
make(1S) make(1S)

NAME
make − maintain, update, and regenerate related programs and files

SYNOPSIS
/usr/ccs/bin/make[−d] [−dd] [−D] [−DD] [−e] [−i] [−k] [−n] [−p]

[−P] [−q] [−r] [−s] [−S] [−t] [−V] [−f makefile] . . . [−K statefile] . . .
[target . . .] [macro=value . . .]

/usr/xpg4/bin/make[−d] [−dd] [−D] [−DD] [−e] [−i] [−k] [−n] [−p]
[−P] [−q] [−r] [−s] [−S] [−t] [−V] [−f makefile] . . . [target . . .]
[macro=value . . .]

DESCRIPTION
The make utility executes a list of shell commands associated with eachtarget, typically to create or
update a file of the same name.makefilecontains entries that describe how to bring a target up to date with
respect to those on which it depends, which are calleddependencies. Since each dependency is a target, it
may have dependencies of its own. Targets, dependencies, and sub-dependencies comprise a tree structure
thatmake traces when deciding whether or not to rebuild atarget.

The make utility recursively checks eachtarget against its dependencies, beginning with the first target
entry in makefileif no target argument is supplied on the command line. If, after processing all of its
dependencies, a target file is found either to be missing, or to be older than any of its dependencies,make
rebuilds it. Optionally with this version ofmake, a target can be treated as out-of-date when the commands
used to generate it have changed since the last time the target was built.

To build a given target,make executes the list of commands, called arule. This rule may be listed explic-
itly in the target’s makefile entry, or it may be supplied implicitly bymake.

If no target is specified on the command line,makeuses the first target defined inmakefile.

If a target has no makefile entry, or if its entry has no rule,make attempts to derive a rule by each of the
following methods, in turn, until a suitable rule is found. Each method is described underUSAGE below.

• Pattern matching rules.

• Implicit rules, read in from a user-supplied makefile.

• Standard implicit rules (also known as suffix rules), typically read in from the file
/usr/share/lib/make/make.rules.

• SCCSretrieval. make retrieves the most recent version from theSCCShistory file (if any).
See the description of the.SCCS_GET: special-function target for details.

• The rule from the.DEFAULT: target entry, if there is such an entry in the makefile.

If there is no makefile entry for atarget, if no rule can be derived for building it, and if no file by that name
is present,make issues an error message and halts.

OPTIONS
The following options are supported:

−d Display the reasons whymake chooses to rebuild a target;make displays any and all
dependencies that are newer. In addition,make displays options read in from the
MAKEFLAGS environment variable.

−dd Display the dependency check and processing in vast detail.

−D Display the text of the makefiles read in.

−DD Display the text of the makefiles,make.rules file, the state file, and all hidden-
dependency reports.

−e Environment variables override assignments within makefiles.

−f makefile Use the description filemakefile. A ‘ −’ as themakefileargument denotes the standard
input. The contents ofmakefile, when present, override the standard set of implicit rules

18 Mar 1997 1

make(1S) make(1S)

and predefined macros. When more than one ‘−f makefile’ argument pair appears,
makeuses the concatenation of those files, in order of appearance.

When nomakefileis specified,/usr/ccs/bin/maketries the following in sequence, except
when in POSIX mode (see the.POSIX Special-Function Targetin theUSAGE section
below):

• If there is a file namedmakefile in the working directory,make uses that file. If,
however, there is anSCCShistory file (SCCS/s.makefile) which is newer,make
attempts to retrieve and use the most recent version.

• In the absence of the above file(s), if a file namedMakefile is present in the
working directory,make attempts to use it. If there is anSCCS history file
(SCCS/s.Makefile) that is newer,make attempts to retrieve and use the most
recent version.

When no makefile is specified, /usr/ccs/bin/make in POSIX mode and
/usr/xpg4/bin/maketry the following files in sequence:

• ./makefile, ./Makefile
• s.makefile, SCCS/s.makefile
• s.Makefile, SCCS/s.Makefile

−i Ignore error codes returned by commands. Equivalent to the special-function target
‘ .IGNORE: ’.

−k When a nonzero error status is returned by a rule, or whenmake cannot find a rule,
abandon work on the current target, but continue with other dependency branches that do
not depend on it.

−K statefile Use the state filestatefile. A ‘−’ as thestatefileargument denotes the standard input.
The contents ofstatefile, when present, override the standard set of implicit rules and
predefined macros. When more than one ‘−K statefile’ argument pair appears,make
uses the concatenation of those files, in order of appearance. (See also.KEEP_STATE
and.KEEP_STATE_FILE in theSpecial-Functions Targetssection).

−n No execution mode. Print commands, but do not execute them. Even lines beginning
with an @ are printed. However, if a command line contains a reference to the
$(MAKE) macro, that line is always executed (see the discussion ofMAKEFLAGS in
Reading Makefiles and the Environment). When in POSIX mode, lines beginning
with a “+” are executed.

−p Print out the complete set of macro definitions and target descriptions.

−P Merely report dependencies, rather than building them.

−q Question mode.make returns a zero or nonzero status code depending on whether or
not the target file is up to date. When in POSIX mode, lines beginning with a “+” are
executed.

−r Do not read in the default makefile/usr/share/lib/make/make.rules.

−s Silent mode. Do not print command lines before executing them. Equivalent to the spe-
cial-function target.SILENT: .

−S Undo the effect of the−k option. Stop processing when a non-zero exit status is
returned by a command.

−t Touch the target files (bringing them up to date) rather than performing their rules.This
can be dangerous when files are maintained by more than one person.When the
.KEEP_STATE: target appears in the makefile, this option updates the state file just as if
the rules had been performed. When in POSIX mode, lines beginning with a “+” are
executed.

−V Putsmake into SysV mode. Refer tosysV-make(1) for respective details.

18 Mar 1997 2

make(1S) make(1S)

OPERANDS
The following operands are supported:

target Target names, as defined inUSAGE.

macro=value
Macro definition. This definition overrides any regular definition for the specified macro
within the makefile itself, or in the environment. However, this definition can still be overrid-
den by conditional macro assignments.

USAGE
Refer tomake in for tutorial information.

