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Abstract. We consider the problem of providing formal support for working
with abstract syntax involving variable binders. Gabbay and Pitts have shown in
their work on Fraenkel-Mostowski (FM) set theory how to address this through
first-class names: in this paper we present a dependent type theory for program-
ming and reasoning with such names. Our development is based on a categori-
cal axiomatisation of names, with freshness as its central notion. An associated
adjunction captures constructions known from FM theory: the freshness quanti-
fier N, name-binding, and unique choice of fresh names. The Schanuel topos —
the category underlying FM set theory — is an instance of this axiomatisation.
Working from the categorical structure, we define a dependent type theory which
it models. This uses bunches to integrate the monoidal structure corresponding
to freshness, from which we define novel multiplicative dependent productsΠ∗

and sumsΣ∗, as well as a propositions-as-types generalisationH of the freshness
quantifier.

1 Introduction

The handling of variable binding in abstract syntax is a recognised challenge for machine-
assisted reasoning about programming languages and logics. The problem is that a sig-
nificant part of the formalisation effort may go into dealing with issues that are normally
suppressed in informal practice: namely that one is working withα-equivalence classes
of terms rather than raw terms.

Gabbay and Pitts have shown that FM set theory supports a notion of names that can
make precise the informal practise of using concrete names forα-equivalence classes.
They give a number of useful constructions: abstract syntax with binders can be encoded
as an inductive data type, there is a useful syntax-independent notion of name-freshness,
and a freshness quantifier simplifies reasoning with names.

The approach of Gabbay and Pitts has been studied in a number of other set-
tings, among which are the first-order Nominal Logic [18], the higher-order logic FM-
HOL [6] as well as the programming language FreshML [19]. Related [9] to FM the-
ory, the Theory of Contexts [11] provides an axiomatisation of reasoning with names
in dependent type theory. The ideas underlying FM have also proved useful in other
areas such as Spatial Logic [2] or programming with semi-structured data with hid-
den labels [1]. These approaches typically focus either on programming with names, or
reasoning about them. The Theory of Contexts, for example, supports reasoning with
names, but does not admit functions that compare names or which (locally) choose fresh
names.
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In this paper we take the first steps towards a dependent type theory incorporating
FM concepts for both programming and reasoning with names. We introduce a depen-
dent type theory, using as guidance the categorical structure of Schanuel topos, which is
the category corresponding to FM set theory. In contrast to FM set theory, where swap-
ping is the primitive notion for working with names, we take freshness as the central
primitive of our type theory. This allows us to describe the constructions with names
and binding in terms of universal constructions, and also avoids problems with exten-
sional equality, which seems to be necessary for definingα-equivalence classes using
swapping.

As the first contribution of the paper we introduce abuncheddependent type the-
ory. Since freshness corresponds to a monoidal structure, bunches provide a natural
way of integrating it into the type theory. Our bunched type theory may be seen as
a generalisation of theαλ-calculus of O’Hearn and Pym [17,20]. Theαλ-calculus is
a simple type theory corresponding to a category which is both cartesian closed and
monoidal closed. Our type theory extends this situation, but only in the additive di-
rection: we consider a category which islocally cartesian closed as well as monoidal
closed. In this structure, we can model a dependent type theory with two function spaces
Πx:A.B andΠ∗x:C.D. The first comes from the locally cartesian closed structure and
consists of normal dependent functions. The second, which is subject to the restriction
thatC is closed, comes from the monoidal closed structure and may be thought of as
consisting of functions which are only defined on argumentsx : C that contain just
freshnames. In particular, with a type of namesN, we can useΠ∗n:N. D to model
α-equivalence classes, which corresponds to the well-known approach of modelling
α-equivalence classes as ‘fresh functions’ [7,4,9,5]. Another way of representingα-
equivalence classes, as given in [7], is to consider them as pairsn.x of a termx with a
distinguished namen in such a way that the identity ofn is hidden in the pair. This rep-
resentation is also available in our type theory as fresh sum typesΣ∗, dual toΠ∗. The
inhabitants ofΣ∗x:C.D may be thought of as pairsM.N whereM :C andN :D(M)
and in which all the names inM have been hidden. To formulateΣ∗-types, we intro-
duce a typeB∗(M :A), thought of as those elements ofB which are free from all the
names in the termM :A. Thesefreefromtypes are used to enforce that no use of a pair
M.N in Σ∗x:C.D can reveal the hidden names.

