make(1S) make(1S)

NAME
make — maintain, update, and regenerate related programs and files

SYNOPSIS
lusr/ccs/bin/make] —d][-dd][-D][-DD]1[-e][-i][-k][-n][-p]
[-PIL-all-rl[-s][-SI[-t]1[-V]I[-fmakefilg ... [-K statefile] ...
[target...][macro=value...]

lusr/xpg4/bin/make[-d][-dd][-D][-DD][-e][-i]1[-k][-n][-p]
[-PIl-all-rl[-s][-SI[-t]1[-V][-fmakefilg ... [target...]
[macro=value ...]

DESCRIPTION
The make utility executes a list of shell commands associated with &mget, typically to create or
update a file of the same nanraakefilecontains entries that describe how to bring a target up to date with
respect to those on which it depends, which are cdipeéndenciesSince each dependency is a target, it
may have dependencies of its own. Targets, dependencies, and sub-dependencies comprise a tree structure
thatmake traces when deciding whether or not to rebuitdrget

The make utility recursively checks eactarget against its dependencies, beginning with the first target
entry in makefileif no target argument is supplied on the command line. If, after processing all of its
dependencies, a target file is found either to be missing, or to be older than any of its depentsies,
rebuilds it. Optionally with this version ofiake, a target can be treated as out-of-date when the commands
used to generate it have changed since the last time the target was built.

To build a given targetnake executes the list of commands, calledig. This rule may be listed explic-
itly in the target’s makefile entry, or it may be supplied implicitlyrbgke.

If no targetis specified on the command limeake uses the first target definednrakefile

If a targethas no makefile entry, or if its entry has no ruake attempts to derive a rule by each of the
following methods, in turn, until a suitable rule is found. Each method is describedus?d&E below.

» Pattern matching rules.
» Implicit rules, read in from a user-supplied makefile.

» Standard implicit rules (also known as suffix rules), typically read in from the file
lusr/share/lib/make/make.rules

* SCCsSretrieval. make retrieves the most recent version from 8@CsShistory file (if any).
See the description of th@CCS_GET. special-function target for details.

* The rule from theDEFAULT: target entry, if there is such an entry in the makefile.

If there is no makefile entry fortarget, if no rule can be derived for building it, and if no file by that name
is presentmake issues an error message and halts.

OPTIONS
The following options are supported:

-d Display the reasons whyake chooses to rebuild a targetiake displays any and all
dependencies that are newer. In additiomgke displays options read in from the
MAKEFLAGS environment variable.

—-dd Display the dependency check and processing in vast detail.

-D Display the text of the makefiles read in.

-DD Display the text of the makefilesnake.rules file, the state file, and all hidden-
dependency reports.

-e Environment variables override assignments within makefiles.

—f makefile Use the description filmakefile A ‘=’ as themakefileargument denotes the standard

input. The contents ahakefile when present, override the standard set of implicit rules

18 Mar 1997 1

make(1S)

—-K statefile

make(1S)

and predefined macros. When more than offe rhakefilé argument pair appears,
make uses the concatenation of those files, in order of appearance.

When nomakefileis specified/usr/ccs/bin/maketries the following in sequence, except
when in POSIX mode (see thieOSIX Special-Function Targetin the USAGE section
below):

» Ifthere is a file namerthakefile in the working directorymake uses that file. If,
however, there is aBCCShistory file SCCIs.makefil§ which is hewermake
attempts to retrieve and use the most recent version.

* In the absence of the above file(s), if a file narviakefile is present in the
working directory,make attempts to use it. If there is &@CCS history file
(Sccgs.Makefile) that is newermake attempts to retrieve and use the most
recent version.

When no makefile is specified, /usr/ccs/bin/make in POSIX mode and
lusr/xpg4/bin/maketry the following files in sequence:

» ./makefile, ./Makefile

* s.makefile SCCS/s.makefile

* s.Makefile, SCCS/s.Makefile

Ignore error codes returned by commands. Equivalent to the special-function target
‘.IGNORE:".

When a nonzero error status is returned by a rule, or wiske cannot find a rule,
abandon work on the current target, but continue with other dependency branches that do
not depend on it.

Use the state filstatefile A ‘-’ as thestatefileargument denotes the standard input.
The contents oftatefile when present, override the standard set of implicit rules and
predefined macros. When more than onk ‘statefilé argument pair appearsjake
uses the concatenation of those files, in order of appearance. (SEEBRSTATE
and.KEEP_STATE_FILE in theSpecial-Functions Targetssection).

No execution mode. Print commands, but do not execute them. Even lines beginning
with an @ are printed. However, if a command line contains a reference to the
$(MAKE) macro, that line is always executed (see the discussiMAREFLAGS in
Reading Makefiles and the Environment When in POSIX mode, lines beginning
with a “+” are executed.

Print out the complete set of macro definitions and target descriptions.
Merely report dependencies, rather than building them.

Question mode.make returns a zero or nonzero status code depending on whether or
not the target file is up to date. When in POSIX mode, lines beginning with are
executed.

Do not read in the default makefilesr/share/lib/make/make.rules

Silent mode. Do not print command lines before executing them. Equivalent to the spe-
cial-function targetSILENT: .

Undo the effect of the-k option. Stop processing when a non-zero exit status is
returned by a command.

Touch the target files (bringing them up to date) rather than performing their Tiiliss.

can be dangerous when files are maintained by more than one pevg¢ban the
.KEEP_STATE: target appears in the makefile, this option updates the state file just as if
the rules had been performed. When in POSIX mode, lines beginning withaae"
executed.

Putsmake into SysV mode. Refer teysV-makg1) for respective details.

18 Mar 1997 2

make(1S) make(1S)

OPERANDS
The following operands are supported:

target Target names, as definedUSAGE.

macro=value
Macro definition. This definition overrides any regular definition for the specified macro
within the makefile itself, or in the environment. However, this definition can still be overrid-
den by conditional macro assignments.

USAGE
Refer tomake in for tutorial information.

Reading Makefiles and the Environment
When make first starts, it reads th®IAKEFLAGS environment variable to obtain any of the following
options specified present in its valuet, -D, —e, —i, -k, —n, —p, —q, -, =S, =S, or —t. Due to the imple-
mentation of POSIX.2 (sd@0SIX.2(5), theMAKEFLAGS values will contain a leading* character. The
make utility then reads the command line for additional options, which also take effect.