Reading Makefiles and the Environment
When make first starts, it reads theMAKEFLAGS environment variable to obtain any of the following
options specified present in its value:−d, −D, −e, −i, −k, −n, −p, −q, −r , −s, −S, or −t. Due to the imple-
mentation of POSIX.2 (seePOSIX.2(5), theMAKEFLAGS values will contain a leading ‘−’ character. The
makeutility then reads the command line for additional options, which also take effect.

Next, make reads in a default makefile that typically contains predefined macro definitions, target entries
for implicit rules, and additional rules, such as the rule for retrievingSCCSfiles. If present,make uses the
file make.rules in the current directory; otherwise it reads the file/usr/share/lib/make/make.rules, which
contains the standard definitions and rules.
Use the directive:

include /usr/share/lib/make/make.rules

in your localmake.rulesfile to include them.

Next, make imports variables from the environment (unless the−e option is in effect), and treats them as
defined macros. Becausemake uses the most recent definition it encounters, a macro definition in the
makefile normally overrides an environment variable of the same name. When−e is in effect, however,
environment variables are read inafter all makefiles have been read. In that case, the environment vari-
ables take precedence over definitions in the makefile.

Next, make reads any makefiles you specify with−f, or one ofmakefile or Makefile as described above
and then the state file, in the local directory if it exists. If the makefile contains a.KEEP_STATE_FILE tar-
get, then it reads the state file that follows the target. Refer to special target.KEEP_STATE_FILE for
details.

Next, (after reading the environment if−e is in effect),make reads in any macro definitions supplied as
command line arguments. These override macro definitions in the makefile and the environment both, but
only for themakecommand itself.

make exports environment variables, using the most recently defined value. Macro definitions supplied on
the command line are not normally exported, unless the macro is also an environment variable.

make does not export macros defined in the makefile. If an environment variable is set, and a macro with
the same name is defined on the command line,make exports its value as defined on the command line.
Unless−e is in effect, macro definitions within the makefile take precedence over those imported from the
environment.

The macrosMAKEFLAGS , MAKE , SHELL , HOST_ARCH, HOST_MACH , andTARGET_MACH are spe-
cial cases. SeeSpecial-Purpose Macros, below for details.

Makefile Target Entries
A target entry has the following format:

target. . . [: | ::] [dependency] . . . [; command] . . .
[command]
. . .

The first line contains the name of a target, or a space-separated list of target names, terminated with a
colon or double colon. If a list of targets is given, this is equivalent to having a separate entry of the same

18 Mar 1997 3

make(1S) make(1S)

form for each target. The colon(s) may be followed by adependency, or a dependency list.make checks
this list before building the target. The dependency list may be terminated with a semicolon (;), which in
turn can be followed by a single Bourne shell command. Subsequent lines in the target entry begin with a
TAB, and contain Bourne shell commands. These commands comprise the rule for building the target.

Shell commands may be continued across input lines by escaping theNEWLINE with a backslash (\). The
continuing line must also start with aTAB.

To rebuild a target,make expands macros, strips off initialTAB characters and either executes the com-
mand directly (if it contains no shell metacharacters), or passes each command line to a Bourne shell for
execution.

The first line that does not begin with aTAB or ’#’ begins another target or macro definition.

Special Characters
Global

Start a comment. The comment ends at the nextNEWLINE. If the ‘#’ follows theTAB in
a command line, that line is passed to the shell (which also treats ‘#’ as the start of a
comment).

include filename If the wordinclude appears as the first seven letters of a line and is followed by aSPACE
or TAB, the string that follows is taken as a filename to interpolate at that line.include
files can be nested to a depth of no more than about 16. Iffilenameis a macro reference,
it is expanded.

Targets and Dependencies
: Target list terminator. Words following the colon are added to the dependency list for

the target or targets. If a target is named in more than one colon-terminated target entry,
the dependencies for all its entries are added to form that target’s complete dependency
list.

:: Target terminator for alternate dependencies. When used in place of a ‘:’ the double-
colon allows a target to be checked and updated with respect to alternate dependency
lists. When the target is out-of-date with respect to dependencies listed in the first alter-
nate, it is built according to the rule for that entry. When out-of-date with respect to
dependencies in another alternate, it is built according the rule in that other entry.
Implicit rules do not apply to double-colon targets; you must supply a rule for each entry.
If no dependencies are specified, the rule is always performed.

target[+ target. . .] :
Target group. The rule in the target entry builds all the indicated targets as a group. It is
normally performed only once permake run, but is checked for command dependencies
every time a target in the group is encountered in the dependency scan.

% Pattern matching wild card metacharacter. Like the ‘* ’ shell wild card, ‘% ’ matches any
string of zero or more characters in a target name or dependency, in the target portion of
a conditional macro definition, or within a pattern replacement macro reference. Note
that only one ‘% ’ can appear in a target, dependency-name, or pattern-replacement
macro reference.

./pathname make ignores the leading ‘./’ characters from targets with names given as pathnames rel-
ative to “dot,” the working directory.

Macros
= Macro definition. The word to the left of this character is the macro name; words to the

right comprise its value. Leading and trailing white space characters are stripped from
the value. A word break following the= is implied.

$ Macro reference. The following character, or the parenthesized or bracketed string, is
interpreted as a macro reference:make expands the reference (including the$) by
replacing it with the macro’s value.

18 Mar 1997 4

make(1S) make(1S)

()
{ } Macro-reference name delimiters. A parenthesized or bracketed word appended to a$ is

taken as the name of the macro being referred to. Without the delimiters,make recog-
nizes only the first character as the macro name.

$$ A reference to the dollar-sign macro, the value of which is the character ‘$’. Used to
pass variable expressions beginning with$ to the shell, to refer to environment variables
which are expanded by the shell, or to delay processing of dynamic macros within the
dependency list of a target, until that target is actually processed.

\$ Escaped dollar-sign character. Interpreted as a literal dollar sign within a rule.

+= When used in place of ‘=’, appends a string to a macro definition (must be surrounded
by white space, unlike ‘=’).

:= Conditional macro assignment. When preceded by a list of targets with explicit target
entries, the macro definition that follows takes effect when processing only those targets,
and their dependencies.

:sh = Define the value of a macro to be the output of a command (seeCommand Substitu-
tions, below).

