
natural question is: why not just use Java bytecode as the base language?
The results presented here give the answer: Grail is Java bytecode, but with
a stern discipline over the flow of control and data that makes it efficient and
straightforward to analyze.

Readers familiar with the history of compilers for functional languages will
have already recognised many of the techniques used in Grail. These include
ideas from A-normal form and CPS form, types in compilation, and typed

16

Beringer, MacKenzie and Stark

target languages like HOAL and TAL [2,11,12,24,34]. We have taken particu-
lar inspiration from λ-JVM, a functional language for expressing general JVM
programs [17]. The novelty of Grail, by comparison with these other schemes,
lies in the fact that it is strict enough to support a reversible translation to
bytecode which preserves execution costs. Indeed, the fact that the Java vir-
tual machine does have enough typing and structure to support all this might
be taken as evidence of the influence earlier research has had in selling the
benefits of decent languages at even the lowest level.

Current work in MRG is focused on equipping Grail with a specialised logic
for reasoning about resource usage. At the moment our prototype infrastruc-
ture encodes a resource-aware operational semantics for Grail into Isabelle,
and proofs require the full support of its inference engine [28]. This is a useful
testbed, but is impractical for wider use. We are therefore developing a suit-
able Hoare logic, with strong auxiliary variables and elements of separation
logic for describing heap usage [29,30].

Working upwards, we are considering a more relaxed version of functional
Grail for use in proof generation. Features like nested declarations and full
α-conversion could give more “elbow room” during reasoning, even when final
assertions are about strict Grail code.

A separate project is to bring arbitrary JVM code under Grail’s discipline.
Leroy reports success in transforming substantial Java libraries into his con-
strained form of JavaCard, with no significant change in code size [18]. We
are investigating how far this applies to the tighter strictures of Grail.

The software described in this paper is available from the MRG web-
site [25]. This includes the camelot compiler as well as an assembler gdf and
disassembler gf to convert between Grail text and Java binaries [22].

Acknowledgements

This work was performed as part of the Mobile Resource Guarantees project,
funded by the European Commission under the Fifth Framework’s proactive
initiative on Global Computing, IST-2001-33149. In addition, Ian Stark is
funded by an EPSRC Advanced Research Fellowship in Mathematical Models
for Concurrent and Mobile Computation, GR/R76950/01. We would like to
thank all MRG members for the numerous discussions on Grail and Nicholas
Wolverson for his help with the implementation of the compilers.

References

[1] Amadio, R., Max-plus quasi-interpretations, in: Typed Lambda Calculi and
Applications: Proceedings of TLCA 2003, Lecture Notes in Computer Science
(2003).

[2] Appel, A. W., “Compiling with Continuations,” Cambridge University Press,
1992.

17

Beringer, MacKenzie and Stark

[3] Appel, A. W., SSA is functional programming, ACM SIGPLAN Notices 33
(1998), pp. 17–20.

[4] Appel, A. W., Foundational proof-carrying code, in: Proceedings of the Sixteenth
Annual IEEE Symposium on Logic in Computer Science (2001), pp. 247–258.

[5] Appel, A. W. and A. P. Felty, A semantic model of types and machine
instructions for proof-carrying code, in: Conference Record of POPL ’00: 27th
ACM Symposium on Principles of Programming Languages (2000), pp. 243–
253.

[6] Aspinall, D. and M. Hofmann, Another type system for in-place update,
in: Programming Languages and Systems: Proceedings of the 11th European
Symposium on Programming, ESOP 2002, Lecture Notes in Computer Science
2305 (2002), pp. 36–52.

[7] Barber, A., Dual intuitionistic linear logic, Technical Report ECS-LFCS-96-
347, Laboratory for Foundations of Computer Science, University of Edinburgh
(1996).

[8] Beringer, L., “Asynchronous Queue Machines with Explicit Forwarding,” Ph.D.
thesis, University of Edinburgh (2002).

[9] Beringer, L., Cost model, Laboratory for Foundations of Computer
Science, University of Edinburgh (2002), http://www.lfcs.ed.ac.uk/mrg/
publications.