As a second contribution of the paper, we give a new categorical axiomatisation of
names and binding. The main feature of this axiomatisation is a propositions as types
generalisation of the freshness quantifier of Gabbay and Pitts. To recall the freshness
quantifier, consider quantifiers∃∗x:A.ϕ and∀∗x:A.ϕ expressing ‘ϕ holds for somex
containing onlyfreshnames’ and ‘ϕ holds for anyx containing onlyfreshnames’ re-
spectively. The freshness quantifierNarises because, for the type of namesN, the
propositions∃∗n:N. ϕ and∀∗n:N. ϕ are equivalent; andNn. ϕ is used to denote either
of them. We have a propositions-as-types correspondence between∃∗ andΣ∗ as well as
between∀∗ andΠ∗, so one may generalise the equivalence of∃∗n :N. ϕ and∀∗n :N. ϕ
to an isomorphism betweenΣ∗n:N. D andΠ∗n:N. D.

This motivates our categorical axiomatisation of names. The central concept is
freshness, giving rise to a certain ‘fresh weakening’ functorW . The typesΣ∗ andΠ∗

are left and right adjoints toW . Names are given by an objectN having decidable



equality. Moreover, we require an isomorphismΣ∗
N
∼= Π∗

N generalising the freshness
quantifier. We show that this structure includes not only the freshness quantifier, but
also binding (n.x) as in [7,16] as well as unique choice of fresh names(new n. M) as
in FreshML [19].

The semantics leads us to a type theory with names and binding. Based on the iso-
morphismΣ∗

N
∼= Π∗

N, we introduce hidden-name typesHn. D as a generalisation of the
freshness quantifier. We may think of the elements ofHn. D as elements ofΣ∗n:N. D,
i.e. pairs with hidden names, but also as elements ofΠ∗n:N. D, i.e. functions taking
only fresh names. In analogy to the freshness quantifier, which has the rules from both
∃∗ and∀∗, the rules forH are those from bothΣ∗ andΠ∗. This dual view of hidden-
name types turns out to be useful for working with abstract syntax: it allows us to use
both HOAS-style constructions and FM-style constructions at the same time.

2 A Bunched Dependent Type Theory

In this section we introduce a first-order bunched dependent type theory and identify
the categorical structure corresponding to it. The type theory has the following forms
of sequents:(` Γ Bunch) — Γ is a bunch, or context;(Γ ` A Type) — A is a
type in contextΓ ; (Γ ` M : A) — M is a term of typeA in contextΓ ; as well as
corresponding sequents for definitional equalities.

2.1 Bunches and Structural Rules

Bunches are built from the empty bunch♦ using two kinds of extension. First, the fa-
miliar additive context extension from dependent type theory, which takes a bunchΓ to
the bunchΓ, x :A. Second, a multiplicative extension taking two bunchesΓ and∆ to
a new bunchΓ ∗∆. This extension is non-dependent in that no dependency is allowed
across the∗. The bunchΓ ∗∆ should be thought of as the contextΓ,∆ with the restric-
tion that the names occurring inΓ are disjoint from those in∆. For example, ifLam is
a type which encodes object-levelλ-terms, then the bunch(x :Lam, y :Lam) ∗ (z :Lam)
declares three termsx, y andz with the property that the names (representing the free
variables of the encoded terms) inx andy are disjoint from those inz.

` ♦ Bunch

Γ ` A Type
x 6∈ v(Γ )

` Γ, x :A Bunch

` Γ Bunch ` ∆ Bunch
v(Γ ) ∩ v(∆)=∅

` Γ ∗∆ Bunch

In the side condition of these rules, we writev(Γ ) for the set of variables declared inΓ .
We will frequently omit such side-conditions on the variable names, assuming tacitly
that we encounter only bunches in which no variable is declared more than once.

