
OUCL Friday 14 March 2003

Mobile Resource
Guarantees

Ian Stark

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh

David Aspinall, Stephen Gilmore, Don Sannella,
*Kenneth MacKenzie, *Lennart Beringer, Michal Konečný

LMU Munich: Martin Hofmann, Hans-Wolfgang Loidl, Olha Shkaravska

Mobile Resource Guarantees

MRG is a joint Edinburgh / Munich project funded for 2002–2005 by the
European initiative in Global Computation.

Our aim is to develop an infrastructure that endows mobile code with
independently verifiable certificates describing resource requirements.

We plan to do this by mapping resource types for high-level programs
into proof-carrying bytecode that runs on the Java virtual machine.

I’ll talk about progress over the first year, and in particular some
properties of our GRAIL intermediate language.

(LFPL + PCC / JVM)

Global Computation

Programs that travel over networks between computers and other
devices, running in different places at different times. For example:

Mobile phones downloading new software for extra features
Smartcards that host multiple functions
Desktop applications exchanging code with web services

Some common features:

Users expect continuous upgrading, customization and flexibility
Self-service of mobile code from multiple providers
Heterogenous clients with irregular resource limitations

Authentication for mobile code

Java

Originally, Java used a sandbox model, where all remote code was wholly
untrusted.
In version 1.2 this moved to more finely grained security policies managed
through cryptographic signatures on code.

Windows

Microsoft Authenticode also uses cryptographically signed code.
User can distinguish code from different providers.
Very widely used – more or less compulsory in XP for drivers.

Useful as these are, they say nothing about the code itself, only its supplier.

Trust me

Microsoft Security Bulletin MS01-017

Who should read this bulletin: All customers using Microsoft®
products.

Technical description: In mid-March 2001, VeriSign, Inc.,
advised Microsoft that on January 29 and 30, 2001, it issued two
VeriSign Class 3 code-signing digital certificates to an individual
who fraudulently claimed to be a Microsoft employee. …

Impact of vulnerability: Attacker could digitally sign code using
the name “Microsoft Corporation”.

Proof-carrying code

PCC certifies code with a condensed formal proof of desired property.

Checked by client before installation / execution
Unforgeable, tamper-proof and independent of trust networks
Proofs may be hard to generate, but are easy to check

Ideally a certifying compiler uses types and other high-level source
information to create the necessary proof to accompany machine code.

Proof-Carrying Code – George Necula, POPL '97
Safe Kernel Extensions Without Run-Time Checking – Necula+Lee, OSDI ’96
Foundational Proof-Carrying Code – Andrew Appel, LICS ‘01

Resources can include:

processor time
heap space
stack size

There exist strong theoretical results, but applying them is a challenge.

Hofmann – A type system for bounded space and functional in-place update
Hofmann+Jost – Static prediction of heap space usage for first-order

functional programs
Amadio – Max-plus quasi-interpretations
Crary+Weirich – Resource bound certification

Inferring resource usage

system calls
disk files
network bandwidth, etc.

Architecture

Request for code

Compiled code

Resource proof

Code producer

Certifying
compiler

Source
program

Code consumer

Check
proof

Execute
code

Resource
policy

Implementation

Code consumer

JVM

Code producer

Resource
policyCamelot

Grail Proof
checkerGrail

Java
classfile

Java
classfile

OK?

GRAIL
Guaranteed Resource Aware Intermediate Language

A key component of the MRG platform is our intermediate language,
which needs to be all of the following:

The target for the Camelot compiler
A basis for attaching resource assertions
Amenable to formal proof about resource usage
The format for sending and receiving guaranteed code
Executable

Grail mediates between all of these roles by having two distinct
semantic interpretations, one functional and one imperative.

Functional Grail

Grail has a standard functional semantics:

Strong static typing
Call-by-value first-order functions
Local function declaration
Mutual recursion
Lexical scoping of variables and parameters

This simple functional language is the target for the Camelot high-level
language compiler.