[10] ECMA International, Common language infrastructure (CLI), 2nd edition,
Standard ECMA-335 (2002), http://www.ecma-international.org.

[11] Flanagan, C., A. Sabry, B. F. Duba and M. Felleisen, The essence of compiling
with continuations, in: Proceedings of the 1993 ACM SIGPLAN Conference on
Programming Language Design and Implementation, SIGPLAN Notices, 28(6)
(1993), pp. 237–247.

[12] Flanagan, C., A. Sabry, B. F. Duba and M. Felleisen, Retrospective on “The
essence of compiling with continuations”, in: 20 Years of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (1979–
1999): A Selection, ACM Press, 2003 .

[13] Girard, J.-Y., Linear logic, Theoretical Computer Science 46 (1986), pp. 1–102.

[14] Hofmann, M., A type system for bounded space and functional in-place update,
Nordic Journal of Computing 7 (2000), pp. 258–289.

[15] Hofmann, M. and S. Jost, Static prediction of heap space usage for first-order
functional programs, in: Conference Record of POPL ’03: 30th ACM Symposium
on Principles of Programming Languages, 2003, pp. 185–197.

[16] Konečný, M., Typing with conditions and guarantees in LFPL, in: Types for
Proofs and Programs: Proceedings of the International Workshop TYPES 2002,
Lecture Notes in Computer Science 2646 (2002), pp. 182–199.

18

http://www.lfcs.ed.ac.uk/mrg/publications
http://www.lfcs.ed.ac.uk/mrg/publications
http://www.ecma-international.org

Beringer, MacKenzie and Stark

[17] League, C., V. Trifonov and Z. Shao, Functional Java bytecode, in: Proceedings
of the 5th World Multiconference on Systemics, Cybernetics and Informatics,
Workshop on Intermediate Representation Engineering for the Java Virtual
Machine (2001).
URL http://flint.cs.yale.edu/flint/publications/lamjvm.html

[18] Leroy, X., Bytecode verification for Java smart cards, Software Practice &
Experience 32 (2002), pp. 319–340.

[19] Lindholm, T. and F. Yellin, “The Java Virtual Machine Specification,” The
Java Series, Addison-Wesley, 1997.

[20] MacKenzie, K., Grail: A functional intermediate language for resource-
bounded computation, version 1.2, Laboratory for Foundations of Computer
Science, University of Edinburgh (2002), http://www.lfcs.ed.ac.uk/mrg/
publications/Grail-manual.pdf.

[21] MacKenzie, K., JVML and .NET, Laboratory for Foundations of Computer
Science, University of Edinburgh (2002), http://www.lfcs.ed.ac.uk/mrg/
publications/.

[22] MacKenzie, K., From Camelot to Grail: Compiling a high-level language,
Laboratory for Foundations of Computer Science, University of Edinburgh
(2003), http://www.lfcs.ed.ac.uk/mrg/publications.

[23] Microsoft, Overview of the .NET framework, in: .NET Framework Developer’s
Guide, http://msdn.microsoft.com .

[24] Morrisett, G., D. Walker, K. Crary and N. Glew, From System F to typed
assembly language, ACM Transactions on Programming Languages and Systems
21 (1999), pp. 527–568.

[25] MRG, Mobile resource guarantees (2002–2004), http://www.lfcs.ed.ac.uk/
mrg.

[26] Necula, G. C., Proof-carrying code, in: Conference Record of POPL ’97: 24th
ACM Symposium on Principles of Programming Languages (1997), pp. 106–
119.

[27] Nielson, F., H. R. Nielson and C. Hankin, “Principles of Program Analysis,”
Springer, 1999.

[28] Nipkow, T., L. C. Paulson and M. Wenzel, “Isabelle/HOL — A Proof Assistant
for Higher-Order Logic,” Lecture Notes in Computer Science 2283, Springer,
2002.

[29] Oheimb, D. v. and T. Nipkow, Hoare logic for NanoJava: Auxiliary variables,
side effects and virtual methods revisited, in: Formal Methods Europe 2002,
Lecture Notes in Computer Science 2391 (2002), pp. 89–105.