We use the notationΓ (∆) to indicate thatΓ has a sub-bunch∆, where sub-bunches
are defined as follows:∆ is a sub-bunch of itself, and if∆ is a sub-bunch ofΓ then it
is also a subbunch of(Γ, x : A), andΓ ∗ Φ, andΦ ∗ Γ . We writeΓ (Φ) for the bunch
which results fromΓ (∆) by replacing the (unique) occurrence of∆ in Γ with Φ.

Using this notation, we can formulate the structural rules:

(Proj)
Γ ` A Type

x 6∈ v(Γ )
Γ, x :A ` x : A



(Weak)
Γ (∆) ` J ∆ ` A Type

x 6∈ v(Γ, ∆)
Γ (∆, x :A) ` J

(Subst)
∆ ` M : A Γ (∆, x :A) ` J

Γ (∆) [M/x] ` J [M/x]

(Unit)
Γ (∆) ` J

===========
Γ (∆ ∗ ♦) ` J

(Swap)
Γ (∆ ∗ Φ) ` J
===========
Γ (Φ ∗∆) ` J

(Assoc)
Γ ((∆ ∗ Φ) ∗ Ψ) ` J
===============
Γ (∆ ∗ (Φ ∗ Ψ)) ` J

In these rules, we useJ for an arbitrary judgement and double lines for bi-directional
rules. We highlight the rule (Unit) which requires the empty bunch♦ to be a unit for∗,
thus making∗ affine. In particular, the multiplicative weakening rule

(∗-Weak)
Γ (∆) ` J ` Γ (∆ ∗ Φ) Bunch

Γ (∆ ∗ Φ) ` J

becomes admissible by using (Unit) together with (Weak).
Semantically, the bunches and structural rules can be modelled by a comprehension

category [12] that in addition has an affine (i.e. the unit is isomorphic to the termi-
nal object) symmetric monoidal structure∗ in its base. We model the additive context-
extensionΓ, x :A by the comprehension, and the multiplicative context-extensionΓ ∗∆
by the monoidal product. To simplify the development, we make an additional assump-
tion on the monoidal structure, given by the following definition [10].

Definition 1. Anaffine linear categoryis a categoryB with finite products and an affine
symmetric monoidal structure∗ such that, for any two objectsA andB of B, the canon-
ical map〈π1, π2〉 : A ∗B → A×B is a monomorphism.

In most of the paper, we take a special comprehension category: the codomain fibra-
tion cod : B→→ B for an affine linear categoryB having all pullbacks. Although tech-
nically the interpretation uses a corresponding split fibration to deal with well-known
coherence issues [8], in the following we elide such details. We assume the reader to be
familiar with the semantics of (first-order) dependent type theory, see e.g. [12,22,21].

2.2 Type Formers

In this section, we consider the types and terms, motivating them semantically. Starting
from a codomain fibrationcod : B→→ B with an affine linear baseB, we step-by-step
add more structure and introduce syntax based on it.

Type and term constants.Basic types and terms are given by constants. These can be
formulated as usual. For example, a type constantT in contextΓ may be introduced
as(Γ ` T (x) Type), wherex is the list of variables defined inΓ . That it is enough
to annotate the constants just with the list of variables inΓ , ignoring any bunching
structure, is a consequence of the assumption that the canonical mapA ∗ B � A× B
is a monomorphism.

Additive types (Σ, Π). Types found in Martin-L̈of type theory can also be formulated
as usual. In this paper, we use dependent sums and products, but others such as identity
types can be added without problem. To modelΠ-types in the codomain fibration, we
assumeB to be locally cartesian closed [21,12].



Monoidal product (*). We add typesA∗B which internalise the context multiplica-
tion Γ ∗ ∆. The typeA∗B may be thought of as containing all pairs〈M,N〉 in A×B
for which the sets of names underlyingM andN are disjoint.

