
Appears in the Proceedings of TLCA ’97

Names, Equations, Relations:
Practical Ways to Reason about new

Ian Stark

BRICS?, Department of Computer Science, University of Aarhus, Denmark

Abstract. The nu-calculus of Pitts and Stark is a typed lambda-
calculus, extended with state in the form of dynamically-generated
names. These names can be created locally, passed around, and com-
pared with one another. Through the interaction between names and
functions, the language can capture notions of scope, visibility and shar-
ing. Originally motivated by the study of references in Standard ML, the
nu-calculus has connections to other kinds of local declaration, and to
the mobile processes of the π-calculus.
This paper introduces a logic of equations and relations which allows one
to reason about expressions of the nu-calculus: this uses a simple repre-
sentation of the private and public scope of names, and allows straight-
forward proofs of contextual equivalence (also known as observational, or
observable, equivalence). The logic is based on earlier operational tech-
niques, providing the same power but in a much more accessible form.
In particular it allows intuitive and direct proofs of all contextual equiv-
alences between first-order functions with local names.

1 Introduction

Many convenient features of programming languages today involve some notion
of generativity: the idea that an entity may be freshly created, distinct from all
others. This is clearly central to object-oriented programming, with the dynamic
creation of new objects as instances of a class, and the issue of object identity. In
the study of concurrency, the π-calculus [14] uses dynamically-generated names
to describe the behaviour of mobile processes, whose communication topology
may change over time. In functional programming, the language Standard ML
[15] extends typed lambda-calculus with a number of features, of which mutable
reference cells, exceptions and user-declared datatypes are all generative; as are
the structures and functors of the module system. More broadly, the concept of
lexical scope rests on the idea that local identifiers should always be treated as
fresh, distinct from any already declared.

Such dynamic creation occurs at a variety of levels, from the run-time be-
haviour of Lisp’s gensym to resolving questions of scope during program linking.
Generally, the intention is that its use should be intuitive or even transparent to

? Basic Research in Computer Science, a centre of the Danish National Research
Foundation.

the programmer. Nevertheless, for correct implementation and sound design it
is essential to develop an appropriate abstract understanding of what it means
to be new.

The nu-calculus was devised to explore this common property of genera-
tivity, by adding names to the simply-typed lambda-calculus. Names may be
created locally, passed around, and compared with one another, but that is all.
The language is reviewed in Section 2; a full description is given by Pitts and
Stark in [22,23], with its operational and denotational semantics studied at some
length in [26,27]. Central to the nu-calculus is the use of name abstraction: the
expression νn.M represents the creation of a fresh name, which is then bound
to n within the body of M . So, for example, the expression

νn.νn′.(n = n′)

generates two new names, bound to n and n′, and compares them, finally re-
turning the answer false. Functions may have local names that remain private
and persist from one use of the function to the next; alternatively, names may
be passed out of their original scope and can even outlive their creator. It is
precisely this mobility of names that allows the nu-calculus to model issues of
locality, privacy and non-interference.

Two expressions of the nu-calculus are contextually equivalent1 if they can
be freely exchanged in any program: there is no way in the language itself to dis-
tinguish them. Contextual equivalence is an excellent property in principle, but
in practice often hard to work with because of the need to consider all possible
programs. As a consequence a number of authors have made considerable effort,
in various language settings, to develop convenient methods for demonstrating
contextual equivalence.

Milner’s context lemma [13], Gordon’s ‘experiments’ [5], and the ‘ciu’ theo-
rems of Mason and Talcott [10,28], provide one such approach. These show that
instead of all program contexts, it is sufficient to consider only those in some
particular form. For the nu-calculus, a suitable context lemma is indeed available
[26, §2.6] and states that one need only consider so-called ‘argument contexts’.
However even this reduced collection of contexts is still inconveniently large, a
problem arising from the imperative nature of name creation.

Alternatively, one can look for relations that imply contextual equivalence but
are easier to work with. One possibility is to define such relations directly from
the operational semantics of the language, as with the applicative bisimilarity
variously used by Abramsky [1], Howe [8], Gordon [5], and others. Denotational
semantics provides another route: if two expressions have equal interpretation in
some adequate model, then they are contextually equivalent. For the nu-calculus,
such operational methods are developed and refined in [22,23], while categorical
models are presented in [27]. Both approaches are treated at length in [26].

In principle, methods such as these do give techniques for proving contextual
equivalences. In practice however, they are often awkward and can require rather

1 The same property is variously known as {operational/observational/observable}
{equivalence/congruence}.

detailed mathematical knowledge. The contribution of this paper is to take two
existing operational techniques, and extract from them a straightforward logic
that allows simple and direct reasoning about contextual equivalence in the nu-
calculus.

The first operational technique, applicative equivalence, gives rise to an equa-
tional logic with assertions of the form

s, Γ `M1 =σ M2 .

If such an assertion can be proved using the rules of the logic, then it is certain
that expressions M1 and M2 are contextually equivalent (here s and Γ list the
free names and variables respectively). This equational scheme is simple, but not
particularly complete: it is good for reasoning in the presence of names, but not
so good at reasoning about names themselves.

The technique of operational logical relations refines this by considering just
how different expressions make use of their local names. The corresponding logic
is one of relational reasoning, with assertions of the form

Γ `M1 Rσ M2 .