[30] Reynolds, J., Separation logic: A logic for shared mutable data structures, in:
Proceedings of the Seventeenth Annual IEEE Symposium on Logic in Computer
Science (2002), pp. 55–74.

19

http://flint.cs.yale.edu/flint/publications/lamjvm.html
http://www.lfcs.ed.ac.uk/mrg/publications/Grail-manual.pdf
http://www.lfcs.ed.ac.uk/mrg/publications/Grail-manual.pdf
http://www.lfcs.ed.ac.uk/mrg/publications/
http://www.lfcs.ed.ac.uk/mrg/publications/
http://www.lfcs.ed.ac.uk/mrg/publications
http://msdn.microsoft.com
http://www.lfcs.ed.ac.uk/mrg
http://www.lfcs.ed.ac.uk/mrg

Beringer, MacKenzie and Stark

[31] Stevenson, R. L., “Strange Case of Dr. Jekyll and Mr. Hyde,” Longmans, Green,
London, 1886.

[32] Sun Microsystems, “Java Card 2.2 Platform Specification,” (2003), available
online at http://java.sun.com/products/javacard/specs.html.

[33] Turner, D. N. and P. Wadler, Operational interpretations of linear logic,
Theoretical Computer Science 227 (1999), pp. 231–248.

[34] Wand, M., Correctness of procedure representations in higher-order assembly
language, in: Mathematical Foundations of Programming Semantics ’91:
Proceedings of the 7th International Conference, number 598 in Lecture Notes
in Computer Science (1992), pp. 294–311.

[35] Wolverson, N., Optimisation and resource bounds in Camelot compilation,
Laboratory for Foundations of Computer Science, University of Edinburgh
(2003), http://homepages.inf.ed.ac.uk/s9904010/camelot.

A Complete Grail program example

Here is a complete program for calculating Fibonacci numbers requested on
the command line and printing them to standard output, all coded in Grail.
A sample session with it is as follows:

$ gdf Fib.gr
Compiled Fib.gr
$ java Fib 5 3 24
fib(5) = 5
fib(3) = 2
fib(24) = 46368
$

For a detailed Grail grammar, see [20].

class Fib {

// Calculate the Fibonacci number, tracking two at once for speed
method static int fib (int n) =
let val a = 0

val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(a,b,n)

end
fun test (int a, int b, int n) =

if n<=1 then b else loop(a,b,n)

20

http://java.sun.com/products/javacard/specs.html
http://homepages.inf.ed.ac.uk/s9904010/camelot

Beringer, MacKenzie and Stark

in
test(a,b,n)

end

// Main method; scan arguments, convert to integers, act on each
method public static void main (java.lang.String[] args) =
let

val j = 0
val n = 0

fun test (java.lang.String[] args, int j) =
let val l = length args
in

if j >= l then () else print(args,j)
end

fun print (java.lang.String[] args, int j) =
let

val s = get args j
val n = invokestatic

<int java.lang.Integer.parseInt(java.lang.String)> (s)
val m = invokestatic <int Fib.fib(int)> (n)
val () = invokestatic <void Fib.print(int,int)> (n,m)
val j = add j 1

in
test(args, j)

end
in

test(args, j)
end

// Output method; take two integers and print a message about them
method public static void print (int n, int m) =
let

val o = getstatic <java.io.PrintStream java.lang.System.out>
val () = invokevirtual o

<void java.io.PrintStream.print(java.lang.String)> (”fib(”)
val () = invokevirtual o <void java.io.PrintStream.print(int)> (n)
val () = invokevirtual o

<void java.io.PrintStream.print(java.lang.String)> (”) = ”)
in

invokevirtual o <void java.io.PrintStream.println(int)> (m)
end

}

21

	Introduction
	Proof-Carrying Code
	Mobile Resource Guarantees
	Functional Grail
	Imperative Grail

	Syntax and operational semantics
	Functional semantics
	Imperative semantics
	Coincidence of functional and imperative semantics

	Liveness analysis and function parameters
	Read-once variables and linear typing
	Imperative read-once analysis
	Linear usage typing
	From linear typing to read-once information
	From read-once to linear typing

	Discussion
	References
	Complete Grail program example