:sh In a macro reference, execute the command stored in the macro, and replace the refer-
ence with the output of that command (seeCommand Substitutions).

Rules
+ make will always execute the commands preceded by a“ +” , even when−n is specified.

− make ignores any nonzero error code returned by a command line for which the first
non-TAB character is a ‘−’. This character is not passed to the shell as part of the com-
mand line. make normally terminates when a command returns nonzero status, unless
the−i or −k options, or the.IGNORE: special-function target is in effect.

@ If the first non-TAB character is a@, make does not print the command line before exe-
cuting it. This character is not passed to the shell.

? Escape command-dependency checking. Command lines starting with this character are
not subject to command dependency checking.

! Force command-dependency checking. Command-dependency checking is applied to
command lines for which it would otherwise be suppressed. This checking is normally
suppressed for lines that contain references to the ‘?’ dynamic macro (for example,
‘$?’).

When any combination of ‘+’, ‘ −’, ‘ @’, ‘ ?’, or ‘!’ appear as the first characters after the
TAB, all that are present apply. None are passed to the shell.

Special-Function Targets
When incorporated in a makefile, the following target names perform special-functions:

.DEFAULT: If it has an entry in the makefile, the rule for this target is used to process a target when
there is no other entry for it, no rule for building it, and noSCCShistory file from which
to retrieve a current version.make ignores any dependencies for this target.

.DONE: If defined in the makefile,make processes this target and its dependencies after all other
targets are built. This target is also performed whenmake halts with an error, unless the
.FAILED target is defined.

.FAILED : This target, along with its dependencies, is performed instead of.DONE when defined in
the makefile andmakehalts with an error.

.GET_POSIX: This target contains the rule for retrieving the current version of anSCCSfile from its
history file in the current working directory.make uses this rule when it is running in
POSIXmode.

18 Mar 1997 5

make(1S) make(1S)

.IGNORE: Ignore errors. When this target appears in the makefile,make ignores non-zero error
codes returned from commands. When used in POSIX mode,.IGNORE could be fol-
lowed by target names only, for which the errors will be ignored.

.INIT : If defined in the makefile, this target and its dependencies are built before any other tar-
gets are processed.

.KEEP_STATE: If this target is in effect,make updates the state file,.make.state, in the current direc-
tory. This target also activates command dependencies, and hidden dependency checks.
If either the.KEEP_STATE: target appears in the makefile, or the environment variable
KEEP_STATE is set ("setenv KEEP_STATE"), make will rebuild everything in order to
collect dependency information, even if all the targets were up to date due to previous
make runs. See also theENVIRONMENT section. This target has no effect if used in
POSIX mode.

.KEEP_STATE_FILE:
This target has no effect if used in POSIX mode. This target implies.KEEP_STATE. If
the target is followed by a filename,make uses it as the state file. If the target is fol-
lowed by a directory name,make looks for a.make.statefile in that directory. If the
target is not followed by any name,make looks for.make.statefile in the current work-
ing directory.

.MAKE_VERSION :
A target-entry of the form:

.MAKE_VERSION: VERSION− number

enables version checking. If the version ofmake differs from the version indicated,
make issues a warning message.

.NO_PARALLEL :
Currently, this target has no effect, it is, however, reserved for future use.

.PARALLEL : Currently of no effect, but reserved for future use.

.POSIX: This target enables POSIX mode.

.PRECIOUS: List of files not to delete.make does not remove any of the files listed as dependencies
for this target when interrupted.make normally removes the current target when it
receives an interrupt. When used in POSIX mode, if the target is not followed by a list
of files, all the file are assumed precious.

.SCCS_GET: This target contains the rule for retrieving the current version of anSCCSfile from its
history file. To suppress automatic retrieval, add an entry for this target with an empty
rule to your makefile.

.SCCS_GET_POSIX:
This target contains the rule for retrieving the current version of anSCCSfile from its
history file. makeuses this rule when it is running in POSIX mode.

.SILENT: Run silently. When this target appears in the makefile,make does not echo commands
before executing them. When used in POSIX mode, it could be followed by target
names, and only those will be executed silently.

.SUFFIXES: The suffixes list for selecting implicit rules (seeThe Suffixes List).

.WAIT : Currently of no effect, but reserved for future use.

18 Mar 1997 6

make(1S) make(1S)

Clearing Special Targets
In this version ofmake, you can clear the definition of the following special targets by supplying entries for
them with no dependencies and no rule:

.DEFAULT , .SCCS_GET, and.SUFFIXES

Command Dependencies
When the.KEEP_STATE: target is effective,make checks the command for building a target against the
state file. If the command has changed since the lastmake run,make rebuilds the target.

Hidden Dependencies
When the.KEEP_STATE: target is effective,make reads reports fromcpp(1) and other compilation proces-
sors for any “hidden” files, such as#include files. If the target is out of date with respect to any of these
files,make rebuilds it.

Macros
Entries of the form

macro=value

define macros.macro is the name of the macro, andvalue, which consists of all characters up to a com-
ment character or unescapedNEWLINE, is the value.make strips both leading and trailing white space in
accepting the value.

Subsequent references to the macro, of the forms:$(name) or ${name} are replaced byvalue. The paren-
theses or brackets can be omitted in a reference to a macro with a single-character name.

Macro references can contain references to other macros, in which case nested references are expanded
first.

Suffix Replacement Macro References
Substitutions within macros can be made as follows:

$(name:string1=string2)

wherestring1 is either a suffix, or a word to be replaced in the macro definition, andstring2 is the replace-
ment suffix or word. Words in a macro value are separated bySPACE, TAB, and escapedNEWLINE charac-
ters.

Pattern Replacement Macro References
Pattern matching replacements can also be applied to macros, with a reference of the form:

$(name: op%os= np%ns)

whereop is the existing (old) prefix andos is the existing (old) suffix,np andnsare the new prefix and new
suffix, respectively, and the pattern matched by% (a string of zero or more characters), is carried forward
from the value being replaced. For example:

PROGRAM=fabricate
DEBUG= $(PROGRAM:%=tmp/%−g)

sets the value ofDEBUG to tmp/fabricate−g.

Note that pattern replacement macro references cannot be used in the dependency list of a pattern matching
rule; the% characters are not evaluated independently. Also, any number of% metacharacters can appear
after the equal-sign.