Next, make reads in a default makefile that typically contains predefined macro definitions, target entries
for implicit rules, and additional rules, such as the rule for retries@tgsfiles. If presentmake uses the

file make.rulesin the current directory; otherwise it reads the ffiler/share/lib/make/make.rules which
contains the standard definitions and rules.

Use the directive:

include /usr/share/lib/make/make.rules
in your localmake.rulesfile to include them.

Next, make imports variables from the environment (unless-th@ption is in effect), and treats them as
defined macros. Becauseake uses the most recent definition it encounters, a macro definition in the
makefile normally overrides an environment variable of the same name. Yghernn effect, however,
environment variables are readdfter all makefiles have been read. In that case, the environment vari-
ables take precedence over definitions in the makefile.

Next, make reads any makefiles you specify with or one ofmakefile or Makefile as described above
and then the state file, in the local directory if it exists. If the makefile contaiEER_STATE_FILE tar-
get, then it reads the state file that follows the target. Refer to special .kEgEt STATE_FILE for
details.

Next, (after reading the environment-ié is in effect),make reads in any macro definitions supplied as
command line arguments. These override macro definitions in the makefile and the environment both, but
only for themake command itself.

make exports environment variables, using the most recently defined value. Macro definitions supplied on
the command line are not normally exported, unless the macro is also an environment variable.

make does not export macros defined in the makefile. If an environment variable is set, and a macro with
the same name is defined on the command tirvake exports its value as defined on the command line.
Unless-eis in effect, macro definitions within the makefile take precedence over those imported from the
environment.

The macrosMAKEFLAGS , MAKE , SHELL, HOST_ARCH, HOST_MACH, and TARGET_MACH are spe-
cial cases. Se8pecial-Purpose Macrosbelow for details.

Makefile Target Entries
A target entry has the following format:

target... [1|::][dependendy... [; commandl...
[commandl

The first line contains the name of a target, or a space-separated list of target names, terminated with a
colon or double colon. If a list of targets is given, this is equivalent to having a separate entry of the same

18 Mar 1997 3

make(1S) make(1S)

form for each target. The colon(s) may be followed ldependencyor a dependency listmake checks

this list before building the target. The dependency list may be terminated with a semigaldrich in

turn can be followed by a single Bourne shell command. Subsequent lines in the target entry begin with a
TAB, and contain Bourne shell commands. These commands comprise the rule for building the target.

Shell commands may be continued across input lines by escapiNgWiaNE with a backslash\. The
continuing line must also start withTAB.

To rebuild a targettnake expands macros, strips off initi@hB characters and either executes the com-
mand directly (if it contains no shell metacharacters), or passes each command line to a Bourne shell for
execution.

The first line that does not begin wittTaB or '# begins another target or macro definition.
Special Characters

Global
Start a comment. The comment ends at the REWLINE. If the ‘# follows the TAB in
a command line, that line is passed to the shell (which also t¥ats the start of a
comment).

include filename If the wordinclude appears as the first seven letters of a line and is followedsB}@E
or TAB, the string that follows is taken as a filename to interpolate at thatifickeide
files can be nested to a depth of no more than about fieenHEmeis a macro reference,
it is expanded.

Targets and Dependencies
: Target list terminator. Words following the colon are added to the dependency list for
the target or targets. If a target is named in more than one colon-terminated target entry,
the dependencies for all its entries are added to form that target’s complete dependency
list.

Target terminator for alternate dependencies. When used in place’dha touble-

colon allows a target to be checked and updated with respect to alternate dependency
lists. When the target is out-of-date with respect to dependencies listed in the first alter-
nate, it is built according to the rule for that entry. When out-of-date with respect to
dependencies in another alternate, it is built according the rule in that other entry.
Implicit rules do not apply to double-colon targets; you must supply a rule for each entry.

If no dependencies are specified, the rule is always performed.

target[+ target...]:
Target group. The rule in the target entry builds all the indicated targets as a group. Itis
normally performed only once parake run, but is checked for command dependencies
every time a target in the group is encountered in the dependency scan.

% Pattern matching wild card metacharacter. Like thehell wild card, %’ matches any
string of zero or more characters in a target name or dependency, in the target portion of
a conditional macro definition, or within a pattern replacement macro reference. Note
that only one %’ can appear in a target, dependency-name, or pattern-replacement
macro reference.

.Jpathname make ignores the leading/* characters from targets with names given as pathnames rel-
ative to “dot,” the working directory.
Macros
= Macro definition. The word to the left of this character is the macro name; words to the
right comprise its value. Leading and trailing white space characters are stripped from
the value. A word break following theis implied.
$ Macro reference. The following character, or the parenthesized or bracketed string, is

interpreted as a macro referenceake expands the reference (including tig by
replacing it with the macro’s value.

18 Mar 1997 4

make(1S)

~ ~
—

$$

:sh

Rules

make(1S)

Macro-reference name delimiters. A parenthesized or bracketed word appendad to a
taken as the name of the macro being referred to. Without the delimitgks,recog-
nizes only the first character as the macro name.

A reference to the dollar-sign macro, the value of which is the char&ttesed to

pass variable expressions beginning Wit the shell, to refer to environment variables
which are expanded by the shell, or to delay processing of dynamic macros within the
dependency list of a target, until that target is actually processed.

Escaped dollar-sign character. Interpreted as a literal dollar sign within a rule.

When used in place of’, appends a string to a macro definition (must be surrounded
by white space, unlike=").

Conditional macro assignment. When preceded by a list of targets with explicit target
entries, the macro definition that follows takes effect when processing only those targets,
and their dependencies.

Define the value of a macro to be the output of a commandC@®aand Substitu-
tions, below).

In a macro reference, execute the command stored in the macro, and replace the refer-
ence with the output of that command (€memmand Substitutions.

make will always execute the commands preceded b¥'a even when-n is specified.

make ignores any nonzero error code returned by a command line for which the first
non-TAB character is a-’. This character is not passed to the shell as part of the com-
mand line. make normally terminates when a command returns nonzero status, unless
the—i or —k options, or thelGNORE: special-function target is in effect.