(∗-Ty)
` A Type ` B Type

` A∗B Type
(∗-I)

` A∗B Type Γ ` M : A ∆ ` N : B

Γ ∗∆ ` M∗N : A∗B

(∗-E)
Γ (z :A∗B) ` C Type ∆ ` M : A∗B Γ (x :A ∗ y :B) [x∗y/z] ` N : C [x∗y/z]

Γ (∆) [M/z] ` (let M be x∗y in N) : C [M/z]

Note that the typeA∗B requires bothA andB to be closed. This is because of substitu-
tion, as(A∗B)[σ] and(A[σ]∗B[σ]) would not always have isomorphic interpretations.

Since the rule (∗-Weak) is admissible, we can derive an inclusionıA,B of type
A∗B → A×B, given by the termıA,B =df λp : A∗B. (let p be x∗y in 〈x, y〉). Us-
ing this, we can state the equations for the monoidal product:

(∗-β)
Γ ` let M∗N be x∗y in R : C

Γ ` (let M∗N be x∗y in R) = R [M/x] [N/y] : C

(∗-η)
∆ ` M : A∗B Γ (z :A∗B) ` N : C

Γ (∆)[M/z] ` N [M/z] = let M be x∗y in (N [x∗y/z]) : C[M/z]

(Inject)
Γ ` M : A∗B Γ ` N : A∗B Γ ` ıA,B(M) = ıA,B(N) : A×B

Γ ` M = N : A∗B

Fresh dependent products (Π∗). We now make the further assumption onB that, for
each objectA in B, the functor−∗A preserves pullbacks and has a right adjointA −∗ −.

This gives rise the following situation. Letgl(− ∗ A) be the fibration defined by
change-of-base as in the left square below. LetWA : B→ → B/(− ∗ A) be the functor
which maps an objectf : B → G to f ∗A : B ∗A → G∗A. The assumption that−∗A
preserves pullbacks amounts to saying thatWA is afibredfunctor fromcod to gl(−∗A).
Moreover, it follows thatWA has a fibred right adjointΠ∗

A : B/(− ∗ A) → B→, see
e.g. [14]. Explicitly,Π∗

A maps an objectg : C → G ∗A to the the morphismΠ∗
Ag as in

the pullback on the right.

B/(− ∗A) //

gl(−∗A)
��

_� B→

cod
��

B −∗A
// B

Π∗
AC //

Π∗
Ag

��

_� A −∗ C

A−∗g
��

G η
// A −∗ (G ∗A)

Proposition 1. For any objectA of B, the functorWA as defined above has a fibred
right adjointΠ∗

A if and only ifA∗− preserves pullbacks and has a right adjointA −∗ −.

In this way, we can recast the monoidal closed structure in terms of a fibred adjunction,
and introduce syntax for the fibred adjunction as follows.

(Π∗-Ty)
Γ ∗ x :A ` B Type

Γ ` Π∗x:A. B Type



(Π∗-I)
Γ ∗ x :A ` M : B

Γ ` λ∗x :A. M : Π∗x:A. B
(Π∗-E)

Γ ` M : Π∗x:A. B ∆ ` N : A

Γ ∗∆ ` M@N : B [N/x]

(Π∗-β)
Γ ∗ x :A ` M : B ∆ ` N : A

Γ ∗∆ ` (λ∗x :A. M)@N = M [N/x] : B [N/x]

(Π∗-η)
Γ ` M : Π∗x:A. B

Γ ` λ∗x :A. (M@x) = M : Π∗x:A. B

Notice that the fresh dependent productΠ∗x:A.B is only well-formed for closed typesA,
as bunching does not allow dependency across the∗ in the bunchΓ ∗ x :A.

The rules ofΠ∗ derive from the adjoint correspondence

1G∗A = WA(1G) → C in B/(G ∗A)
==============================

1G → Π∗
A(C) in B/G

,

since morphisms1G → D in B/G correspond to terms in contextG. Here,1G denotes
the terminal object inB/G. ThatΠ∗

A is a fibred right adjoint means that substitution
behaves as expected, that is we have(Π∗x:A.B)[M/y] = Π∗x:A. (B[M/y]) as well as
(λ∗x :A.N)[M/y] = λ∗x :A. (N [M/y]).