Appending to a Macro
Words can be appended to macro values as follows:

macro+= word . . .

18 Mar 1997 7

make(1S) make(1S)

Special-Purpose Macros
When theMAKEFLAGS variable is present in the environment,make takes options from it, in combination
with options entered on the command line.make retains this combined value as theMAKEFLAGS macro,
and exports it automatically to each command or shell it invokes.

Note that flags passed by way ofMAKEFLAGS are only displayed when the−d, or −dd options are in
effect.

TheMAKE macro is another special case. It has the valuemake by default, and temporarily overrides the
−n option for any line in which it is referred to. This allows nested invocations ofmakewritten as:

$(MAKE) . . .

to run recursively, with the−n flag in effect for all commands butmake. This lets you use ‘make −n’ to
test an entire hierarchy of makefiles.

For compatibility with the 4.2BSD make, the MFLAGS macro is set from theMAKEFLAGS variable by
prepending a ‘−’. MFLAGS is not exported automatically.

TheSHELL macro, when set to a single-word value such as/usr/bin/csh, indicates the name of an alternate
shell to use. The default is/bin/sh. Note thatmake executes commands that contain no shell metacharac-
ters itself. Built-in commands, such asdirs in the C shell, are not recognized unless the command line
includes a metacharacter (for instance, a semicolon). This macro is neither imported from, nor exported to
the environment, regardless of−e. To be sure it is set properly, you must define this macro within every
makefile that requires it.

The following macros are provided for use with cross-compilation:

HOST_ARCH The machine architecture of the host system. By default, this is the output of thearch(1)
command prepended with ‘−’. Under normal circumstances, this value should never be
altered by the user.

HOST_MACH The machine architecture of the host system. By default, this is the output of the
mach(1), prepended with ‘−’. Under normal circumstances, this value should never be
altered by the user.

TARGET_ARCH The machine architecture of the target system. By default, the output ofmach,
prepended with ‘−’.

Dynamic Macros
There are several dynamically maintained macros that are useful as abbreviations within rules. They are
shown here as references; if you were to define them,makewould simply override the definition.

$* The basename of the current target, derived as if selected for use with an implicit rule.

$< The name of a dependency file, derived as if selected for use with an implicit rule.

$@ The name of the current target. This is the only dynamic macro whose value is strictly
determined when used in a dependency list. (In which case it takes the form ‘$$@’.)

$? The list of dependencies that are newer than the target. Command-dependency checking
is automatically suppressed for lines that contain this macro, just as if the command had
been prefixed with a ‘?’. See the description of ‘?’, under Makefile Special Tokens,
above. You can force this check with the! command-line prefix.

$% The name of the library member being processed. (SeeLibrary Maintenance , below.)

To refer to the$@ dynamic macro within a dependency list, precede the reference with an additional ‘$’
character (as in, ‘$$@’). Becausemake assigns$< and$* as it would for implicit rules (according to the
suffixes list and the directory contents), they may be unreliable when used within explicit target entries.

These macros can be modified to apply either to the filename part, or the directory part of the strings they
stand for, by adding an upper caseF or D, respectively (and enclosing the resulting name in parentheses or
braces). Thus, ‘$(@D)’ refers to the directory part of the string ‘$@’; if there is no directory part, ‘.’ is
assigned.$(@F) refers to the filename part.

18 Mar 1997 8

make(1S) make(1S)

Conditional Macro Definitions
A macro definition of the form:

target-list:= macro= value

indicates that when processing any of the targets listedand their dependencies, macro is to be set to the
valuesupplied. Note that if a conditional macro is referred to in a dependency list, the$ must be delayed
(use$$ instead). Also,target-list may contain a% pattern, in which case the macro will be conditionally
defined for all targets encountered that match the pattern. A pattern replacement reference can be used
within thevalue.

You can temporarily append to a macro’s value with a conditional definition of the form:

target-list:= macro+= value

Predefined Macros
make supplies the macros shown in the table that follows for compilers and their options, host architec-
tures, and other commands. Unless these macros are read in as environment variables, their values are not
exported bymake. If you runmake with any of these set in the environment, it is a good idea to add com-
mentary to the makefile to indicate what value each is expected to take. If−r is in effect,make does not
read the default makefile (./make.rulesor /usr/share/lib/make/make.rules) in which these macro defini-
tions are supplied.

18 Mar 1997 9

make(1S) make(1S)

Table of Predefined Macros

Use Macro Default Value

Library AR ar
Archives ARFLAGS rv

Assembler AS as
Commands ASFLAGS

COMPILE .s $(AS) $(ASFLAGS)
COMPILE .S $(CC) $(ASFLAGS) $(CPPFLAGS) −c

C Compiler CC cc
Commands CFLAGS

CPPFLAGS
COMPILE .c $(CC) $(CFLAGS) $(CPPFLAGS) −c
LINK .c $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)

C++ CCC CC
Compiler CCFLAGS CFLAGS
Commands CPPFLAGS

COMPILE.cc $(CCC) $(CCFLAGS) $(CPPFLAGS) −c
LINK.cc $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)
COMPILE.C $(CCC) $(CCFLAGS) $(CPPFLAGS) −c
LINK.C $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)

FORTRAN77 FC f77
Compiler FFLAGS
Commands COMPILE .f $(FC) $(FFLAGS) −c

LINK .f $(FC) $(FFLAGS) $(LDFLAGS)
COMPILE.F $(FC) $(FFLAGS) $(CPPFLAGS) −c
LINK.F $(FC) $(FFLAGS) $(CPPFLAGS) $(LDFLAGS)

FORTRAN90 FC f90
Compiler F90FLAGS
Commands COMPILE .f90 $(F90C) $(F90FLAGS) −c

LINK .f90 $(F90C)
COMPILE.ftn $(F90C) $(F90FLAGS) $(CPPFLAGS) −c
LINK.ftn $(F90C) $(F90FLAGS) $(CPPFLAGS) $(LDFLAGS)

Link Editor LD ld
Command LDFLAGS

lex LEX lex
Command LFLAGS

LEX .l $(LEX) $(LFLAGS) −t

lint LINT lint
Command LINTFLAGS

LINT .c $(LINT) $(LINTFLAGS) $(CPPFLAGS)