Here R is a relation between the free names of M1 and M2 that records informa-
tion on their privacy and visibility. This logic includes the equational one, and is
considerably more powerful: it is sufficient to prove all contextual equivalences
between expressions of first-order function type.

It is significant that these schemes both build on existing methods; all the
proofs of soundness and completeness work by transferring corresponding prop-
erties from the earlier operational techniques. For the completeness results in
particular this is a considerable saving in proof effort. Such incremental develop-
ment continues a form of ‘technology transfer’ from the abstract to the concrete:
these same operational techniques were in turn guided by a denotational seman-
tics for the nu-calculus based on categorical monads.

The layout of the paper is as follows: Section 2 reviews the nu-calculus and
gives some representative examples of contextual equivalence; Section 3 describes
the techniques of applicative equivalence and operational logical relations; Sec-
tion 4 explains the new logic for equational reasoning; Section 5 extends this to
a logic for relational reasoning; and Section 6 concludes.

Related Work

The general issue of adding effects to functional languages has received consid-
erable attention over time, and there is a substantial body of work concerning
operational and denotational methods for proving contextual equivalence. A se-
lection of references can be found in [20,28], for example. However, not so many
practical systems have emerged for reasoning about expressions and proving
actual examples of contextual equivalence.

Felleisen and Hieb [2] present a calculus for equational reasoning about state
and control features. This extends βv-interconvertibility and is similar to the

equational reasoning of this paper, in that it is correct and convenient for proving
contextual equivalence, but not particularly complete.

Mason and Talcott’s logic for reasoning about destructive update in Lisp
[11] is again similar in power to our equational reasoning. Moreover, our under-
lying operational notion of applicative equivalence corresponds quite closely to
Mason’s ‘strong isomorphism’ [9]. Further work [12] adds some particular rea-
soning principles that resemble aspects of our relational reasoning, but can only
be applied to first-order functions; by contrast, our techniques remain valid at
all higher function types. In a similar vein, the ‘variable typed logic of effects’
(VTLoE) of Honsell, Mason, Smith and Talcott [7] is an operationally-based
scheme for proving certain assertions about functions with state.

The ‘computational metalanguage’ of Moggi [16] provides a general method
for equational reasoning about additions to functional languages. Its application
to the nu-calculus is discussed in [26, §3.3], where it is shown to correspond
closely to applicative equivalence. Related to this is ‘evaluation logic’, a variety
of modal logic that can express the possibility or certainty of certain computa-
tional effects [17,21]. Moggi has shown how a variety of program logics, including
VTLoE, can be expressed within evaluation logic [18].

Although the nu-calculus may appear simpler than the languages considered
in the work cited, the notion of generativity it highlights is still of real signifi-
cance. Moreover, the relational logic presented here goes beyond all of the above
in the variety of contextual equivalences it can prove: we properly capture the
subtle interaction between local declarations and higher-order functions.

2 The Nu-Calculus

A full description of the nu-calculus can be found in [26,27]; this section gives just
a brief overview. The language is based on the simply-typed lambda-calculus,
with a hierarchy of function types σ → σ′ built over ground types o of booleans
and ν of names. Expressions have the form

M ::= x | n | true | false | if M then M else M

| M = M | νn.M | λx:σ.M |MM .

Here x and n are typed variables and names respectively, taken from separate
infinite supplies. The expression ‘M = M ’ tests for equality between two names.
Name abstraction νn.M creates a fresh name bound to n within the body M ;
during evaluation, names may outlive their creator and escape from their original
scope. We implicitly identify expressions which only differ in their choice of
bound variables and names (α-conversion). A useful abbreviation is new for
νn.n; this is the expression that generates a new name and then immediately
returns it.

Expressions are typed according to the rules in Figure 1. The type assertion

s, Γ `M : σ

says that in the presence of s and Γ the expression M has type σ. Here s is a
finite set of names, Γ is a finite set of typed variables, and M is an expression
with free names in s and free variables in Γ . The symbol ⊕ represents disjoint
union, here in s⊕ {n} and Γ ⊕ {x : σ}. We may omit Γ when it is empty.

s, Γ ` x : σ
(x : σ ∈ Γ)

s, Γ ` n : ν
(n ∈ s)

s, Γ ` b : o
(b = true , false)

s, Γ ` B : o s, Γ `M : σ s, Γ `M ′ : σ

s, Γ ` if B then M else M ′ : σ

s, Γ ` N : ν s, Γ ` N ′ : ν

s, Γ ` (N = N ′) : o

s⊕ {n}, Γ `M : σ

s, Γ ` νn.M : σ

s, Γ ⊕ {x : σ} `M : σ′

s, Γ ` λx:σ.M : σ → σ′
s, Γ ` F : σ → σ′ s, Γ `M : σ

s, Γ ` FM : σ′

Fig. 1. Rules for assigning types to expressions of the nu-calculus

An expression is in canonical form if it is either a name, a variable, one
of the boolean constants true or false, or a function abstraction. These are to
be the values of the nu-calculus, and correspond to weak head normal form in
the lambda-calculus. An expression is closed if it has no free variables; a closed
expression may still have free names. We define the sets

Expσ(s, Γ) = {M | s, Γ `M : σ }
Canσ(s, Γ) = {C | C ∈ Expσ(s, Γ), C canonical }

Expσ(s) = Expσ(s, ∅)
Canσ(s) = Canσ(s, ∅)

of expressions and canonical expressions, open and closed.
The operational semantics of the nu-calculus is specified by the inductively

defined evaluation relation given in Figure 2. Elements of the relation take the
form

s `M ⇓σ (s′)C

where s and s′ are disjoint finite sets of names, M∈Expσ(s) and C∈Canσ(s⊕s′).
This is intended to mean that in the presence of the names s, expression M of
type σ evaluates to canonical form C and creates fresh names s′. We may omit
s or s′ when they are empty.