If the first nonTAB character is &), make does not print the command line before exe-
cuting it. This character is not passed to the shell.

Escape command-dependency checking. Command lines starting with this character are
not subject to command dependency checking.

Force command-dependency checking. Command-dependency checking is applied to
command lines for which it would otherwise be suppressed. This checking is normally
suppressed for lines that contain references to Thelynamic macro (for example,

‘$?).

When any combination oft', ‘=', *@’, * ?’, or ‘" appear as the first characters after the
TAB, all that are present apply. None are passed to the shell.

Special-Function Targets
When incorporated in a makefile, the following target names perform special-functions:

.DEFAULT:

.DONE:

.FAILED :

.GET_POSIX:

If it has an entry in the makefile, the rule for this target is used to process a target when
there is no other entry for it, no rule for building it, andS@C Shistory file from which
to retrieve a current versiomake ignores any dependencies for this target.

If defined in the makefilanake processes this target and its dependencies after all other
targets are built. This target is also performed wheke halts with an error, unless the
.FAILED target is defined.

This target, along with its dependencies, is performed inste@dD0ofE when defined in
the makefile andhake halts with an error.

This target contains the rule for retrieving the current version &CGasfile from its
history file in the current working directorynake uses this rule when it is running in
POSIXmode.

18 Mar 1997 5

make(1S) make(1S)

.IGNORE: Ignore errors. When this target appears in the makefiggke ignores non-zero error
codes returned from commands. When used in POSIX m@¢QRE could be fol-
lowed by target names only, for which the errors will be ignored.

ANIT : If defined in the makefile, this target and its dependencies are built before any other tar-
gets are processed.

.KEEP_STATE: If this target is in effectiake updates the state filanake.state in the current direc-
tory. This target also activates command dependencies, and hidden dependency checks.
If either the. KEEP_STATE: target appears in the makefile, or the environment variable
KEEP_STATE is set (setenv KEEP_STATE'), make will rebuild everything in order to
collect dependency information, even if all the targets were up to date due to previous
make runs. See also thENVIRONMENT section. This target has no effect if used in
POSIX mode.

.KEEP_STATE_FILE:
This target has no effect if used in POSIX mode. This target impliEsP_STATE. If
the target is followed by a filenammake uses it as the state file. If the target is fol-
lowed by a directory namenake looks for a.make.statefile in that directory. If the
target is not followed by any nammake looks for.make.statefile in the current work-
ing directory.

.MAKE_VERSION :
A target-entry of the form:

.MAKE_VERSION: VERSION- number

enables version checking. If the versionnoéke differs from the version indicated,
make issues a warning message.

.NO_PARALLEL :
Currently, this target has no effect, it is, however, reserved for future use.

.PARALLEL : Currently of no effect, but reserved for future use.
.POSIX: This target enables POSIX mode.
.PRECIOUS: List of files not to deletemake does not remove any of the files listed as dependencies

for this target when interruptednake normally removes the current target when it
receives an interrupt. When used in POSIX mode, if the target is not followed by a list
of files, all the file are assumed precious.

.SCCS_GET. This target contains the rule for retrieving the current version &CGasfile from its
history file. To suppress automatic retrieval, add an entry for this target with an empty
rule to your makefile.

.SCCS_GET_POSIX
This target contains the rule for retrieving the current version &Casfile from its
history file. make uses this rule when it is running in POSIX mode.

SILENT: Run silently. When this target appears in the makefikke does not echo commands
before executing them. When used in POSIX mode, it could be followed by target
names, and only those will be executed silently.

.SUFFIXES: The suffixes list for selecting implicit rules (SEee Suffixes Lis).
WAIT : Currently of no effect, but reserved for future use.

18 Mar 1997 6

make(1S) make(1S)

Clearing Special Targets
In this version omake, you can clear the definition of the following special targets by supplying entries for
them with no dependencies and no rule:

.DEFAULT, .SCCS_GET, and.SUFFIXES

Command Dependencies
When the. KEEP_STATE: target is effectivemake checks the command for building a target against the
state file. If the command has changed since therlake run, make rebuilds the target.

Hidden Dependencies
When theKEEP_STATE: target is effectiveinake reads reports frorapp(1) and other compilation proces-
sors for any “hidden” files, such &mclude files. If the target is out of date with respect to any of these
files, make rebuilds it.

Macros
Entries of the form

macro=value

define macrosmacrois the name of the macro, amdlue which consists of all characters up to a com-
ment character or unescapeBWLINE, is the value.make strips both leading and trailing white space in
accepting the value.

Subsequent references to the macro, of the fadbnsimg or ${namég are replaced byalue The paren-
theses or brackets can be omitted in a reference to a macro with a single-character name.

Macro references can contain references to other macros, in which case nested references are expanded
first.

Suffix Replacement Macro References
Substitutions within macros can be made as follows:

$(namestringl=string2)

wherestringlis either a suffix, or a word to be replaced in the macro definitionstengd2is the replace-
ment suffix or word. Words in a macro value are separat&PhgE TAB, and escapeNEWLINE charac-
ters.

Pattern Replacement Macro References
Pattern matching replacements can also be applied to macros, with a reference of the form:

$(name op% os= np% ns)

whereop is the existing (old) prefix anasis the existing (old) suffixpp andnsare the new prefix and new
suffix, respectively, and the pattern matchedtya string of zero or more characters), is carried forward
from the value being replaced. For example:

PROGRAM =fabricate
DEBUG= $(PROGRAM :%=tmp/%—g)

sets the value adEBUG to tmp/fabricate—g.

Note that pattern replacement macro references cannot be used in the dependency list of a pattern matching
rule; the% characters are not evaluated independently. Also, any numbemaétacharacters can appear
after the equal-sign.

Appending to a Macro
Words can be appended to macro values as follows:

macro+=word . ..

18 Mar 1997 7

make(1S) make(1S)

Special-Purpose Macros
When theMAKEFLAGS variable is present in the environmemgke takes options from it, in combination
with options entered on the command limeake retains this combined value as M8KEFLAGS macro,
and exports it automatically to each command or shell it invokes.