Fibonacci in functional Grail
method static int fib (int n) =

let val a = 0
val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end

Fibonacci in functional Grail
method static int fib (int n) =

let val a = 0
val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end function arguments

local function
declarations

lexically scoped variables
hide outer declarations

local variable declarations

mutually recursive
function calls

Imperative Grail

Grail also has a simple imperative semantics:

Assignable global variables (registers)
Labelled basic blocks
Goto and conditional jumps
Live-variable annotations

The Grail assembler and disassembler convert this to and from Java
bytecodes as an executable binary format.

Fibonacci in imperative Grail
method static int fib (int n) =

let val a = 0
val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end

Fibonacci in imperative Grail
method static int fib (int n) =

let val a = 0
val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end annotate live variables

basic blocks
update global variables

initial assignment to global variables

goto and
conditional jumps

Comparing functional and imperative

We can prove a precise correspondence between the two semantics.
A Grail method body mbody decomposes into (imperative) basic
blocks:

Theorem: If E is a variable environment and s a matching initial state

then for any final value v:

where ⊢fun and ⊢imp are functional and imperative evaluation
respectively.

mbody blocklist
imp

fun

E =var s where var = fv(mbody) = Var(blocklist)

E ⊢fun mbody ⇒ v if and only if s ⊢imp blocklist ⇒ v

What makes it work

Definitions of the two semantics ⊢fun and ⊢imp are entirely as expected.
The result only holds because we place tight constraints on well-formed
Grail.

No nesting: only one level of local functions
Functions must include all free variables as parameters
Tail calls only
Functions are only applied to values, which must syntactically
coincide with the parameter names: fun f(int x) … f(x)

Imperative Grail is similarly well-behaved: for example, the stack is
empty at all jumps and branches. This is what makes it possible to
disassemble JVM classfiles back into Grail again. (metadata helps too)

Free variables and liveness

The functional / imperative match in Grail extends to relating other
program analyses. For example, free variables for functional terms
correspond precisely to the the imperative notion of liveness.

Theorem: A method body satisfies the “no-free-variable” condition on
local function declarations if and only if the given parameter lists are
a valid solution for the liveness dataflow equations.

let decls in e end bbl
imp

fun

fv(let decls in e end) = gen(bbl)

dom(decls) = kill(bbl)

Linear types and single usage

Beringer [2002] extends classic dataflow analysis to identify variables
used exactly once after each update; with applications to memory
management and register forwarding in asynchronous processors. For
Grail this gives an analysis for the use of variable x in basic block bbl:

and from this the notion of a variable being read-once throughout a
method body. The functional counterpart is an intuitionistic linear type
system for Grail:

Theorem: A method can be typed with variable x linear if and only if
the usage dataflow analysis has a solution where x is read-once.

Γ; Θ,x:σ ⊢ e:τ ⇔ usesx(bbl) = 1

usesx(bbl) ∈ { 0 1 }
⊤
⊥

Present status

Progress so far:

High level language compiler (camelot)
Grail assembler (gdf) and disassembler (gf)
Cost model (time, stack, heap, calls; raw and structured)
Isabelle formulation of Grail operational semantics and cost model
Sample proofs of time and space bounds
“Foundational” PCC demonstrator based on Isabelle proof scripts

Current work:

Hoare logic for Grail implemented in Isabelle (auxiliary variables)
Isabelle proof that Grail cost model is consistent with JVM

Next tasks and future work

DIY demonstrator on the web
Object interworking for Camelot
Freestanding resource logic for Grail (use separation logic for heap?)
Proofs generated from high-level resource information (types etc.)
Reduce trusted base (put custom proof checker into Java classloader)

More examples and applications — suggestions please!

Other bytecode platforms (.Grail)
Links to the Grid and e-Science (Java Grande, scientific computation)

http://www.lfcs.ed.ac.uk/mrg

EEF Summer School
Global Computing

Edinburgh 7–11 July 2003

Ian Clarke
Freenet

Andrew Gordon
Security and XML web services

Martin Hofmann
Type systems for resource
control

Davide Sangiorgi
Types and process algebra

Martin Wirsing
UML for global computing

Rocco de Nicola
KLAIM – a Kernel Language for
Agent Interaction and Mobility

ADVERTISEMENT