Evaluation is chosen to be left-to-right and call-by-value, after Standard ML;
it can also be shown to be deterministic and terminating [26, Theorem 2.4].

As an example of evaluation, consider the judgement

` (λx:ν.(x = x))(νn.n) ⇓o (n)true .

(CAN)
s ` C ⇓σ C

C canonical

(COND1)
s ` B ⇓o (s1)true s⊕ s1 `M ⇓σ (s2)C

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C

(COND2)
s ` B ⇓o (s1)false s⊕ s1 `M ′ ⇓σ (s2)C′

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C′

(EQ1)
s ` N ⇓ν (s1)n s⊕ s1 ` N ′ ⇓ν (s2)n

s ` (N = N ′) ⇓o (s1 ⊕ s2)true
n ∈ s

(EQ2)
s ` N ⇓ν (s1)n s⊕ s1 ` N ′ ⇓ν (s2)n′

s ` (N = N ′) ⇓o (s1 ⊕ s2)false
n, n′ distinct

(LOCAL)
s⊕ {n} `M ⇓σ (s1)C

s ` νn.M ⇓σ ({n} ⊕ s1)C
n /∈ (s⊕ s1)

(APP)

s ` F ⇓σ→σ′ (s1)λx:σ.M ′ s⊕ s1 `M ⇓σ (s2)C
s⊕ s1 ⊕ s2 `M ′[C/x] ⇓σ′ (s3)C′

s ` FM ⇓σ′ (s1 ⊕ s2 ⊕ s3)C′

Fig. 2. Rules for evaluating expressions of the nu-calculus

First the argument νn.n (or new) is evaluated, returning a fresh name bound
to n. This is in turn bound to the variable x, and the body of the function
compares this name to itself, giving the result true. Compare this with

` (νn′.λx:ν.(x = n′))(νn.n) ⇓o (n′, n)false .

Here the evaluation of the function itself creates a fresh name, bound to n′; the
argument provides another fresh name, and the comparison then returns false .

Repeated evaluation of a name abstraction will give different fresh names.
Thus the two expressions

νn.λx:o.n and λx:o.νn.n

behave differently: the first evaluates to the function λx:o.n, with every sub-
sequent application returning the private name bound to n; while the second
gives a different fresh name as result each time it is applied. The expressions are
distinguished by the program

(λf : o→ ν . (f true = f true)) 〈〈−〉〉

which evaluates to true or false according to how the hole 〈〈−〉〉 is filled.
This leads us to the notion of program context. A formal definition is given in

[26, §2.4]; here we simply note that the form P 〈〈−〉〉 represents a program P with
some number of holes 〈〈−〉〉, and in P (~x)M these are filled by an expression M
whose free variables are in the list ~x. There is an arrangement to capture these
free variables, and the completed program is a closed expression of boolean type.

Definition 1 (Contextual Equivalence). If M1,M2 ∈ Expσ(s, Γ) then we
say that they are contextually equivalent, written

s, Γ `M1 ≈σ M2

if for all closing program contexts P 〈〈−〉〉 and boolean values b ∈ {true, false},
(∃s1 . s ` P (~x)M1 ⇓o (s1)b) ⇐⇒ (∃s2 . s ` P (~x)M2 ⇓o (s2)b).

That is, P 〈〈−〉〉 always evaluates to the same boolean value, whether the hole is
filled by M1 or M2. If both s and Γ are empty then we write simply M1 ≈σ M2.

This is in many ways the right and proper notion of equivalence between nu-
calculus expressions. However the quantification over all programs makes it in-
convenient to demonstrate directly; as discussed in the introduction, the purpose
of this paper is to present simple methods for reasoning about contextual equiv-
alence without the need to consider contexts or even evaluation.

Examples.

Up to contextual equivalence unused names are irrelevant, as is the order in
which names are generated:

s, Γ ` νn.M ≈σ M n /∈ fn(M) (1)

s, Γ ` νn.νn′.M ≈σ νn′.νn.M . (2)

Evaluation respects contextual equivalence:

s `M ⇓σ (s′)C =⇒ s `M ≈σ νs′.C (3)

where νs′.C abbreviates multiple name abstractions. A variety of equivalences
familiar from the call-by-value lambda-calculus also hold. For instance Plotkin’s
βv-rule [24]: if C ∈ Canσ(s, Γ) and M ∈ Expσ′(s, Γ ⊕ {x : σ}) then

s, Γ ` (λx:σ.M)C ≈σ′ M [C/x]. (4)

Names can be used to detect that general β-equivalence fails, as with

(λx:ν.x = x)new 6≈o (new = new) (5)

which evaluate to true and false respectively. More interestingly, distinct expres-
sions may be contextually equivalent if they differ only in their use of ‘private’
names:

νn.λx:ν.(x = n) ≈ν→o λx:ν.false . (6)

Here the right-hand expression is the function that always returns false; while the
left-hand expression evaluates to a function with a persistent local name n, that
it compares against any name supplied as an argument. Although these function
bodies are quite different, no external context can supply the private name bound
to n that would distinguish between them; hence the original expressions are in
fact contextually equivalent.

