
Local Areas in the π-Calculus

Ian Stark and Tom Chothia

Laboratory for Foundations of Computer Science
Division of Informatics, University of Edinburgh

stark
Logic and Semantics seminarUniversity of Cambridge Computer Laboratory25 January 2002

http://www.ed.ac.uk/~stark

Open distributed systems

Many successful “distributed systems” are really loosely coupled
collections of programs and machines, linked by agreements on how
widely known names should refer to certain local resources. For
example:

• well-known IP ports (finger, daytime, http, ftp);

• library calls (Java API, libc).

We can model these systems using the π-calculus, but problems
arise from the fact that there is no way to have a private interaction
on a channel with a well-known name.

1

What to do

We propose a local area π-calculus in which names may be known
everywhere yet still refer to local resources.

This is enough to give a (very) high-level description of:

• TCP/IP, sockets;

• Internet routing, Network address translation (NAT);

• FTP and Napster.

For example, we can demonstrate the success and failure of FTP
operating through a NAT firewall.

2

The π-calculus

Describes concurrent systems with dynamically created mobile
names. These names serve (at least) two roles:

• Information — who knows what;

• Communication — channels for messages.

In the standard π-calculus these are closely interlocked; if you know
the name of a channel, you can always exchange messages with
everyone else who knows it. This is not always what is wanted...

3

Example — π-calculus internet daemon

An internet daemon routes incoming service requests to appropriate
handlers. Here is a π-calculus model of this in the classic style. It
works, but leaks a little.

Client: νc . server〈finger, c〉 ← ask server

| c(x).print〈x〉 ← print response

Server: server(service, reply).service〈reply〉 ← inet daemon

| finger(reply).reply〈users〉 ← finger daemon

| time(reply).reply〈now〉 ← time daemon

4

Local areas for the internet daemon

To plug the leaks, we assign levels to each channel that limit their
reach.

c, server @ net print, finger, time @ host

We then mark out the boundary of each host and application as a
local area.

Client: host [app [νc:string@net . server〈finger, c〉
| c(x).print〈x〉]]

Server: host [app [server(service, reply).service〈reply〉]

| app [finger(reply).reply〈users〉]

| app [time(reply).reply〈now〉]

5

Syntax for a local area π-calculus

We take a plain π-calculus

0 a〈~b〉 a(~b).P !a(~b).P P | Q

choose some total order of levels,

app < host < net

and add terms for new areas and channels:

` [P] local area at level `

νa:σ.P fresh channel a of type σ

σ ::= (σ1 . . . σn)@` .

Areas, like processes, are anonymous.

6

Dynamic scope vs. local areas

We have separated the two roles of names, distinguishing between
the scope of a name (who knows it) from its reach (what it does).

Every name may have within its scope several disjoint local areas of
communication.

Scope is flexible: it varies as processes pass on their knowledge of
a name.

Local areas are rigid: replication can create new ones, but they do
not change, and must nest correctly.

Scope and areas interact via levels: wherever a name travels, these
determine its communication reach at any point.

7

Semantics for laπ

We can give for the laπ-calculus an inductive definition of well-typed
terms Γ `` P and a structural operational semantics Γ `` P

α−→ Q.

The types constrain the use of names within the appropriate local
areas and give us a safety result:

If Γ `` P
a〈~b〉
=⇒ Q or Γ `` P

a(~b)
=⇒ Q then levelΓ(a) ≥ `.

This confirms that no communication ever goes beyond its local area.

8

Encoding laπ in the π-calculus

There is a compositional encoding from laπ terms to the π-calculus;
every local area becomes a process with a local ether.

All laπ names become data, sent over ethers.

There is an operational correspondence, and for observable actions
behaviour matches quite well:

P
a〈b〉−→ P′ if and only if [[P]]

e〈a,b〉−→ [[P′]] .

But the translation introduces speculative input and divergence
almost everywhere. It also exposes some communications to “packet
snooping”.

9

Future directions

• Multiple FTP/NAT sessions; model-checker?

• Notions of observation: from the inside looking out.

• Bisimulation: when do two environments look the same to their
components?

• Mobile areas.

• Using areas to organise denotational semantics for processes.

10

Conclusions

Examples of contexts in which names need to be widely known,
while always referring to local resources:

• Standard libraries

• Applets, plugins

• Mobile agents

• Remote procedure call

• Service discovery

• Communicating structured data

The local area π-calculus can offer a way to describe these systems,
and reason about how they behave and interact.

“Think globally, act locally”

11

Related work

Several extensions to the π-calculus look at locations, typically
labelled with identifiers, and investigate issues like failure or causality.

Many systems using agents or mobile ambients allow only
short-range communication. In others a channel may only be used
where it is created, or may only receive messages at a single point.

Simple CCS blocking restricts communication on a particular channel
to a given area, but requires concrete labelling of every restriction.

12

Types for the laπ Inetd

c : string@net server : (service,response)@net

print : string@host finger : service

time : service

service = response@host

response = string@net

13

Encoding laπ into π (details, simplified)

A parameter ∆ maps levels to ethers. The interesting clauses are
these:

[[`[P]]]∆ = νe.[[P]]∆,` 7→e [[νa.P]]∆ = νa.[[P]]∆

[[a〈b〉]]∆ = e〈a, b〉 where e = ∆(level(a))

[[a(b).P]]∆ = µX.e(x, b).if x = a then [[P]]∆ else (e〈x, b〉 | X)

14