Modula 2 M2C m2c
Commands M2FLAGS

MODFLAGS
DEFFLAGS
COMPILE .def $(M2C) $(M2FLAGS) $(DEFFLAGS)
COMPILE .mod $(M2C) $(M2FLAGS) $(MODFLAGS)

18 Mar 1997 10

make(1S) make(1S)

Table of Predefined Macros

Use Macro Default Value

Pascal PC pc
Compiler PFLAGS
Commands COMPILE .p $(PC) $(PFLAGS) $(CPPFLAGS) −c

LINK .p $(PC) $(PFLAGS) $(CPPFLAGS) $(LDFLAGS)

Ratfor RFLAGS
Compilation COMPILE .r $(FC) $(FFLAGS) $(RFLAGS) −c
Commands LINK .r $(FC) $(FFLAGS) $(RFLAGS) $(LDFLAGS)

rm Command RM rm −f

sccs Command SCCSFLAGS
SCCSGETFLAGS −s

yacc Command YACC yacc
YFLAGS
YACC.y $(YACC) $(YFLAGS)

Suffixes List SUFFIXES .o .c .c˜ .cc .cc˜ .y .y˜ .l .l˜ .s .s˜ .sh .sh˜
.S .S˜ .ln .h .h˜ .f .f˜ .F .F˜ .mod .mod˜
.sym .def .def˜ .p .p˜ .r .r˜ .cps .cps˜ .C .C˜
.Y .Y˜ .L .L .f90 .f90˜ .ftn .ftn˜

Implicit Rules
When a target has no entry in the makefile,make attempts to determine its class (if any) and apply the rule
for that class. An implicit rule describes how to build any target of a given class, from an associated depen-
dency file. The class of a target can be determined either by a pattern, or by a suffix; the corresponding
dependency file (with the same basename) from which such a target might be built. In addition to a prede-
fined set of implicit rules, make allows you to define your own, either by pattern, or by suffix.

Pattern Matching Rules
A target entry of the form:

tp% ts: dp%ds
rule

is a pattern matching rule, in whichtp is a target prefix,ts is a target suffix,dp is a dependency prefix, and
ds is a dependency suffix (any of which may be null). The ‘% ’ stands for a basename of zero or more char-
acters that is matched in the target, and is used to construct the name of a dependency. Whenmake
encounters a match in its search for an implicit rule, it uses the rule in that target entry to build the target
from the dependency file. Pattern-matching implicit rules typically make use of the$@ and$< dynamic
macros as placeholders for the target and dependency names. Other, regular dependencies may occur in the
dependency list; however, none of the regular dependencies may contain ‘% ’. An entry of the form:

tp% ts: [dependency . . .] dp%ds[dependency . . .]
rule

is a valid pattern matching rule.

Suffix Rules
When no pattern matching rule applies,make checks the target name to see if it ends with a suffix in the
known suffixes list. If so,make checks for any suffix rules, as well as a dependency file with same root
and another recognized suffix, from which to build it.

The target entry for a suffix rule takes the form:

DsTs: rule

whereTs is the suffix of the target,Ds is the suffix of the dependency file, andrule is the rule for building a
target in the class. BothDs andTsmust appear in the suffixes list. (A suffix need not begin with a ‘.’ to be
recognized.)

A suffix rule with only one suffix describes how to build a target having a null (or no) suffix from a depen-
dency file with the indicated suffix. For instance, the.c rule could be used to build an executable program

18 Mar 1997 11

make(1S) make(1S)

namedfile from a C source file named ‘file.c’. If a target with a null suffix has an explicit dependency,
makeomits the search for a suffix rule.

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line

Assembly .s.o $(COMPILE .s) −o $@ $<

Files .s.a $(COMPILE .s) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.s˜.o $(−s1GET) $(−s1GFLAGS) −p $< > $*.s
$(−s1COMPILE.s) −o $@ $*.s

.S.o $(COMPILE .S) −o $@ $<

.S.a $(COMPILE .S) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.S˜.o $(GET) $(GFLAGS) −p $< > $*.S
$(COMPILE.S) −o $@ $*.S

.S˜.a $(GET) $(GFLAGS) −p $< > $*.S
$(COMPILE.S) −o $% $*.S
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line

C .c $(LINK .c) −o $@ $< $(LDLIBS)

Files .c.ln $(LINT .c) $(OUTPUT_OPTION) −i $<

.c.o $(COMPILE .c) $(OUTPUT_OPTION) $<

.c.a $(COMPILE .c) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.c˜ $(GET) $(GFLAGS) −p $< > $*.c
$(CC) $(CFLAGS) $(LDFLAGS) −o $@ $*.c

.c˜.o $(GET) $(GFLAGS) −p $< > $*.c
$(CC) $(CFLAGS) −c $*.c

.c˜.ln $(GET) $(GFLAGS) −p $< > $*.c
$(LINT .c) $(OUTPUT_OPTION) −c $*.c

.c˜.a $(GET) $(GFLAGS) −p $< > $*.c
$(COMPILE .c) −o $% $*.c
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

18 Mar 1997 12

make(1S) make(1S)

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line

C++ .cc $(LINK .cc) −o $@ $< $(LDLIBS)

Files .cc.o $(COMPILE .cc) $(OUTPUT_OPTION) $<

.cc.a $(COMPILE .cc) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.cc˜ $(GET) $(GFLAGS) −p $< > $*.cc
$(LINK.cc) −o $@ $*.cc $(LDLIBS)

.cc.o $(COMPILE.cc) $(OUTPUT_OPTION) $<

.cc˜.o $(GET) $(GFLAGS) −p $< > $*.cc
$(COMPILE.cc) $(OUTPUT_OPTION) $*.cc

.cc.a $(COMPILE.cc) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.cc˜.a $(GET) $(GFLAGS) −p $< > $*.cc
$(COMPILE.cc) −o $% $*.cc
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.C $(LINK.C) −o $@ $< $(LDLIBS)

.C˜ $(GET) $(GFLAGS) −p $< > $*.C
$(LINK.C) −o $@ $*.C $(LDLIBS)