A range of further examples can be found in earlier work on the nu-calculus
[22,23,26,27].

3 Operational Reasoning

This section describes two operational techniques for demonstrating contextual
equivalences in the nu-calculus. Applicative equivalence captures much of the
general behaviour of higher-order functions and their evaluation, while the more
sophisticated operational logical relations highlight the particular properties of
name privacy and visibility. Both are discussed in more detail in [22] and [26],
which also give proofs of the results below.

Definition 2 (Applicative Equivalence). We define a pair of relations s `
C1 ∼can

σ C2 for C1, C2 ∈ Canσ(s) and s ` M1 ∼exp
σ M2 for M1,M2 ∈ Expσ(s)

inductively over the structure of the type σ, according to:

s ` b1 ∼can
o b2 ⇐⇒ b1 = b2

s ` n1 ∼can
ν n2 ⇐⇒ n1 = n2

s ` λx:σ.M1 ∼can
σ→σ′ λx:σ.M2 ⇐⇒ ∀s′, C ∈ Canσ(s⊕ s′) .

s⊕ s′ `M1[C/x] ∼exp
σ′ M2[C/x]

s `M1 ∼exp
σ M2 ⇐⇒ ∃s1, s2, C1 ∈ Canσ(s⊕ s1), C2 ∈ Canσ(s⊕ s2) .

s `M1 ⇓σ (s1)C1 & s `M2 ⇓σ (s2)C2

& s⊕ (s1 ∪ s2) ` C1 ∼can
σ C2.

The intuition here is that functions are equivalent if they give equivalent results
at possible arguments; while expressions in general are equivalent if they evaluate
to equivalent canonical forms.

It is immediate that ∼exp
σ coincides with ∼can

σ on canonical forms; we write
them indiscriminately as ∼σ and call the relation applicative equivalence.2 We
can extend the relation to open expressions: if M1,M2 ∈ Expσ(s, Γ) then we
define

s, Γ `M1 ∼σ M2 ⇐⇒ ∀s′, Ci ∈ Canσi(s⊕ s′) i = 1, . . . , n .

s⊕ s′ `M1[~C/~x] ∼σ M2[~C/~x]

where Γ = {x1 : σ1, . . . , xn : σn}.

Applicative equivalence is based on similar ‘bisimulation’ relations of Abram-
sky [1] and Howe [8] for untyped lambda-calculus, and Gordon [6] for typed
lambda-calculus. It is well behaved and suffices to prove contextual equivalence:

Theorem 3. Applicative equivalence is an equivalence, a congruence, and im-
plies contextual equivalence.

The proof of this centres on the demonstration that applicative equivalence is
a congruence, i.e. it is preserved by all the rules for forming expressions of the

2 This is a different relation to the applicative equivalence of [22, Def. 13] and [23,
Def. 3.4] which (rather unfortunately) turns out not to be an equivalence at all.

nu-calculus. That it implies contextual equivalence follows from this without
difficulty; details are in [26, §2.7].

Applicative equivalence verifies examples (1)–(4) above, and numerous oth-
ers: a range of contextual equivalences familiar from the standard typed lambda-
calculus, and all others that make straightforward use of names. What it cannot
capture is the notion of privacy that lies behind example (6); where equivalence
relies on a particular name remaining secret.

To address the distinction between private and public uses of names, we
introduce the idea of a span between name sets. A span R : s1
 s2 is an
injective partial map from s1 to s2; this is equivalent to a pair of injections
s1 � R� s2, or a relation such that

(n1, n2) ∈ R & (n′1, n
′
2) ∈ R =⇒ (n1 = n′1)⇐⇒ (n2 = n′2)

for n1, n
′
1 ∈ s1 and n2, n

′
2 ∈ s2. The idea is that for any span R the bijection

between dom(R) ⊆ s1 and cod(R) ⊆ s2 represents matching use of ‘visible’
names, while the remaining elements not in the graph of R are ‘unseen’ names.
The identity relation id s : s
 s is clearly a span; and if R : s1
 s2 and
R′ : s′1
 s′2 are spans on distinct name sets, then their disjoint union R ⊕
R′ : s1 ⊕ s′1
 s2 ⊕ s′2 is also a span. Starting from spans, we now build up a
collection of relations between expressions of higher types.

Definition 4 (Logical Relations). If R : s1
 s2 is a span then we define
relations

Rcan
σ ⊆ Canσ(s1)× Canσ(s2)

Rexp
σ ⊆ Expσ(s1)× Expσ(s2)

by induction over the structure of the type σ, according to:

b1 R
can
o b2 ⇐⇒ b1 = b2

n1 R
can
ν n2 ⇐⇒ n1 R n2

(λx:σ.M1) Rcan
σ→σ′ (λx:σ.M2) ⇐⇒
∀R′ : s′1
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) .
C1 (R⊕R′)can

σ C2 =⇒ M1[C1/x] (R⊕R′)exp
σ′ M2[C2/x]

M1 R
exp
σ M2 ⇐⇒
∃R′ : s′1
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) .
s1 `M1 ⇓σ (s′1)C1 & s2 `M2 ⇓σ (s′2)C2 & C1 (R⊕R′)can

σ C2.