Note that flags passed by way MAKEFLAGS are only displayed when thed, or —dd options are in
effect.

The MAKE macro is another special case. It has the valake by default, and temporarily overrides the
—n option for any line in which it is referred to. This allows nested invocationsa&e written as:

$(MAKE) ...

to run recursively, with then flag in effect for all commands buatake. This lets you usemake —n to
test an entire hierarchy of makefiles.

For compatibility with the 4.BSD make, the MFLAGS macro is set from th®IAKEFLAGS variable by
prepending a-’. MFLAGS is not exported automatically.

The SHELL macro, when set to a single-word value suchusigbin/csh, indicates the name of an alternate

shell to use. The default ibin/sh. Note thatmake executes commands that contain no shell metacharac-
ters itself. Built-in commands, such dss in the C shell, are not recognized unless the command line
includes a metacharacter (for instance, a semicolon). This macro is neither imported from, nor exported to
the environment, regardless of. To be sure it is set properly, you must define this macro within every
makefile that requires it.

The following macros are provided for use with cross-compilation:

HOST_ARCH The machine architecture of the host system. By default, this is the outpuothiiE)
command prepended witk’: Under normal circumstances, this value should never be
altered by the user.

HOST_MACH The machine architecture of the host system. By default, this is the output of the
mach(1), prepended with-". Under normal circumstances, this value should never be
altered by the user.

TARGET_ARCH The machine architecture of the target system. By default, the outpuotach,
prepended with-'.

Dynamic Macros
There are several dynamically maintained macros that are useful as abbreviations within rules. They are
shown here as references; if you were to define theake would simply override the definition.

$* The basename of the current target, derived as if selected for use with an implicit rule.
$< The name of a dependency file, derived as if selected for use with an implicit rule.
$@ The name of the current target. This is the only dynamic macro whose value is strictly

determined when used in a dependency list. (In which case it takes th&$dah) *

$? The list of dependencies that are newer than the target. Command-dependency checking
is automatically suppressed for lines that contain this macro, just as if the command had
been prefixed with a?. See the description of?*, under Makefile Special Tokens
above. You can force this check with theommand-line prefix.

$% The name of the library member being processed. I(lBBeary Maintenance, below.)

To refer to theb@ dynamic macro within a dependency list, precede the reference with an addgional *
character (as in3$@). Becausamake assignsb< and$* as it would for implicit rules (according to the
suffixes list and the directory contents), they may be unreliable when used within explicit target entries.

These macros can be modified to apply either to the filename part, or the directory part of the strings they
stand for, by adding an upper cdser D, respectively (and enclosing the resulting name in parentheses or
braces). Thus$(@D) refers to the directory part of the strin§@'; if there is no directory part,”* is
assigned.$(@F)refers to the filename part.

18 Mar 1997 8

make(1S) make(1S)

Conditional Macro Definitions
A macro definition of the form:

target-list:= macro= value

indicates that when processing any of the targets |mteldtheir dependenciemacrois to be set to the
valuesupplied. Note that if a conditional macro is referred to in a dependency li$tntbst be delayed

(uses instead). Alsotarget-listmay contain &b pattern, in which case the macro will be conditionally
defined for all targets encountered that match the pattern. A pattern replacement reference can be used
within thevalue

You can temporarily append to a macro’s value with a conditional definition of the form:
target-list:= macro+= value

Predefined Macros
make supplies the macros shown in the table that follows for compilers and their options, host architec-
tures, and other commands. Unless these macros are read in as environment variables, their values are not
exported bymake. If you runmake with any of these set in the environment, it is a good idea to add com-
mentary to the makefile to indicate what value each is expected to takeislin effect,make does not
read the default makefile/hake.rules or /usr/share/lib/make/make.rule$ in which these macro defini-
tions are supplied.

18 Mar 1997 9

make(1S)

Table of Predefined Macros

Use Macro Default Value
Library AR ar
Archives ARFLAGS rv
Assembler AS as
Commands | ASFLAGS
COMPILE .s $@S) $(ASFLAGS)
COMPILE .S $€C) $(ASFLAGS) $(CPPFLAGS) —C
C Compiler cc cc
Commands CFLAGS
CPPFLAGS
COMPILE .c $(CC) $(CFLAGS) $(CPPFLAGS) —C
LINK .c $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)
C++ Ccc CcC
Compiler CCFLAGS CFLAGS
Commands | CPPFLAGS
COMPILE.cc $(CcC) $(CCFLAGS) $(CPPFLAGS) —C
LINK.cc $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)
COMPILE.C $(CCC) $(CCFLAGS) $(CPPFLAGS) —C
LINK.C $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)
FORTRAN77 | FC f77
Compiler FFLAGS
Commands | COMPILE .f $(FC) $(FFLAGS) —c
LINK .f $(FC) $(FFLAGS) $(LDFLAGS)
COMPILE.F $(FC) $(FFLAGS) $(CPPFLAGS) —¢
LINK.F $(FC) $(FFLAGS) $(CPPFLAGS) $(LDFLAGS)
FORTRAN90 | FC f90
Compiler FO0FLAGS
Commands | COMPILE .f90 $F90C) $(FIOFLAGS) —C
LINK .f90 $F90C)
COMPILE.ftn $(FO0C) $(FI9OFLAGS) $(CPPFLAGS) —C
LINK.ftn $(F90C) $(FIOFLAGS) $(CPPFLAGS) $(LDFLAGS)
Link Editor LD Id
Command LDFLAGS
lex LEX lex
Command LFLAGS
LEX.I $(LEX) $(LFLAGS) -t
lint LINT lint
Command LINTFLAGS
LINT .c SLINT) S(LINTFLAGS) $(CPPFLAGS)
Modula 2 M2C m2c
Commands M2FLAGS
MODFLAGS
DEFFLAGS
COMPILE .def $M2C) $(M2FLAGS) $(DEFFLAGS)
COMPILE .mod | $(M2C) $(M2FLAGS) $(MODFLAGS)

18 Mar 1997

make(1S)

10

make(1S)

make(1S)