.C.o $(COMPILE.C) $(OUTPUT_OPTION) $<

.C˜.o $(GET) $(GFLAGS) −p $< > $*.C
$(COMPILE.C) $(OUTPUT_OPTION) $*.C

.C.a $(COMPILE.C) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.C˜.a $(GET) $(GFLAGS) −p $< > $*.C
$(COMPILE.C) −o $% $*.C
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

18 Mar 1997 13

make(1S) make(1S)

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line

FORTRAN77 .f $(LINK .f) −o $@ $< $(LDLIBS)

Files .f.o $(COMPILE .f) $(OUTPUT_OPTION) $<

.f.a $(COMPILE .f) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.f $(LINK .f) −o $@ $< $(LDLIBS)

.f˜ $(GET) $(GFLAGS) −p $< > $*.f
$(FC) $(FFLAGS) $(LDFLAGS) −o $@ $*.f

.f˜.o $(GET) $(GFLAGS) −p $< > $*.f
$(FC) $(FFLAGS) −c $*.f

.f˜.a $(GET) $(GFLAGS) −p $< > $*.f
$(COMPILE .f) −o $% $*.f
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.F $(LINK .F) −o $@ $< $(LDLIBS)

.F.o $(COMPILE .F) $(OUTPUT_OPTION) $<

.F.a $(COMPILE .F) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.F˜ $(GET) $(GFLAGS) −p $< > $*.F
$(FC) $(FFLAGS) $(LDFLAGS) −o $@ $*.F

.F˜.o $(GET) $(GFLAGS) −p $< > $*.F
$(FC) $(FFLAGS) −c $*.F

.F˜.a $(GET) $(GFLAGS) −p $< > $*.F
$(COMPILE.F) −o $% $*.F
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

18 Mar 1997 14

make(1S) make(1S)

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line

FORTRAN90 .f90 $(LINK.f90) −o $@ $< $(LDLIBS)

Files .f90˜ $(GET) $(GFLAGS) −p $< > $*.f90
$(LINK.f90) −o $@ $*.f90 $(LDLIBS)

.f90.o $(COMPILE.f90) $(OUTPUT_OPTION) $<

.f90˜.o $(GET) $(GFLAGS) −p $< > $*.f90
$(COMPILE.f90) $(OUTPUT_OPTION) $*.f90

.f90.a $(COMPILE.f90) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.f90˜.a $(GET) $(GFLAGS) −p $< > $*.f90
$(COMPILE.f90) −o $% $*.f90
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.ftn $(LINK.ftn) −o $@ $< $(LDLIBS)

.ftn˜ $(GET) $(GFLAGS) −p $< > $*.ftn
$(LINK.ftn) −o $@ $*.ftn $(LDLIBS)

.ftn.o $(COMPILE.ftn) $(OUTPUT_OPTION) $<

.ftn˜.o $(GET) $(GFLAGS) −p $< > $*.ftn
$(COMPILE.ftn) $(OUTPUT_OPTION) $*.ftn

.ftn.a $(COMPILE.ftn) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.ftn˜.a $(GET) $(GFLAGS) −p $< > $*.ftn
$(COMPILE.ftn) −o $% $*.ftn
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

18 Mar 1997 15

make(1S) make(1S)

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line

lex .l $(RM) $*.c
Files $(LEX .l) $< > $*.c

$(LINK .c) −o $@ $*.c $(LDLIBS)
$(RM) $*.c

.l.c $(RM) $@
$(LEX .l) $< > $@

.l.ln $(RM) $*.c
$(LEX .l) $< > $*.c
$(LINT .c) −o $@ −i $*.c
$(RM) $*.c

.l.o $(RM) $*.c
$(LEX .l) $< > $*.c
$(COMPILE .c) −o $@ $*.c
$(RM) $*.c

.l˜ $(GET) $(GFLAGS) −p $< > $*.l
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) −c lex.yy.c
rm −f lex.yy.c
mv lex.yy.c $@

.l˜.c $(GET) $(GFLAGS) −p $< > $*.l
$(LEX) $(LFLAGS) $*.l
mv lex.yy.c $@

.l˜.ln $(GET) $(GFLAGS) −p $< > $*.l
$(RM) $*.c
$(LEX.l) $*.l > $*.c
$(LINT.c) −o $@ −i $*.c
$(RM) $*.c

.l˜.o $(GET) $(GFLAGS) −p $< > $*.l
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) −c lex.yy.c
rm −f lex.yy.c
mv lex.yy.c $@

18 Mar 1997 16

make(1S) make(1S)

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line

Modula 2 .mod $(COMPILE .mod) −o $@ −e $@ $<

Files .mod.o $(COMPILE .mod) −o $@ $<

.def.sym $(COMPILE .def) −o $@ $<

.def˜.sym $(GET) $(GFLAGS) −p $< > $*.def
$(COMPILE.def) −o $@ $*.def

.mod˜ $(GET) $(GFLAGS) −p $< > $*.mod
$(COMPILE.mod) −o $@ −e $@ $*.mod

.mod˜.o $(GET) $(GFLAGS) −p $< > $*.mod
$(COMPILE.mod) −o $@ $*.mod

.mod˜.a $(GET) $(GFLAGS) −p $< > $*.mod
$(COMPILE.mod) −o $% $*.mod
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

NeWS .cps.h cps $*.cps

Files .cps˜.h $(GET) $(GFLAGS) −p $< > $*.cps
$(CPS) $(CPSFLAGS) $*.cps

Pascal .p $(LINK .p) −o $@ $< $(LDLIBS)

Files .p.o $(COMPILE .p) $(OUTPUT_OPTION) $<

.p˜ $(GET) $(GFLAGS) −p $< > $*.p
$(LINK.p) −o $@ $*.p $(LDLIBS)

.p˜.o $(GET) $(GFLAGS) −p $< > $*.p
$(COMPILE.p) $(OUTPUT_OPTION) $*.p

.p˜.a $(GET) $(GFLAGS) −p $< > $*.p
$(COMPILE.p) −o $% $*.p
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Ratfor .r $(LINK .r) −o $@ $< $(LDLIBS)

Files .r.o $(COMPILE .r) $(OUTPUT_OPTION) $<

.r.a $(COMPILE .r) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.r˜ $(GET) $(GFLAGS) −p $< > $*.r
$(LINK.r) −o $@ $*.r $(LDLIBS)