This definition differs somewhat from that for applicative equivalence. Functions
are now related if they take related arguments to related results; and expressions
in general are related if some span can be found between their respective local
names that will relate their canonical forms.

The operational relations Rcan
σ and Rexp

σ coincide on canonical forms, and we
may write them as Ropn

σ indiscriminately. We can extend the relations to open

expressions: if M1 ∈ Expσ(s1, Γ) and M2 ∈ Expσ(s2, Γ) then define

Γ `M1 R
opn
σ M2 ⇐⇒ ∀R′ : s′1
 s′2,

Cij ∈ Canσj (si ⊕ s′i) i = 1, 2 j = 1, . . . , n .
(&n

j=1 . C1j (R ⊕R′)can
σj C2j)

=⇒ M1[~C1/~x] (R⊕R′)exp
σ M2[~C2/~x]

where Γ = {x1 : σ1, . . . , xn : σn}.
The intuition is that if Γ ` M1 Ropn

σ M2 for some R : s1
 s2 then the
names in s1 and s2 related by R are public and must be treated similarly by M1

and M2, while those names not mentioned in R are private and must remain so.

Theorem 5. For any expressions M1,M2 ∈ Expσ(s, Γ):

Γ `M1 (ids)
opn
σ M2 =⇒ s, Γ `M1 ≈σ M2.

If σ is a ground or first-order type of the nu-calculus and Γ is a set of variables
of ground type, then the converse also holds:

s, Γ `M1 ≈σ M2 =⇒ Γ `M1 (ids)
opn
σ M2.

Proposition 6. Logical relations subsume applicative equivalence: whenever we
have s, Γ `M1 ∼σ M2 then also Γ `M1 (ids)

opn
σ M2.

Thus logical relations can be used to demonstrate contextual equivalence, ex-
tending and significantly improving on applicative equivalence. They are not
quite sufficient to handle all contextual equivalences [26, §4.6], but they are com-
plete up to first-order functions, and in particular they prove all the examples
of Section 2 above.

4 Equational Reasoning

Applicative equivalence is generally much simpler to demonstrate than contex-
tual equivalence, and thus it provides a useful proof technique in itself. However,
it is still quite fiddly to apply, and at higher types it involves checking that
functions agree on an infinite collection of possible arguments. In this section we
present an equational logic that is of similar power but much simpler to use in
actual proofs.

Assertions in the logic take the form

s, Γ `M1 =σ M2

for open expressions M1,M2 ∈ Expσ(s, Γ). Valid assertions are derived induc-
tively using the rules of Figure 3. To simplify the presentation we use here a
notion of non-binding univalent context U〈−〉, given by

U〈−〉 ::= 〈−〉M | F 〈−〉 | N = 〈−〉 | 〈−〉 = N ′

| if 〈−〉 then M else M ′

| if B then 〈−〉 else M ′ | if B then M else 〈−〉.

Equality:

s, Γ `M =σ M

s,Γ `M1 =σ M2

s, Γ `M2 =σ M1

s, Γ `M1 =σ M2 s, Γ `M2 =σ M3

s, Γ `M1 =σ M3

Congruence:

s, Γ `M1 =σ M2

s, Γ ` U〈M1〉 =σ′ U〈M2〉
s, Γ ⊕ {x : σ} `M1 =σ′ M2

s, Γ ` λx:σ.M1 =σ→σ′ λx:σ.M2

Functions:

βv
s, Γ ` (λx:σ.M)C =σ′ M [C/x]

C canonical

ηv
s, Γ ` C =σ→σ′ λx:σ.Cx

C canonical

βid
s, Γ ` (λx:σ.x)M =σ M

βU
s, Γ ` (λx:σ.U〈M〉)M ′ =σ′ U〈(λx:σ.M)M ′〉 (x /∈ fv(U〈−〉))

Booleans:

s, Γ ` (if true then M else M ′) =σ M s,Γ ` (if false then M else M ′) =σ M ′

s, Γ `M1[true/b] =σ M2[true/b] s, Γ `M1[false/b] =σ M2[false/b]

s, Γ ⊕ {b : o} `M1 =σ M2

Names:

s, Γ ` (n = n) =o true
(n ∈ s)

s, Γ ` (n = n′) =o false
(n, n′ ∈ s distinct)

s, Γ `M1[n/x] =σ M2[n/x] each n ∈ s
s⊕ {n′}, Γ `M1[n′/x] =σ M2[n′/x] some fresh n′

s, Γ ⊕ {x : ν} `M1 =σ M2

New names:

s, Γ `M =σ νn.M s, Γ ` νn.νn′.M =σ νn′.νn.M

s⊕ {n}, Γ `M1 =σ M2

s, Γ ` νn.M1 =σ νn.M2 s, Γ ` U〈νn.M〉 =σ νn.U〈M〉
(n /∈ fn(U〈−〉))

Fig. 3. Rules for deriving equational assertions.