Table of Predefined Macros
Use Macro Default Value
Pascal PC pc
Compiler PFLAGS
Commands COMPILE .p $(PC) $(PFLAGS) $(CPPFLAGS) —C
LINK .p $(PC) $(PFLAGS) $(CPPFLAGS) $(LDFLAGS)
Ratfor RFLAGS
Compilation COMPILE .r $(FC) $(FFLAGS) $(RFLAGS) —C
Commands LINK .r $(FC) $(FFLAGS) $(RFLAGS) $(LDFLAGS)
rm Command RM rm —f
sccs Command| SCCSFLAGS
SCCSGETFLAGS | -s
yacc Command| YACC yacc
YFLAGS
YACC.y $(YACC) $(YFLAGS)
Suffixes List SUFFIXES .0.c.cT.cc.cc”.y.y .l.I".s.s".sh.sh”
S.S".In.h .h" .f.f.F.F .mod.mod”
.sym .def .def” .p .p" .r .r" .cps .cps™.C .C~
.Y .Y".L.L.f90 .f90" .ftn .ftn~
Implicit Rules

When a target has no entry in the makefileke attempts to determine its class (if any) and apply the rule

for that class. An implicit rule describes how to build any target of a given class, from an associated depen-
dency file. The class of a target can be determined either by a pattern, or by a suffix; the corresponding
dependency file (with the same basename) from which such a target might be built. In addition to a prede-
fined set of implicit rules, make allows you to define your own, either by pattern, or by suffix.

Pattern Matching Rules
A target entry of the form:

tp%ts: dp%ds
rule

is a pattern matching rule, in whighis a target prefixts is a target suffixdp is a dependency prefix, and

dsis a dependency suffix (any of which may be null). T™é stands for a basename of zero or more char-

acters that is matched in the target, and is used to construct the name of a dependenaynaki&hen
encounters a match in its search for an implicit rule, it uses the rule in that target entry to build the target
from the dependency file. Pattern-matching implicit rules typically make use &f@hend $< dynamic

macros as placeholders for the target and dependency names. Other, regular dependencies may occur in the
dependency list; however, none of the regular dependencies may céttaiAn entry of the form:

tp%ts: [dependency .].dp%ds[dependency .].
rule

is a valid pattern matching rule.

Suffix Rules
When no pattern matching rule appliesake checks the target name to see if it ends with a suffix in the
known suffixes list. If somake checks for any suffix rules, as well as a dependency file with same root
and another recognized suffix, from which to build it.

The target entry for a suffix rule takes the form:
DsTs rule

whereTsis the suffix of the targeDs is the suffix of the dependency file, andk is the rule for building a
target in the class. BofbsandTsmust appear in the suffixes list. (A suffix need not begin with @ ‘be
recognized.)

A suffix rule with only one suffix describes how to build a target having a null (or no) suffix from a depen-
dency file with the indicated suffix. For instance, iheule could be used to build an executable program

18 Mar 1997 11

make(1S) make(1S)

namedfile from a C source file namefdilé.c. If a target with a null suffix has an explicit dependency,
make omits the search for a suffix rule.

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line
Assembly | .s.0 $COMPILE .s) -0 $@ $<
Files .s.a $COMPILE .s) —0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
s7.0 $(-s1GET) $(-s1GFLAGS) —-p $< > $*.s
$(-s1COMPILE.s) -0 $@ $*.s
.S.0 $COMPILE .S) -0 $@ $<
.S.a $COMPILE .S) —0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
.S".0 $GET) $(GFLAGS) —p $< > $*.S
$(COMPILE.S) -0 $@ $*.S
.S".a $GET) $(GFLAGS) —p $< > $*.S
$(COMPILE.S) —0 $% $*.S
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Table of Standard Implicit (Suffix) Rules

Use | Implicit Rule Nameg Command Line
C . $LINK .c) -0 $@ $< $(DLIBS)
Files | .c.In $(LINT .c) $OUTPUT_OPTION) —i $<
.c.0 $COMPILE .c) $OUTPUT_OPTION) $<
.c.a $COMPILE .c) -0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
.c” $GET) $(GFLAGS) —p $< > $*.c
$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $*.c
.c".0 $GET) $(GFLAGS) —p $< > $*.c
$(CC) $(CFLAGS) —c $*.c
.c".In $(GET) $(GFLAGS) —p $< > $*.c
$(LINT .c) SOUTPUT_OPTION) —c $*.c
.c".a $GET) $(GFLAGS) —p $< > $*.c
$(COMPILE .c) —0 $% $*.c
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

18 Mar 1997 12

make(1S)

Table of Standard Implicit (Suffix) Rules

Use

C++
Files

Implicit Rule Name Command Line
.cc $LINK .cc) —0 $@ $< $(DLIBS)
.cC.0 $COMPILE .cc) SOUTPUT_OPTION) $<
.cc.a $COMPILE .cc) —0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
.cc” $GET) $(GFLAGS) —p $< > $*.cc
$(LINK.cc) —0 $@ $*.cc $(DLIBS)
.CC.0 $COMPILE.cc) $(OUTPUT_OPTION) $<
.cc”.0 $GET) $(GFLAGS) —p $< > $*.cc
$(COMPILE.cc) $(OUTPUT_OPTION) $*.cc
.cc.a $COMPILE.cc) —0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
.cc”.a $GET) $(GFLAGS) —p $< > $*.cc
$(COMPILE.cc) —0 $% $*.cc
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
.C $(LINK.C) -0 $@ $< $(DLIBS)
.cC” $(GET) $(GFLAGS) —p $< > $*.C
$(LINK.C) -0 $@ $*.C $(DLIBS)
.Co $COMPILE.C) $(OUTPUT_OPTION) $<
.C.o $GET) $(GFLAGS) —p $< > $*.C
$(COMPILE.C) $(OUTPUT_OPTION) $*.C
.C.a $COMPILE.C) —0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
.C'a $GET) $(GFLAGS) —p $< > $*.C

$(COMPILE.C) —0 $% $*.C
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

18 Mar 1997

make(1S)

13

make(1S)