.r˜.o $(GET) $(GFLAGS) −p $< > $*.r
$(COMPILE.r) $(OUTPUT_OPTION) $*.r

.r˜.a $(GET) $(GFLAGS) −p $< > $*.r
$(COMPILE.r) −o $% $*.r
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

18 Mar 1997 17

make(1S) make(1S)

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line

SCCS .SCCS_GET sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@ −G$@
Files

.SCCS_GET_POSIX sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@

.GET_POSIX $(GET) $(GFLAGS) s.$@

Shell .sh cat $< >$@
Scripts chmod +x $@

.sh˜ $(GET) $(GFLAGS) −p $< > $*.sh
cp $*.sh $@
chmod a+x $@

yacc .y $(YACC.y) $<
Files $(LINK .c) −o $@ y.tab.c $(LDLIBS)

$(RM) y.tab.c

.y.c $(YACC.y) $<
mv y.tab.c $@

.y.ln $(YACC.y) $<
$(LINT .c) −o $@ −i y.tab.c
$(RM) y.tab.c

.y.o $(YACC.y) $<
$(COMPILE .c) −o $@ y.tab.c
$(RM) y.tab.c

.y˜ $(GET) $(GFLAGS) −p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(COMPILE.c) −o $@ y.tab.c
$(RM) y.tab.c

.y˜.c $(GET) $(GFLAGS) −p $< > $*.y
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $@

.y˜.ln $(GET) $(GFLAGS) −p $< > $*.y
$(YACC.y) $*.y
$(LINT.c) −o $@ −i y.tab.c
$(RM) y.tab.c

.y˜.o $(GET) $(GFLAGS) −p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) −c y.tab.c
rm −f y.tab.c
mv y.tab.o $@

make reads in the standard set of implicit rules from the file/usr/share/lib/make/make.rules, unless−r is
in effect, or there is amake.rulesfile in the local directory that does notinclude that file.

The Suffixes List
The suffixes list is given as the list of dependencies for the ‘.SUFFIXES:’ special-function target. The
default list is contained in theSUFFIXES macro (SeeTable of Predefined Macrosfor the standard list of
suffixes). You can define additional.SUFFIXES: targets; a.SUFFIXES target with no dependencies clears
the list of suffixes. Order is significant within the list;make selects a rule that corresponds to the target’s
suffix and the first dependency-file suffix found in the list. To place suffixes at the head of the list, clear the
list and replace it with the new suffixes, followed by the default list:

.SUFFIXES:

.SUFFIXES: suffixes$(SUFFIXES)

A tilde (˜) indicates that if a dependency file with the indicated suffix (minus the ˜) is underSCCSits most
recent version should be retrieved, if necessary, before the target is processed.

18 Mar 1997 18

make(1S) make(1S)

Library Maintenance
A target name of the form:

lib(member . . .)

refers to a member, or a space-separated list of members, in anar(1) library.

The dependency of the library member on the corresponding file must be given as an explicit entry in the
makefile. This can be handled by a pattern matching rule of the form:

lib(% .s): % .s

where.s is the suffix of the member; this suffix is typically.o for object libraries.

A target name of the form

lib((symbol))

refers to the member of a randomized object library that defines the entry point namedsymbol.

Command Execution
Command lines are executed one at a time,each by its own process or shell.Shell commands, notablycd,
are ineffectual across an unescapedNEWLINE in the makefile. A line is printed (after macro expansion)
just before being executed. This is suppressed if it starts with a ‘@’, if there is a ‘.SILENT :’ entry in the
makefile, or ifmake is run with the−s option. Although the−n option specifies printing without execu-
tion, lines containing the macro$(MAKE) are executed regardless, and lines containing the@ special char-
acter are printed. The−t (touch) option updates the modification date of a file without executing any rules.
This can be dangerous when sources are maintained by more than one person.

make invokes the shell with the−e (exit-on-errors) argument. Thus, with semicolon-separated command
sequences, execution of the later commands depends on the success of the former. This behavior can be
overridden by starting the command line with a ‘-’, or by writing a shell script that returns a non-zero sta-
tus only as it finds appropriate.

Bourne Shell Constructs
To use the Bourne shellif control structure for branching, use a command line of the form:

if expression; \
then command; \

. . . ; \
elsecommand; \

. . . ; \
fi

Although composed of several input lines, the escapedNEWLINE characters insure thatmake treats them
all as one (shell) command line.

To use the Bourne shellfor control structure for loops, use a command line of the form:

for var in list ; \
do command; \
. . . ; \

done

To refer to a shell variable, use a double-dollar-sign ($$). This prevents expansion of the dollar-sign by
make.

Command Substitutions
To incorporate the standard output of a shell command in a macro, use a definition of the form:

MACRO:sh =command

The command is executed only once, standard error output is discarded, andNEWLINE characters are
replaced withSPACEs. If the command has a non-zero exit status,makehalts with an error.

To capture the output of a shell command in a macro reference, use a reference of the form:

18 Mar 1997 19

make(1S) make(1S)

$(MACRO:sh)

whereMACROis the name of a macro containing a valid Bourne shell command line. In this case, the com-
mand is executed whenever the reference is evaluated. As with shell command substitutions, the reference
is replaced with the standard output of the command. If the command has a non-zero exit status,make
halts with an error.

In contrast to commands in rules, the command is not subject for macro substitution; therefore, a dollar sign
($) need not be replaced with a double dollar sign ($$).

Signals
INT , SIGTERM , andQUIT signals received from the keyboard haltmake and remove the target file being
processed unless that target is in the dependency list for.PRECIOUS:.

EXAMPLES
This makefile says thatpgm depends on two filesa.o andb.o, and that they in turn depend on their corre-
sponding source files (a.candb.c) along with a common fileincl.h:

pgm: a.o b.o
$(LINK.c) −o $@ a.o b.o

a.o: incl.h a.c
cc −c a.c

b.o: incl.h b.c
cc −c b.c

The following makefile uses implicit rules to express the same dependencies:

pgm: a.o b.o
cc a.o b.o −o pgm

a.o b.o: incl.h

ENVIRONMENT
Seeenviron(5) for descriptions of the following environment variables that affect the execution ofmake:
LC_CTYPE , LC_MESSAGES, andNLSPATH .