Thus M is always an immediate subterm of U〈M〉, though it may not be the first
to be evaluated. This abbreviation appears in the rules for congruence, functions
and new names.

General β and η-equivalences do not hold for a call-by-value system such
as the nu-calculus; even so, the four rules βv, ηv, βid and βU given here still
allow considerable scope for function manipulation. In particular the βU -rule
lifts U〈−〉 contexts through function application; this is a generalisation of Sabry
and Felleisen’s βlift [25, Fig. 1].

The most interesting rules of the logic are those concerned with names and
name creation. Two expressions with a free variable of type ν are equal if they are
equal after instantiation with any existing name, and with a single representative
fresh one. Name abstractions νn.(−) can be moved past each other, and through
contexts U〈−〉, providing that name capture is avoided.

Proposition 7. This equational theory respects evaluation:

s `M ⇓σ (s′)C =⇒ s `M =σ νs
′.C .

Proof. It is not hard to demonstrate, using the equational theory, that every
rule for evaluation in Figure 2 preserves the property given. ut

Theorem 8 (Soundness and Completeness). Equational reasoning can be
used to prove applicative equivalence, and hence also contextual equivalence:

s, Γ `M1 =σ M2 =⇒ s, Γ `M1 ∼σ M2

s, Γ `M1 =σ M2 =⇒ s, Γ `M1 ≈σ M2.

Moreover, it corresponds exactly to applicative equivalence at first-order types,
and to contextual equivalence at ground types:

s, Γ `M1 ∼σ M2 =⇒ s, Γ `M1 =σ M2 σ first-order, ground Γ

s `M1 ≈σ M2 =⇒ s `M1 =σ M2 σ ∈ {o, ν}.

Proof. Soundness follows from the fact that every rule of Figure 3 for =σ also
holds for ∼σ. The converse results on completeness are tedious to prove but not
especially difficult; however correct use of the rules for introducing free variables
of ground type is important for handling first-order functions. ut

At higher types applicative equivalence is in principle more powerful than our
equational reasoning. However this advantage is illusory: the only way to demon-
strate it is to use some more sophisticated technique (such as logical relations)
to show that particular functions can never be expressed in the nu-calculus. In
practice, the equational logic is much more direct and convenient for reasoning
about higher-order functions.

The sample contextual equivalences (1)–(4) from Section 2 are all confirmed
immediately by the equational theory. We expand here on two further examples.
First, that full β-reduction can be applied to functions with univalent bodies:

s, Γ ` (λx:σ.U〈x〉)M ≈σ′ U〈M〉, (7)

which we deduce from

s, Γ ` (λx:σ.U〈x〉)M = U〈(λx:σ.x)M〉 by βU

= U〈M〉 by βid and congruence.

This extends easily to nested U〈−〉 contexts, showing that β-reduction is valid
for any function whose bound variable appears just once.

Furthermore, if a function makes no use of its argument at all, then it need
not be evaluated:

s, Γ ` (λx:σ.M)M ′ ≈σ′ M if x /∈ fv(M). (8)

In a certain sense then the nu-calculus is free of side-effects. To prove this, we
use the univalent context if true then M else 〈−〉, which is certain to ignore the
contents of its hole. Thus:

s, Γ ` (λx:σ.M)M ′ = (λx:σ.if true then M else M)M ′

= if true then M else ((λx:σ.M)M ′) by βU

= M.

Note that both (7) and (8) may include expressions with free variables, and are
truly higher-order: it matters not at all what is the order of the final type σ′.

5 Relational Reasoning

The equational logic presented above is fairly simple, and powerful in that it
allows correct reasoning in the presence of an unusual language feature. However
it is unable to distinguish between private and public names, and thus cannot
prove example (6) of Section 2. The same limitation in the operational technique
of applicative equivalence is addressed by a move to logical relations; in this
section we introduce a correspondingly refined scheme for relational reasoning
about the nu-calculus. As with the equational theory, the aim is to provide all
the useful power of operational logical relations in a more accessible form.

Assertions now take the form

Γ `M1 Rσ M2

where R : s1
 s2 is a span such that M1 ∈ Expσ(s1, Γ) and M2 ∈ Expσ(s2, Γ).
To write such assertions, we first need an explicit language to describe spans
between sets of names. We build this up using disjoint sum R ⊕ R′ : s1 ⊕ s′1

s2 ⊕ s′2 over the following basic spans:

−→n : ∅
 {n} ←−n : {n}
 ∅
∅ : ∅
 ∅ n1̂n2 : {n1}
 {n2} nonempty.

In particular, we shall use the derived span:

n̂ = n̂n : {n}
 {n} nonempty.