Freefrom types (A∗(N :B)). Having considered a fibred right adjointΠ∗
A to WA, it is

natural to ask for a fibred left adjointΣ∗
A to WA. To add syntax for such a left adjoint,

we need to account for a one-to-one correspondence between mapsB → WA(C) in
B/(G∗A) andΣ∗

A(B) → C in B/G. Hence, we need a syntactic equivalent for the map
B → WA(C), and so must introduce syntax forWA(C). Note that this is not necessary
for Π∗, since there we only need the value ofWA(1G), which is1G∗A.

We introduce typesB∗(M :A) as a syntax for working withWA(B). Intuitively, the
typeB∗(M :A) comprises all thosep : B∗A whose second componentπ2(p) is M : A.
The functorWA may then be understood as a ‘fresh weakening’ functor, taking the
type(Γ ` B Type) to (Γ ∗ x :A ` B∗(x:A) Type). Here, typeA is necessarily closed,
while B may in general depend onΓ . However, in the present paper we avoid the
complexity of managing substitution inB by restricting to closed freefrom types:

(F-Ty)
` A Type ` B Type ∆ ` N : A

∆ ` B∗(N :A) Type

(F-I)
` A, B Type Γ ` M : B ∆ ` N : A

Γ ∗∆ ` M∗N : B∗(N :A)

(F-E)
Γ (x :A, z :B∗(x:A)) ` C Type ∆ ` M : B∗(N :A) Γ (y :B ∗ x :A) ` R : C[y∗x/z]

Γ (∆)[N/x][M/z] ` let M be y∗x in R : C[N/x][M/z]

The equations1, in whichΓ ` Q : B∗(N :A), are:

(β) let M∗N be y∗x in R = R[N/x][M/y]
(η) let Q be y∗x in R[y∗x/z] = R[N/x][Q/z]

1 For brevity, from now on, we omit the contexts and typeability assumptions in the formu-
lation of equations. Nevertheless, all equations are to be understood as equations-in-context,
formulated under suitable typeability assumptions.



Furthermore, we add a constant to ‘join’ two elements of freefrom types.

(F-join)
Γ ` M : A∗(R:C) Γ ` N : B∗(R:C)

Γ ` joinA,B,C(M, N) : (A×B)∗(R:C)

This constant is part of the syntax forWA, arising from the fact thatWA is a fibred
functor, equivalently that− ∗ A preserves pullbacks. It makes available the important
property of freshness that if two objectsx andy are fresh for somez then so is the
pair 〈x, y〉. The behaviour ofjoin is described by the equations

let joinA,B,C(M,N) be y∗x in (π1 y)∗x = M,
let joinA,B,C(M,N) be y∗x in (π2 y)∗x = N.

The semantic interpretation of (F-Ty) is given by the following diagram.

• //

B∗(N:A)

��
_� B ∗A

π2
��

_� B ∗A

!∗A
��

∆
N

// A ∼=
// 1 ∗A

To see how this corresponds toWA, recall that a closed typeB in contextΓ corresponds
to the projectionπB : Γ ×B → Γ . Using pullback-preservation of−∗A, the following
square is easily seen to be a pullback.

(Γ ×B) ∗A
π2∗A //

πB∗A
��

_� B ∗A

π2
��

Γ ∗A π2
// A

Since the bottom row of this diagram corresponds to the termΓ ∗ x : A ` x : A, this
means that(Γ ∗x :A ` B∗(x:A) Type) receives an interpretation isomorphic toπB ∗A,
which, by definition, is justWA(πB).

Fresh dependent sums (Σ∗). We now assume thatWA has a fibred left adjointΣ∗
A.

Using freefrom types as syntax forWA, this gives rise to the following rules forΣ∗
A.