KEEP_STATE
This environment variable has the same effect as the.KEEP_STATE: special-function target. It
enables command dependencies, hidden dependencies and writing of the state file.

USE_SVR4_MAKE
This environment variable causesmake to invoke the generic System V version ofmake
(/usr/ccs/lib/svr4.make). SeesysV-make(1).

MAKEFLAGS
This variable is interpreted as a character string representing a series of option characters to be
used as the default options. The implementation will accept both of the following formats (but
need not accept them when intermixed):

1. The characters are option letters without the leading hyphens or blank character sepa-
ration used on a command line.

2. The characters are formatted in a manner similar to a portion of themake command
line: options are preceded by hyphens and blank-character-separated. The
macro=name macro definition operands can also be included. The difference
between the contents ofMAKEFLAGS and the command line is that the contents of
the variable will not be subjected to the word expansions (seewordexp(3C)) associ-
ated with parsing the command line values.

When the command-line options−f or −p are used, they will take effect regardless of whether
they also appear inMAKEFLAGS . If they otherwise appear inMAKEFLAGS , the result is
undefined.

The MAKEFLAGS variable will be accessed from the environment before the makefile is read. At that

18 Mar 1997 20

make(1S) make(1S)

time, all of the options (except−f and−p) and command-line macros not already included inMAKEFLAGS
are added to theMAKEFLAGS macro. TheMAKEFLAGS macro will be passed into the environment as an
environment variable for all child processes. If theMAKEFLAGS macro is subsequently set by the make-
file, it replaces theMAKEFLAGS variable currently found in the environment.

EXIT STATUS
When the−q option is specified, themakeutility will exit with one of the following values:

0 Successful completion.

1 The target was not up-to-date.

>1 An error occurred.

When the−q option is not specified, themakeutility will exit with one of the following values:

0 successful completion

>0 an error occurred

FILES
makefile
Makefile current version(s) ofmakedescription file
s.makefile
s.Makefile SCCShistory files for the above makefile(s) in the current directory
SCCS/s.makefile
SCCS/s.Makefile SCCShistory files for the above makefile(s)
make.rules default file for user-defined targets, macros, and implicit rules
/usr/share/lib/make/make.rules

makefile for standard implicit rules and macros (not read ifmake.rulesis)
.make.state state file in the local directory

ATTRIBUTES
Seeattributes(5) for descriptions of the following attributes:

/usr/ccs/bin/make
ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

/usr/xpg4/bin/make
ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4t

SEE ALSO
ar(1), cd(1), lex(1), sh(1), sccs-get(1), sysV-make(1) yacc(1), passwd(4), attributes(5), POSIX.2(5)

DIAGNOSTICS
Don’t know how to make target ’target’

There is no makefile entry fortarget, and none ofmake’s implicit rules apply (there is no depen-
dency file with a suffix in the suffixes list, or the target’s suffix is not in the list).

*** targetremoved.
make was interrupted while buildingtarget. Rather than leaving a partially-completed version
that is newer than its dependencies,make removes the file namedtarget.

*** target not removed.
makewas interrupted while buildingtargetandtargetwas not present in the directory.

*** target could not be removed,reason
makewas interrupted while buildingtarget, which was not removed for the indicated reason.

18 Mar 1997 21

make(1S) make(1S)

Read of include file ‘file’ failed
The makefile indicated in aninclude directive was not found, or was inaccessible.

Loop detected when expanding macro value ‘macro’
A reference to the macro being defined was found in the definition.

Could not write state file ‘file’
You used the.KEEP_STATE: target, but do not have write permission on the state file.

*** Error code n
The previous shell command returned a nonzero error code.

*** signal message
The previous shell command was aborted due to a signal. If ‘− core dumped’ appears after the
message, acorefile was created.

Conditional macro conflict encountered
Displayed only when−d is in effect, this message indicates that two or more parallel targets cur-
rently being processed depend on a target which is built differently for each by virtue of condi-
tional macros. Since the target cannot simultaneously satisfy both dependency relationships, it is
conflicted.

BUGS
Some commands return nonzero status inappropriately; to overcome this difficulty, prefix the offending
command line in the rule with a ‘−’.

Filenames with the characters ‘=’, ‘ :’, or ‘@’, do not work.

You cannot buildfile.o from lib(file.o).

Options supplied byMAKEFLAGS should be reported for nestedmake commands. Use the−d option to
find out what options the nested command picks up fromMAKEFLAGS .

This version ofmake is incompatible in certain respects with previous versions:

• The−d option output is much briefer in this version.−dd now produces the equivalent volu-
minous output.

• make attempts to derive values for the dynamic macros ‘$*’, ‘ $<’, and ‘$?’, while processing
explicit targets. It uses the same method as for implicit rules; in some cases this can lead
either to unexpected values, or to an empty value being assigned. (Actually, this was true for
earlier versions as well, even though the documentation stated otherwise.)

• makeno longer searches forSCCShistory "(s.)" files.

• Suffix replacement in macro references are now applied after the macro is expanded.

There is no guarantee that makefiles created for this version ofmakewill work with earlier versions.

If there is nomake.rulesfile in the current directory, and the file/usr/share/lib/make/make.rulesis miss-
ing, make stops before processing any targets. To forcemake to run anyway, create an emptymake.rules
file in the current directory.

Once a dependency is made,make assumes the dependency file is present for the remainder of the run. If a
rule subsequently removes that file and future targets depend on its existence, unexpected errors may result.

When hidden dependency checking is in effect, the$? macro’s value includes the names of hidden depen-
dencies. This can lead to improper filename arguments to commands when$? is used in a rule.

Pattern replacement macro references cannot be used in the dependency list of a pattern matching rule.

Unlike previous versions, this version ofmake strips a leading ‘./’ from the value of the ‘$@’ dynamic
macro.

With automaticSCCSretrieval, this version ofmakedoes not support tilde suffix rules.

The only dynamic macro whose value is strictly determined when used in a dependency list is$@ (takes
the form ‘$$@’).

18 Mar 1997 22

make(1S) make(1S)

make invokes the shell with the−eargument. This cannot be inferred from the syntax of the rule alone.

18 Mar 1997 23