Equational Reasoning:

s, Γ `M1 =σ M2 Γ `M2 Rσ M3 s′, Γ `M3 =σ M4

Γ `M1 Rσ M4
(R : s
 s′)

Congruence:

Γ ` x Rσ x
(x : σ ∈ Γ)

Γ ` true Ro true

Γ ` F1 Rσ→σ′ F2 Γ `M1 Rσ M2

Γ ` (F1M1) Rσ′ (F2M2) Γ ` false Ro false

Γ ⊕ {x : σ} `M1 Rσ′ M2

Γ ` (λx:σ.M1) Rσ→σ′ (λx:σ.M2)

Γ ` N1 Rν N2 Γ ` N ′1 Rν N ′2
Γ ` (N1 = N ′1) Ro (N2 = N ′2)

Γ ` B1 Ro B2 Γ `M1 Rσ M2 Γ `M ′1 Rσ M ′2
Γ ` (if B1 then M1 else M ′1) Rσ (if B2 then M2 else M ′2)

Booleans:

Γ ` (M1[true/b]) Rσ (M2[true/b]) Γ ` (M1[false/b]) Rσ (M2[false/b])

Γ ⊕ {b : o} `M1 Rσ M2

Names:

Γ ` n1 Rν n2
((n1, n2) ∈ R)

Γ ` (M1[n/x]) (R⊕ n̂)σ (M2[n/x]) some fresh n

Γ ` (M1[n1/x]) Rσ (M2[n2/x]) each (n1, n2) ∈ R
Γ ⊕ {x : ν} `M1 Rσ M2

Name creation:

Γ `M1 (R⊕←−n1)σ M2

Γ ` (νn1.M1) Rσ M2

Γ `M1 (R⊕−→n2)σ M2

Γ `M1 Rσ (νn2.M2)

Γ `M1 (R⊕ n1̂n2)σ M2

Γ ` (νn1.M1) Rσ (νn2.M2)

Fig. 4. Rules for deriving relational assertions.

It is clear that this language is enough to express all finite spans.
The rules for deriving relational assertions are given in Figure 4. The first

of these integrates equational results into the logic, so that existing equational
reasoning can be reused and we need only consider spans when absolutely nec-
essary. This is followed by straightforward rules for congruence and booleans.
Note that a trace of logical relations comes through in the congruence rule for
application: related functions applied to related arguments give related results.
As usual the most interesting rules are those concerning names.

To introduce a free variable of type ν requires checking its instantiation
with all related pairs of names, and one representative fresh name. This is a
weaker constraint than the corresponding rule in the equational logic, where
every current name had to be considered; and it is precisely this difference that
makes relational reasoning more powerful.

The final three rules handle the name creation operator νn.(−), and capture
the notion that local names may be private or public. In combination with the
equational rules for new names, they are equivalent to the following general rule:

Γ `M1 (R ⊕ S)σ M2

Γ ` (νs1.M1) Rσ (νs2.M2)
S : s1
 s2.

To apply such rules successfully requires some insight into how an expression
uses its local names; which if any are ever revealed to a surrounding program.

Theorem 9 (Soundness). Relational reasoning can be used to prove the cor-
responding operational relations:

Γ `M1 Rσ M2 =⇒ Γ `M1 R
opn
σ M2 .

By Theorem 5, these can then be used to demonstrate contextual equivalence:

Γ `M1 (ids)σ M2 =⇒ s, Γ `M1 ≈σ M2 .

Proof. We can show that the operational logical relations Ropn
σ satisfy all the

rules of Figure 4; this in turn depends on Theorem 8, that provable equality =σ

implies applicative equivalence ∼σ. ut

Theorem 10 (Completeness). Relational reasoning corresponds exactly to
operational logical relations up to first-order types:

Γ `M1 R
opn
σ M2 =⇒ Γ `M1 Rσ M2 σ first-order, ground Γ .

By Theorem 5, the same result holds for contextual equivalence:

s, Γ `M1 ≈σ M2 =⇒ Γ `M1 (ids)σ M2 σ first-order, ground Γ .

Proof. By induction on the size of Γ and structure of σ; essentially, we work
through the defining clause for logical relations (Definition 4). It is significant
here that evaluation is respected by the equational logic (Proposition 7), which
is in turn incorporated into the relational theory. ut

Thus relational reasoning provides a further practical method for reason-
ing about contextual equivalence. We even have that it can prove all contextual
equivalences between expressions of first-order type, thanks to the corresponding
(hard) result for operational logical relations. In particular we obtain a demon-
stration of the final example (6) from Section 2: the crucial closing steps are

x : ν ` (x = n) (←−n)o false

` (λx:ν.(x = n)) (←−n)ν→o (λx:ν.false)

` (νn.λx:ν.(x = n)) ∅ν→o (λx:ν.false)

from which we deduce

νn.λx:ν.(x = n) ≈ν→o λx:ν.false

as required. The span (←−n) : {n}
 ∅ used here captures our intuition that the
name bound to n on the left hand side is private, never revealed, and need not
be matched in the right hand expression.

6 Conclusions and Further Work

We have looked at the nu-calculus, a language of names and higher-order func-
tions, designed to expose the effect of generativity on program behaviour. Build-
ing on operational techniques of applicative equivalence and logical relations, we
have derived schemes for equational and relational reasoning; where a collection
of inductive rules allow for straightforward proofs of contextual equivalence. We
have proved that this approach successfully captures the distinction between
private and public names, and is complete up to first-order function types.

Figure 5 summarises the inclusions between the five equivalences that we have
considered. For general higher types they are all distinct; at first-order function
types the three right-hand equivalences are identified; and at ground types all
five are the same. Furthermore, as explained after the proof of Theorem 8, the
reasoning schemes of this paper in the bottom row are in practice just as powerful
as the operational methods above them.