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line
FORTRAN77 | .f $(LINK .f) —0 $@ $< $(DLIBS)
Files f.o $(COMPILE .f) (OUTPUT_OPTION) $<
fa $(COMPILE .f) —0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
f $(LINK .f) —0 $@ $< $(DLIBS)
£ $(GET) $(GFLAGS) —p $< > $*.f
$(FC) $(FFLAGS) $(LDFLAGS) -0 $@ $*.f
f.0 $(GET) $(GFLAGS) —p $< > $*.f
$(FC) $(FFLAGS) —c $*.f
f.a $(GET) $(GFLAGS) —p $< > $*.f
$(COMPILE .f) —0 $% $*.f
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
F $(LINK .F) -0 $@ $< §(DLIBS)
.F.o $COMPILE .F) $(OUTPUT_OPTION) $<
.Fa $COMPILE .F) -0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
F $(GET) $(GFLAGS) —p $<> $*.F
$(FC) $(FFLAGS) $(LDFLAGS) -0 $@ $*.F
F .0 $GET) $(GFLAGS) —p $< > $*.F
$(FC) $(FFLAGS) —c $*.F
F.a $GET) $(GFLAGS) —p $< > $*.F

$(COMPILE.F) -0 $% $*.F
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

18 Mar 1997

make(1S)

14

make(1S)
Table of Standard Implicit (Suffix) Rules
Use Implicit Rule Name Command Line
FORTRAN90 | .f90 $LINK.f90) -0 $@ $< $(DLIBS)
Files .foo” $GET) $(GFLAGS) —p $< > $*.f90
$(LINK.f90) —0 $@ $*.f90 $(DLIBS)
.f90.0 $COMPILE.f90) $(OUTPUT_OPTION) $<
.f90".0 $GET) $(GFLAGS) —p $< > $*.f90
$(COMPILE.f90) $(OUTPUT_OPTION) $*.f90
f90.a $COMPILE.f90) —0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
fo0".a $GET) $(GFLAGS) —p $< > $*.f90
$(COMPILE.f90) —0 $% $*.f90
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
ftn $(LINK.ftn) —0 $@ $< $(DLIBS)
ftn™ $(GET) $(GFLAGS) —p $< > $*.ftin
$(LINK.ftn) —0 $@ $*.ftn $(LDLIBS)
ftn.o $(COMPILE.ftn) S(OUTPUT_OPTION) $<
ftn".0 $(GET) $(GFLAGS) —p $< > $*.ftn
$(COMPILE.ftn) $(OUTPUT_OPTION) $*.ftn
ftn.a $(COMPILE.fin) —0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
ftn™.a $(GET) $(GFLAGS) —p $< > $*.ftin

$(COMPILE. fin) —0 $% $*.ftn
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

18 Mar 1997

make(1S)

15

make(1S)

Table of Standard Implicit (Suffix) Rules

Use

Implicit Rule Name

Command Line

lex
Files

$(RM) $*.c

$(LEX.]) $< > $*.c

$(LINK .c) —0 $@ $*.c §(DLIBS)
$(RM) $*.c

$RM) $@
$(LEX.) $< > $@

$(RM) $*.c

$(LEX.I) $< > $*.c
$(LINT .c) —0 $@ —i $*.c
$(RM) $*.c

$RM) $*.c

$LEX.l) $< > $*.c
$(COMPILE .c) -0 $@ $*.c
$(RM) $*.c

$(GET) $(GFLAGS) —p $< > $*.|
B(LEX) S(LFLAGS) $*.I

$(CC) $(CFLAGS) —c lex.yy.c
rm —f lex.yy.c

mv lex.yy.c $@

$(GET) $(GFLAGS) —p $< > $*.
$(LEX) $(LFLAGS) $*.I
mv lex.yy.c $@

In

$(GET) $(GFLAGS) —p $< > $*.I
$(RM) $*.c

S(LEX.I) $*.1 > $*.c

$(LINT.c) -0 $@ —i $*.c

$(RM) $*.c

$(GET) $(GFLAGS) —p $< > $*.|
B(LEX) B(LFLAGS) $*.I

$(CC) $(CFLAGS) —c lex.yy.c
rm —f lex.yy.c

mv lex.yy.c $@

18 Mar 1997

make(1S)

16

make(1S)
Table of Standard Implicit (Suffix) Rules
Use Implicit Rule Name Command Line
Modula 2 | .mod $COMPILE .mod) -0 $@ —e $@ $<
Files .mod.o $COMPILE .mod) -0 $@ $<
.def.sym $COMPILE .def) -0 $@ $<
.def”.sym $GET) $(GFLAGS) —p $< > $*.def
$(COMPILE.def) —0 $@ $*.def
.mod” $GET) $(GFLAGS) —p $< > $*.mod
$(COMPILE.mod) —0 $@ —e $@ $*.mod
.mod™.o0 $GET) $(GFLAGS) —p $< > $*.mod
$(COMPILE.mod) -0 $@ $*.mod
.mod".a $GET) $(GFLAGS) —p $< > $*.mod
$(COMPILE.mod) —0 $% $*.mod
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
NeWsS .cps.h cps $*.cps
Files .cps™.h $GET) $(GFLAGS) —p $< > $*.cps
$(CPS) $(CPSFLAGS) $*.cps
Pascal p $(LINK .p) —0 $@ $< H(DLIBS)
Files .p.o $COMPILE .p) $(OUTPUT_OPTION) $<
P $(GET) $(GFLAGS) —p $< > $*.p
$(LINK.p) —0 $@ $*.p $(DLIBS)
.p".0 $GET) $(GFLAGS) —p $< > $*.p
$(COMPILE.p) $(OUTPUT_OPTION) $*.p
pa $GET) $(GFLAGS) —p $<> $*.p
$(COMPILE.p) —0 $% $*.p
$(AR) $(ARFLAGS) $@ $%
$(RM) $%
Ratfor T $(LINK .r) -0 $@ $< $(DLIBS)
Files ..o $(COMPILE .r) $(OUTPUT_OPTION) $<
ra $(COMPILE .r) —0 $% $<
$(AR) $(ARFLAGS) $@ $%
$RM) $%
x $(GET) $(GFLAGS) —p $< > $*.r
$(LINK.r) —0 $@ $*.r $(LDLIBS)
I".o $(GET) $(GFLAGS) —p $< > $*.r
$(COMPILE.r) $(OUTPUT_OPTION) $*.r
r.a $(GET) $(GFLAGS) —p $< > $*.r
$(COMPILE.r) —0 $% $*.r
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