(Σ∗-Ty)
Γ ∗ x :A ` B Type

Γ ` Σ∗x:A. B Type

(Σ∗-I)
x :A ` B Type Γ ` M : A Γ ` N : B[M/x]

Γ ` bind(M, N) : (Σ∗x:A. B)
∗(M :A)

(Σ∗-E)
Γ ` M : Σ∗x:A. B (Γ ∗ x :A), y :B ` N : C∗(x:A)

Γ ` let M be x.y in N : C

M.N =df (let bind(M, N)be u∗m in u)

These rules are best explained using the intended model of names. The termbind(M,N)
in (Σ∗-I) may be understood as the pair〈M,N〉 with all the names inM made private,
together with a proof that the names inM are indeed fresh for the pair. The abbrevia-
tion M.N is a short-hand for the pair without the proof of freshness. The introduction
rule (Σ∗-I) has a freefrom type in its conclusion because the constructorbind(N,M)



comes from the unitη : B → WAΣ∗
AB of the adjunction, whose codomainWAΣ∗

AB

is the semantic equivalent of(Σ∗x:A.B)∗(x:A). The elimination rule (Σ∗-E) formalises
the intuition that an elementM of typeΣ∗x:A.B is a pair with name-hiding. For this
intuition to be valid, it should only be possible to use the components of the pairM in
such a way that none of the hidden names is revealed. In (Σ∗-E) this is achieved using
freefrom types: the termN has typeC∗(x:A), and such a term can be understood as an
element ofC whose value does not depend on the names inx.

The equations, in which(Γ ∗x :A), y :B ` R :C∗(x:A) andΓ, z :Σ∗x:A.B ` Q :D,
follow from the triangular identities for the adjunctionΣ∗

A a WA.

(β) let bind(M,N)be z∗u in (let z be x.y in R)∗u = R[M/x][N/y]
(η) let M be x.y in (let bind(x, y)be z∗x in Q∗x) = Q[M/z]

We remark that the restriction on freefrom types thatB must be closed inB∗(M :A)

makes the rules forΣ∗ incomplete. For example, we have to restrict (Σ∗-I) so thatB
can only depend onx. More general rules are possible with unrestricted freefrom types.

2.3 Examples and Applications

As a simple example, we show that one can go fromΠx:A.B to Π∗x:A.B, as is the
case in the affineαλ-calculus.

...
(Proj)

f :Πx:A. B ` f : Πx:A. B
(Unit)

(f :Πx:A. B) ∗ ♦ ` f : Πx:A. B
(Weak)

(f :Πx:A. B) ∗ x :A ` f : Πx:A. B

...
(Proj)

x :A ` x : A
(Unit)

x :A ∗ ♦ ` x : A
(Swap)

♦ ∗ x :A ` x : A
(Weak)

(f :Πx:A. B) ∗ x :A ` x : A
(Π-E)

(f :Πx:A. B) ∗ x :A ` f x : B
(Π∗-I)

f :Πx:A. B ` λ∗x :A. f x : Π∗x:A. B

With type dependency and freefrom types, we can express freshness assumptions
more precisely than with simply-typed bunches alone. For example, the freshness as-
sertions in the contextx : A, y : A, u : A∗(x:A), v : A∗(〈x,y〉:A×A) cannot be expressed
with simply-typed bunches. On the other hand, the only way the freshness information
in freefrom typesB∗(M :A) can ever be used is via bunches. We then have to ask the
question if this is enough to derive useful statements involving freefrom types.

A useful set of rules for working with freefrom types appears in the type system of
FreshML [19], which may be seen as a simply typed system with restricted freefrom
types. Rules similar to those in FreshML are admissible in our system, thus allowing
us to work with freefrom types in the style of FreshML. The main use of freshness in
FreshML is for abstraction types (α-equivalence classes) and for the choice of fresh
names (new n. M ). Since we will see below that both constructions arise as instances
of Π∗ andΣ∗, we expect to have at our disposal at least the uses of names and binding
as found in FreshML.

Furthermore, with dependent types we can also work with types that are not avail-
able in FreshML. For example, assume an inductive typeL of lists of names. By struc-
tural recursion, we can define a functionremove of type Πn:N. (L→L∗(n:N)) taking



a namen and a listl to the list which results by removingn from l. As can be seen
from the type,remove also provides a proof thatn is fresh for the resulting list. Such
freshness information is crucial for defining functions out ofα-equivalence classes, to
guarantee that the definition is independent of the choice of representative. An example
of this, the function computing the free variables of a term, is given in Sec. 3.1 below.