One direction for future work is to extend the language from names to the
dynamically allocated references of Standard ML, storage cells that allow imper-
ative update and retrieval. For integer references, appropriate denotational and
operational techniques are already available [20,26]. These use relations between
sets of states to indicate how equivalent expressions may make different use of
local storage cells. The idea then would be to make a similar step in the logic,
from name relations to these state relations.

The question of completeness remains open: can these methods be enhanced
to prove all contextual equivalences? The operational method of ‘predicated
logical relations’ [26, §4.6] does take things a little further, with an even finer
analysis of name use; however the theoretical effort involved seems at present to
outweigh the practical returns.

Applicative equivalence ⊆ Logical relations

⊆
Contextual equivalence

Equational reasoning
⊆

⊆ Relational reasoning

⊆

⊆

Equal at first-order types

All identical at ground types {o, ν}

Fig. 5. Various equivalences between expressions of the nu-calculus

Separately from this, it should not be hard to implement the existing rela-
tional logic within a generic theorem prover such as Isabelle [19], as Frost and
Mason have begun to do for a fragment of VTLoE [3]. The only difficulty for
proof search lies in the choice of relation between local name sets. Human guid-
ance is one solution here, but even a brute force approach would work as there
are only finitely many spans R : s1
 s2 between any two given name sets. Note
that we are not concerned here with an implementation of the proof that the
reasoning system itself is correct (Theorem 9); what might benefit from machine
assistance is the demonstration that two particular expressions are ids-related,
and hence contextually equivalent.

References

1. S. Abramsky. The lazy lambda calculus. In Research Topics in Functional Pro-
gramming, pages 65–117. Addison Wesley, 1990.

2. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103:235–271, 1992. Also published
as Technical Report 100-89, Rice University.

3. J. Frost and I. A. Mason. An operational logic of effects. In Computing: The
Australasian Theory Symposium, Proceedings of CATS ’96, pages 147–156, January
1996.

4. A. Gordon and A. Pitts, editors. Higher Order Operational Techniques in Seman-
tics. Cambridge University Press, 1997. To appear.

5. A. D. Gordon. Functional Programming and Input/Output. Cambridge University
Press, September 1994.

6. A. D. Gordon. Bisimilarity as a theory of functional programming. In Mathemati-
cal Foundations of Programming Semantics: Proceedings of the 11th International
Conference, Electronic Notes in Theoretical Computer Science 1. Elsevier, 1995.

7. F. Honsell, I. A. Mason, S. Smith, and C. Talcott. A variable typed logic of effects.
Information and Computation, 119(1):55–90, May 1995.

8. D. Howe. Proving congruence of bisimulation in functional programming languages.
Information and Computation, 124(2):103–112, February 1996.

9. I. A. Mason. The Semantics of Destructive Lisp. PhD thesis, Stanford University,
1986. Also published as CSLI Lecture Notes Number 5, Center for the Study of
Language and Information, Stanford University.

10. I. A. Mason and C. Talcott. Equivalence in functional languages with effects.
Journal of Functional Programming, 1(3):297–327, July 1991.

11. I. A. Mason and C. Talcott. Inferring the equivalence of functional programs that
mutate data. Theoretical Computer Science, 105:167–215, 1992.

12. I. A. Mason and C. L. Talcott. References, local variables and operational reason-
ing. In Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 186–197. IEEE Computer Society Press, 1992.

13. R. Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science,
4:1–22, 1977.

14. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and II.
Information and Computation, 100:1–77, 1992.

15. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

16. E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, July 1991.

17. E. Moggi. A general semantics for evaluation logic. In Proceedings of the Ninth
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society
Press, 1994.

18. E. Moggi. Representing program logics in evaluation logic. Unpublished
manuscript, available electronically, 1994.

19. L. C. Paulson. Isabelle: A Generic Theorem Prover. Lecture Notes in Computer
Science 828. Springer-Verlag, 1994.

20. A. Pitts and I. Stark. Operational reasoning for functions with local state. In
Gordon and Pitts [4]. To appear.

21. A. M. Pitts. Evaluation logic. In IVth Higher Order Workshop, Banff 1990, pages
162–189. Springer-Verlag, 1991. Also published as Technical Report 198, University
of Cambridge Computer Laboratory.

22. A. M. Pitts and I. Stark. Observable properties of higher order functions that
dynamically create local names, or: What’s new? In Mathematical Foundations
of Computer Science: Proceedings of the 18th International Symposium, Lecture
Notes in Computer Science 711, pages 122–141. Springer-Verlag, 1993.

23. A. M. Pitts and I. Stark. On the observable properties of higher order functions that
dynamically create local names (preliminary report). In Proceedings of the 1993
ACM SIGPLAN Workshop on State in Programming Languages, Yale University
Department of Computer Science, Research Report YALEU/DCS/RR-968, pages
31–45, 1993.

24. G. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

25. A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing
style. Lisp and Symbolic Computation, 6(3/4):287–358, 1993.

26. I. Stark. Names and Higher-Order Functions. PhD thesis, University of Cambridge,
December 1994. Also published as Technical Report 363, University of Cambridge
Computer Laboratory.

27. I. Stark. Categorical models for local names. Lisp and Symbolic Computation,
9(1):77–107, February 1996.

28. C. Talcott. Reasoning about functions with effects. In Gordon and Pitts [4]. To
appear.

