
c© K. Mitchell 1995

Chapter 1

The Grammar for µOCCAM

µOCCAM is essentially a subset of the OCCAM programming language, as described in the occam 2.1
reference manual, SGS-Thomson 1995. This is available electronically from the course web pages,
and copies are distributed at the introductory lecture. For further copies, ask at the Informatics
Teaching Office, JCMB room 1502. There are also books on occam in the JCM library and in the
machine halls.

We assume that the reader has already glanced at a book on OCCAM, particularly at the examples,
and is familiar with the general approach followed by this language. The simplifications in µOCCAM
are primarily in the area of types. The only types supported are integers, channels, and one-
dimensional arrays of these. Furthermore, channels can only carry integers. We treat booleans
in the same way as C, i.e. as integers with 0 denoting false, and any other value denoting true.
In some cases we have altered the syntax of the language where this aids syntactic or semantic
analysis.

The language µOCCAM is described by the following grammar, where we have used the same
indentation and repetition conventions as in Appendix H of the reference manual.

process = STOP | SKIP | action | construction | instance
| specification

process

action = assignment | input | output

assignment = variable := expression

input = channel ? variable
output = channel ! expression

construction = sequence | conditional | loop | parallel | alternation

sequence = SEQ
{ process }

| SEQ replicator
process

conditional = IF
{ choice }

| IF replicator
choice

choice = boolean
process

boolean = expression

5 The Grammar for µOCCAM

loop = WHILE boolean
process

parallel = PAR
{ process }

| PAR replicator
process

alternation = ALT
{ alternative }

| ALT replicator
alternative

alternative = guard
process

guard = input | boolean & input

replicator = name = base FOR count
base = expression
count = expression

type = primitive.type
| [expression] primitive.type

primitive.type = INT | CHAN

literal = integer

element = name | name [subscript]

subscript = expression
variable = element
channel = element

operand = variable | literal | (expression)

expression = monadic.operator operand
| operand dyadic.operator operand
| operand

specification = declaration | definition

declaration = type name :
| INT name = expression :
| VAL name IS expression :

definition = PROC name ({0, formal })
procedure.body

:

formal = primitive.type name
procedure.body = process

instance = name ({0, actual })

6

actual = element

monadic.operator = - | NOT

dyadic.operator = + | - | * | / | \ | = | < | > | <= | >= | <> | AND | OR

Notes:

The following items clarify certain points about the language, and highlight differences from the
language as given in the occam 2.1 reference manual.

• Integer literals consist of one or more digits, and a name consists of a sequence of alphanumeric
characters and dots starting with an alphabetic character (reference manual page 105).

• Indentation carries significant meaning in µOCCAM. See pages 3 and 4 of the reference manual.

• TAB characters. Any line may begin with some TAB characters, each counting for four levels
of indentation, followed by some spaces, two spaces per indentation level. Once you are on
to spaces, no more TAB characters are allowed. TAB characters are not legal in the middle
of a line.

• Comments. There may be comments anywhere within a program except within a continuation
line.

• Blank lines. There may be blank lines anywhere within a program except within a continu-
ation line.

• End of file. The last statement of a program need not have a terminating newline character.
That is, the end of a file may appear either at the end of the last program line, or on a line
of its own. This is necessary because not all editors allow the user easy control of this.

• Procedure parameters are passed by value, just as in C. This is different from the reference
manual.

• Invalid processes should be treated like STOP (reference manual page 101).

• The count in a replicated ALT, the expression in a VAL declaration, and the array bounds in
an array declaration must all be constant expressions, i.e. expressions whose value can be
calculated at compile time. The function constant_expression in Section 5.8.2 can help to
check this.

• The base and count of a replicated PAR do not have to be constant expressions as we are not
running on a real distributed system.

• Two channels, stdin and stdout, are predefined and connected to the standard input and
output at the start of execution.

When you find an illegal program (e.g. with lexical, syntactic or semantic errors) you should
call the error function (see Section 6.3). This will stop the program and set the return code
appropriately. You do not need to spend time adding error recovery mechanisms to the parser.
Obviously this is something you would like in a real compiler, but there is insufficient time in this
practical for such niceties. When completed, the compiler should check for type errors such as
integers used as channels, procedures called with the wrong number of arguments etc. However,
you do not need to check that variables are only updated by one process, or that only one process
inputs or outputs on a channel. As the language has arrays, such constraints can only be partially
checked at compile time anyway. However, we will assume that all programs passed to the compiler
satisfy these constraints.

Hopefully the grammar, in addition to the OCCAM manual, will answer most of your questions
about µOCCAM. When in doubt, ask the project organiser rather than just guessing.