2.4 Models

We summarise the structure required of a categoryB so that its codomain fibration
models all of the syntax. The interpretation itself also requires this structure to be split,
but due to space restrictions we omit the details of the interpretation.

Definition 2. An affine linear categoryB is a model of the bunched dependent type
theoryif it is locally cartesian closed, and if, for each objectA in B, the functorWA as
defined above is a fibred functor fromcod to gl(−∗A) having both fibred left and right
adjointΣ∗

A a WA a Π∗
A.

We have seen that the fibred adjunctionWA a Π∗
A can be formulated in terms of the

monoidal structure. We know of no such non-fibred restatement forΣ∗
A a WA.

3 Names and Binding

In this section we consider how the bunched type theory can be used for working with
names and binding. To this end, we consider a particular model of the type theory, the
Schanuel toposS, which is being widely used as a universe in which to work with names
and binding. The Schanuel topos may be thought of as a category of sets involving
names. For lack of space, we cannot present it in any detail; the reader is referred to e.g.
[7] for its use for names and binding, and to e.g. [15,13,16] for categorical presentations.
For the type theory we use the following categorical structure ofS.

Proposition 2. The Schanuel toposS is a model of the bunched type theory having the
following additional structure.

1. Finite coproducts which are stable under pullback.
2. An objectN for which [δ, ı] : N + (N ∗N) → (N×N) is an isomorphism. Here

δ is the diagonal map andı is the canonical monomorphism.
3. A vertical natural isomorphismi : Σ∗

N → Π∗
N such that the triangle below com-

mutes.

WNΣ∗
N

WN(i) // WNΠ∗
N

εuullllll

Idη

iiRRRRRR

Hereη is the unit ofΣ∗
N a WN andε is the counit ofWN a Π∗

N.
4. For each objectA and each monomorphismm : B � C, the commuting square

below is a pullback.

B ∗A
_�

π1 //

m∗A
��

B

m
��

C ∗A π1
// C



In the rest of this section we explain the structure in this proposition and how it can
be integrated in the type theory. We argue informally towards the relation of the above
structure to constructions in FM set theory.

As a model of the bunched type theory,S has bothΣ∗ andΠ∗ types. The fresh sums
Σ∗x:A.B may be constructed by taking certain equivalence classes of pairs〈M,N〉
with M : A andN : B[M/x]. Fresh productsΠ∗x:A.B may be constructed as certain
partial functions fromA to B. This underpins the view ofΣ∗x:A.B andΠ∗x:A.B as
non-standard sums and products. The difference from the standard sums and products
is determined only by the names inA. For a typeA that does not contain names, such as
the natural numbers, the non-standard sums and products agree with the standard ones.

In Prop. 2.2 we ask for an objectN of names with the property that any two names
are either equal, i.e. a single element ofN, or they are fresh, i.e. an element ofN∗N.
Thus, names have decidable equality, with two names being different precisely when
they are fresh. This object of names plays the same role as the set of atomsA in FM set
theory. We omit the rules for the type of names and its decidable equality, but remark
that stable coproducts are used in the formulation of the term for deciding the equality.

Prop. 2.3 concerns the structure of the typesΣ∗n:N. B andΠ∗n:N. B. Both types
can be used for encoding ofα-equivalence classes. An elementn.x of typeΣ∗n:N. B
is, by construction, an equivalence class and may be understood as theα-equivalence
class ofx with respect ton. This encoding ofα-equivalence classes agrees with that
of FM set theory. Indeed, for a closed typeB, the construction ofΣ∗n:N. B is (essen-
tially) the same as that of the abstraction set[A]B of FM set theory. In the work on
FM sets, it was also observed thatα-equivalence classes may be constructed as partial
functions fromN to B. This construction is captured by the typeΠ∗n:N. B. Therefore,
Σ∗n:N. B andΠ∗n:N. B are different encodings of the sameα-equivalence classes,
which means that the types should be isomorphic. This explains the isomorphism in
Prop. 2.3. The isomorphism is useful for working withα-equivalence classes, as it al-
lows us, for example, to form anα-equivalence class as a pairn.x in Σ∗n:N. B, and
then to use it as a function inΠ∗n:N. B to instantiate it at some other name(n.M)@m.
We give further examples of this in Sec. 3.1, see also [7].