18 Mar 1997

make(1S)

17

make(1S) make(1S)

Table of Standard Implicit (Suffix) Rules

Use Implicit Rule Name Command Line
SCCS | .SCCS_GET sccs $6CCSFLAGS) get $ECCSGETFLAGS) $@ -G$@
Files

.SCCS_GET _POSIX | sccs $6CCSFLAGS) get $6CCSGETFLAGS) $@
.GET_POSIX $(GET) $(GFLAGS) s.$@
Shell .sh cat $< >$@
Scripts chmod +x $@
.sh™ $GET) $(GFLAGS) —p $< > $*.sh
cp $*.sh $@
chmod a+x $@
yacc y $(YACC.y) $<
Files $(LINK .c) —0 $@ y.tab.c $(DLIBS)
$(RM) y.tab.c
y.c $rACC.y) $<
mv y.tab.c $@
y.n $(YACC.y) $<
$(LINT .c) —0 $@ —i y.tab.c
$(RM) y.tab.c
y.0 $racc.y) $<
$(COMPILE .c) -0 $@ y.tab.c
$(RM) y.tab.c
Y $(GET) $(GFLAGS) —p $< > $*.y

$(YACC) $(YFLAGS) $*.y
$(COMPILE.c) -0 $@ y.tab.c

$(RM) y.tab.c

y.c $GET) $(GFLAGS) —p $< > $*.y
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $@

y.n $(GET) $(GFLAGS) —p $< > $*.y

$(YACC.y) $*.y

$(LINT.c) -0 $@ —i y.tab.c
$(RM) y.tab.c

y.0 $GET) $(GFLAGS) —p $< > $*.y
$(YACC) $(YFLAGS) $*.y

$(CC) $(CFLAGS) —c y.tab.c

rm —f y.tab.c

mv y.tab.o $@

make reads in the standard set of implicit rules from the/tig/share/lib/make/make.rules unless-r is
in effect, or there is make.rulesfile in the local directory that does rintlude that file.

The Suffixes List
The suffixes list is given as the list of dependencies for .BlgFFIXES:" special-function target. The
default list is contained in thBUFFIXES macro (Sedlable of Predefined Macrdsr the standard list of
suffixes). You can define addition8&lUFFIXES: targets; aSUFFIXES target with no dependencies clears
the list of suffixes. Order is significant within the listake selects a rule that corresponds to the target’s
suffix and the first dependency-file suffix found in the list. To place suffixes at the head of the list, clear the
list and replace it with the new suffixes, followed by the default list:

.SUFFIXES:
.SUFFIXES: suffixesp(SUFFIXES)

A tilde (7) indicates that if a dependency file with the indicated suffix (minus the 7) is 8adSits most
recent version should be retrieved, if necessary, before the target is processed.

18 Mar 1997 18

make(1S) make(1S)

Library Maintenance
A target name of the form:

lib(member .).
refers to a member, or a space-separated list of membersaifladibrary.

The dependency of the library member on the corresponding file must be given as an explicit entry in the
makefile. This can be handled by a pattern matching rule of the form:

lib(%.9): %.s
where.sis the suffix of the member; this suffix is typicaldfor object libraries.
A target name of the form
lib ((symbo]})
refers to the member of a randomized object library that defines the entry pointsyanted

Command Execution
Command lines are executed one at a teaeh by its own process or sheBhell commands, notabbyd,
are ineffectual across an unescapEWLINE in the makefile. A line is printed (after macro expansion)
just before being executed. This is suppressed if it starts wi@,&f‘there is a !SILENT:’ entry in the
makefile, or ifmake is run with the—s option. Although the-n option specifies printing without execu-
tion, lines containing the mac&MAKE) are executed regardless, and lines containin@tlspecial char-
acter are printed. Thet (touch) option updates the modification date of a file without executing any rules.
This can be dangerous when sources are maintained by more than one person.

make invokes the shell with thee (exit-on-errors) argument. Thus, with semicolon-separated command
sequences, execution of the later commands depends on the success of the former. This behavior can be
overridden by starting the command line with-g 6r by writing a shell script that returns a non-zero sta-

tus only as it finds appropriate.

Bourne Shell Constructs
To use the Bourne shédflcontrol structure for branching, use a command line of the form:

if expression \
then command \
o\
elsecommand \
o\
fi
Although composed of several input lines, the escWILINE characters insure thatake treats them
all as one (shell) command line.

To use the Bourne shétir control structure for loops, use a command line of the form:
for varin list ; \
do command\
o\
done

To refer to a shell variable, use a double-dollar-si&f). (This prevents expansion of the dollar-sign by
make.

Command Substitutions
To incorporate the standard output of a shell command in a macro, use a definition of the form:

MACRO:sh =command

The command is executed only once, standard error output is discardedEWIHNE characters are
replaced wittSPACEs. If the command has a non-zero exit stateke halts with an error.

To capture the output of a shell command in a macro reference, use a reference of the form:

18 Mar 1997 19

make(1S) make(1S)

$(MACRO:sh)

whereMACROis the name of a macro containing a valid Bourne shell command line. In this case, the com-
mand is executed whenever the reference is evaluated. As with shell command substitutions, the reference
is replaced with the standard output of the command. If the command has a non-zero exinakaus,

halts with an error.

In contrast to commands in rules, the command is not subject for macro substitution; therefore, a dollar sign
(%) need not be replaced with a double dollar s&). (

Signals
INT, SIGTERM, andQUIT signals received from the keyboard hakike and remove the target file being
processed unless that target is in the dependency [iI®tRECIOUS:.

EXAMPLES
This makefile says thgigm depends on two files.o andb.o, and that they in turn depend on their corre-
sponding source fileg(candb.c) along with a common filancl.h:

pgm: a.o b.o

$(LINK.c) -0 $@ a.0 b.o
a.o:incl.h a.c

cc-ca.c
b.o: incl.h b.c

cc —-cb.c

The following makefile uses implicit rules to express the same dependencies:

pgm: a.o b.o
cc a.0 b.o -0 pgm
a.o b.o:incl.h

ENVIRONMENT
Seeenviron(5) for descriptions of the following environment variables that affect the executioakaf
LC_CTYPE, LC_MESSAGES, andNLSPATH.

