
Names, Equations, Relations:
Practical Ways to Reason about new

Ian Stark

BRICS
Department of Computer Science

University of Aarhus
Denmark

April 1997



What does it mean to be new?

Many useful aspects of programming languages depend on ‘names’:
anonymous tags taken on demand from some infinite supply.

A proper theory of these can help to analyse notions of identity,
privacy, scope, pointers, interference, . . .

This talk presents a calculus of names and higher-order functions,
with a logic of equations and relations for reasoning about them.

1



The nu-calculus

A simply-typed lambda-calculus with a type ν of names n,m, . . . that
can be compared (n =m) and created fresh (νn.M).

There are rules for typing s, Γ `M : σ and evaluation s `M ⇓ (s ′)V.
For example:

νn.νn ′.(n = n ′) ⇓ (n,n ′) false
νn.νn ′.λx.(if x = n ′ thennelse n ′)

This second function has to be applied at least twice to extract all the
names within.

2



Some more expressions

The nu-calculus is call-by-value, and general β-conversion is not
appropriate.

(λx.(x = x))(νn.n) ⇓ (n) true
(νn.n) = (νn.n) ⇓ (n1, n2) false .

The expression νn.n used here can be usefully abbreviated as new.

2a



Contextual equivalence

Two expressions are contextually equivalent if they can be freely
exchanged in any program.

νn.M ≈ M νn.νn ′.M ≈ νn ′.νn.M
(λx.M)V ≈ M[V/x] νn.(λx.n) 6≈ λx.(νn.n)

if B then (νn.M) elseM ′ ≈ νn.(if B thenMelseM ′)

νn.λx.(x = n) ≈ λx.false

This last equivalence relies on the name n remaining private however
the function is used.

3



Some other contextual equivalences

νn.νn ′.λf.(fn = fn ′) ≈ λf.true

6≈ νn.λf.νn ′.(fn = fn ′) .

These are distinguished by the function

(λF : (ν→ o)→ o . F(λx.F(λy.x = y))) .

Natural numbers:

Fp = νn0 . . . νnp.λx. if x = n0 thenn1

else if x = n1 thenn2
...

else if x = np thenn0 else n0 .

3a



Problems with contextual equivalence

Because it considers all possible programs, contextual equivalence is

X the right notion for checking code transformation, replacing
algorithms, checking assertions and matching specifications;

× hard to demonstrate in any particular case.

Thus we turn to other relations that imply contextual equivalence but
are simpler to demonstrate.

4



Operational methods

Applicative equivalence

Identifies functions if they give equivalent results at all arguments,
up to ‘garbage collection’ of names.

Sufficient to reason in the presence of names, but not about the
names themselves.

Logical relations

Use spans R : s1 
 s2 between sets of names. Functions are
related if they take related arguments to related results.

This is enough to reason about the private/public distinction, and
in particular to prove all first-order contextual equivalences.

5



Problems with operational methods

• Consideration of all possible arguments.

• Needs a detailed understanding of evaluation.

• Open terms and higher-order functions require meta-level
reasoning.

• Proof-theoretic complexity issues are “interesting”.

To avoid these we distil the hands-on operational methods into two
systems of rules.

6



Equational reasoning

βid
s, Γ ` (λx.x)M =M s, Γ ` F(νn.M) = νn.(FM) n /∈ fn(F)

s, Γ ` M1[n/x] =M2[n/x] each n ∈ s
s⊕ {n ′}, Γ `M1[n

′/x] =M2[n
′/x] some fresh n ′

s, Γ ⊕ {x : ν} `M1 =M2

s, Γ `M1 =M2 =⇒ s, Γ `M1 ≈ M2 .

• Similar in power to applicative equivalence, but easier to use.

• Works directly on open terms and at higher types.

• Provides more than just βη-etc. rewriting.

7



Relational reasoning

Γ `M1 (R⊕←−n1)M2

Γ ` (νn1.M1) R M2

s, Γ `M1 =M2 Γ `M2 R M3

Γ `M1 R M3

Γ ` (M1[n/x]) (R⊕ n̂) (M2[n/x]) some fresh n
Γ ` (M1[n1/x]) R (M2[n2/x]) each (n1, n2) ∈ R

Γ ⊕ {x : ν} `M1 R M2

Γ `M1 (ids)M2 =⇒ s, Γ `M1 ≈ M2 .

• Integrates fully with equational reasoning.

• Explicit handling of private vs. public names.

• Complete for ground types and first-order functions.

8



Example

To demonstrate

νn.λx:ν.(x = n) ≈ λx:ν.false

the crucial closing steps are

x : ν ` (x = n) (←−n )o false
` (λx.(x = n)) (←−n )ν→o (λx.false)
` (νn.λx.(x = n)) ∅ν→o (λx.false)

The span (←−n ) : {n} 
 ∅ used here captures our intuition that the
name bound to n on the left hand side is private, never revealed, and
need not be matched in the right hand expression.

9



Results

Applicative
equivalence

⊆ Logical
relations

⊆
Contextual

equivalence

Equational
reasoning

⊆

⊆ Relational
reasoning

⊆

⊆

10



Summary

Accessibility Scope

Denotational Equational

Operational Relations on names

Rule-based Relations on states

Mechanised Exceptions, concurrency, . . .

These two dimensions are not a tradeoff! We can reasonably expect
progress on both fronts.

11