KEEP_STATE
This environment variable has the same effect asKgeP_STATE: special-function target. It
enables command dependencies, hidden dependencies and writing of the state file.

USE_SVR4_MAKE
This environment variable causesake to invoke the generic System V version mfke
(/usriccsllib/svrd.makg. SeesysV-makedl).

MAKEFLAGS
This variable is interpreted as a character string representing a series of option characters to be
used as the default options. The implementation will accept both of the following formats (but
need not accept them when intermixed):

1. The characters are option letters without the leading hyphens or blank character sepa-
ration used on a command line.

2. The characters are formatted in a manner similar to a portion ofake command
line: options are preceded by hyphens and blank-character-separated. The
macro=name macro definition operands can also be included. The difference
between the contents ®AKEFLAGS and the command line is that the contents of
the variable will not be subjected to the word expansionswsedexp(3C)) associ-
ated with parsing the command line values.

When the command-line optior$ or —p are used, they will take effect regardless of whether
they also appear iIMAKEFLAGS . If they otherwise appear IRIAKEFLAGS , the result is
undefined.

The MAKEFLAGS variable will be accessed from the environment before the makefile is read. At that

18 Mar 1997 20

make(1S) make(1S)

time, all of the options (excepf and—p) and command-line macros not already included AKEFLAGS

are added to th’l AKEFLAGS macro. TheMAKEFLAGS macro will be passed into the environment as an
environment variable for all child processes. If iIKEFLAGS macro is subsequently set by the make-
file, it replaces th/AKEFLAGS variable currently found in the environment.

EXIT STATUS
When the-q option is specified, theake utility will exit with one of the following values:

0 Successful completion.
1 The target was not up-to-date.
>1 An error occurred.

When the-q option is not specified, thmake utility will exit with one of the following values:

0 successful completion
>0 an error occurred
FILES
makefile
Makefile current version(s) ahake description file
s.makefile
s.Makefile SCcCshistory files for the above makefile(s) in the current directory
SCCS/s.makefile
SCCS/s.Makefile SCcCshistory files for the above makefile(s)
make.rules default file for user-defined targets, macros, and implicit rules
{usr/share/lib/make/make.rules
makefile for standard implicit rules and macros (not reathke.rulesis)
.make.state state file in the local directory
ATTRIBUTES

Seeattributes(5) for descriptions of the following attributes:
lusr/ccs/bin/make

ATTRIBUTE TYPE | ATTRIBUTE VALUE
Availability SUNWSsprot
lusr/xpg4/bin/make
ATTRIBUTE TYPE | ATTRIBUTE VALUE
Availability SUNWHXxcu4t
SEE ALSO

ar(1), cd(1), lex(1), sh(1), sccs-getl), sysV-makeg1) yacql), passwd4), attributes(5), POSIX.2(5)

DIAGNOSTICS
Don’'t know how to make target ‘target
There is no makefile entry féarget, and none ofmake’s implicit rules apply (there is no depen-
dency file with a suffix in the suffixes list, or the target’s suffix is not in the list).

*** targetremoved.
make was interrupted while buildingarget Rather than leaving a partially-completed version
that is newer than its dependenciaske removes the file namedrget

*** targetnot removed.
make was interrupted while buildinairgetandtargetwas not present in the directory.

*** target could not be removedyeason
make was interrupted while buildingrget, which was not removed for the indicated reason.

18 Mar 1997 21

make(1S) make(1S)

Read of include file file’ failed
The makefile indicated in anclude directive was not found, or was inaccessible.

Loop detected when expanding macro valuemacrd
A reference to the macro being defined was found in the definition.

Could not write state file *file’
You used theKEEP_STATE: target, but do not have write permission on the state file.

*** Error code n
The previous shell command returned a nonzero error code.

*** gignal message
The previous shell command was aborted due to a signat. dére dumped appears after the
message, eore file was created.

Conditional macro conflict encountered
Displayed only whenr-d is in effect, this message indicates that two or more parallel targets cur-
rently being processed depend on a target which is built differently for each by virtue of condi-
tional macros. Since the target cannot simultaneously satisfy both dependency relationships, it is
conflicted.

BUGS
Some commands return nonzero status inappropriately; to overcome this difficulty, prefix the offending
command line in the rule with &™

Filenames with the characters," :’, or ‘@’, do not work.
You cannot buildile.o from lib(file.0).

Options supplied bMAKEFLAGS should be reported for nestathke commands. Use thed option to
find out what options the nested command picks up @MKEFLAGS .

This version ofnake is incompatible in certain respects with previous versions:

» The-d option output is much briefer in this versiondd now produces the equivalent volu-
minous output.

« make attempts to derive values for the dynamic mac#ss ‘ $<', and ‘$?, while processing
explicit targets. It uses the same method as for implicit rules; in some cases this can lead
either to unexpected values, or to an empty value being assigned. (Actually, this was true for
earlier versions as well, even though the documentation stated otherwise.)

* makeno longer searches feICCshistory "(s.)" files.
» Suffix replacement in macro references are now applied after the macro is expanded.
There is no guarantee that makefiles created for this versmal& will work with earlier versions.

If there is nomake.rulesfile in the current directory, and the filesr/share/lib/make/make.rulesis miss-
ing, make stops before processing any targets. To fone&e to run anyway, create an emphake.rules
file in the current directory.

Once a dependency is madeke assumes the dependency file is present for the remainder of the run. If a
rule subsequently removes that file and future targets depend on its existence, unexpected errors may result.

When hidden dependency checking is in effect$hanacro’s value includes the names of hidden depen-
dencies. This can lead to improper filename arguments to command$wiweunsed in a rule.

Pattern replacement macro references cannot be used in the dependency list of a pattern matching rule.

Unlike previous versions, this version wiake strips a leading./ from the value of the$@' dynamic
macro.

With automaticSCCSretrieval, this version ahake does not support tilde suffix rules.

The only dynamic macro whose value is strictly determined when used in a dependen@@igtakes
the form $$@).

18 Mar 1997 22

make(1S) make(1S)

make invokes the shell with thee argument. This cannot be inferred from the syntax of the rule alone.

18 Mar 1997 23