We integrate the isomorphismi in the type theory by means of hidden-name types
Hn. B which are isomorphic to bothΣ∗n:N. B andΠ∗n:N. B. The rules forHn. B are
those from bothΣ∗ andΠ∗, giving H a self-dual nature.

(H-Ty)
Γ ∗ n :N ` B Type

Γ ` Hn. B Type

(H-I1)
Γ ∗ n :N ` M : B

Γ ` λ∗Hn. M : Hn. B
(H-E1)

Γ ` M : Hn. B ∆ ` N : N

Γ ∗∆ ` M@HN : B [N/n]

(H-I2)
n :N ` B Type Γ ` M : N Γ ` N : B[M/n]

Γ ` bindH(M, N) : (Hn. B)∗(M :N)

(H-E2)
Γ ` M : Hn. B (Γ ∗ n :N), y :B ` N : C∗(n:N)

Γ ` let M be n.Hy in N : C

M.HN =df (let bindH(M, N)be u∗m in u)

The typeHn. B may be interpreted as eitherΣ∗
NB or Π∗

NB. In the first case, the in-
terpretation ofλ∗Hn. M and M@HN is given by i−1(λ∗n : N.M) and (i(M))@N



respectively. With this interpretation,(β) and (η)-equations forH derive from those
for Σ∗ andΠ∗. A further equation, which we omit, arises from the naturality ofi.

(β1) (λ∗Hn. M)@HN = M [N/n]
(η1) λ∗Hn. (M@Hn) = M n 6∈ FV(M)
(β2) let bindH(M,N)be z∗u in (let z be x.y in R)∗u = R[M/x][N/y]
(η2) let M be x.Hy in (let bindH(x, y)be z∗x in Q∗x) = Q[M/z]

The commuting diagram in Prop. 2.3 provides two additional equations, which ex-
plain (to some extent) the interaction between the two roles ofHn. B asΣ∗n:N. B
andΠ∗n:N. B. The equations are formulated in contextΓ ∗ n :N.

(β3) let bindH(n, N)be x∗m in x@Hm = N
(η3) bindH(n, let Mbe x∗m in x@Hm) = M

From Prop. 2.4 it follows that hidden-name types are in propositions as types cor-
respondence with the freshness quantifierNof Gabbay and Pitts. Consider the logic of
subobjects ofS. From the fibred adjunctionΣ∗

A a WA a Π∗
A we can derive a fibred

adjunction∃∗A a WS
A a ∀∗A onSub(S), whereWS

A is the endofunctor onSub(S) map-
ping a subobjectm : B � C to m ∗ A : B ∗ A � C ∗ A (note that− ∗ A preserves
pullbacks, and so also monos). Prop. 2.4 then means thatWS

A is nothing but substitution
along the projectionπ1 : (−) ∗ A → (−). Thus, the propositions as types analogues
∃∗A of Σ∗

A and∀∗A of Π∗
A arise in terms of ordinary quantification along this projection.

In the particular case whereA is N, it follows from Σ∗
N

∼= Π∗
N that∃∗N = ∀∗N. We

have thus shown that, along the projectionπ1 : (−) ∗ N → N, the existential and the
universal quantifier agree, and it may be seen [16] that this amounts the the freshness
quantifier N, i.e. N= ∃∗N = ∀∗N. As hidden-name types correspond to both∃∗N and∀∗N,
they thus correspond toN.

3.1 Examples and Applications

Unique choice of fresh names.For programming with names and binders, it is useful to
have the ability to generate fresh names. In FreshML, one can write a term(new n. M),
which is thought of as the unique value ofM for an arbitrary freshly chosen namen.
The existence of such a unique value can be guaranteed by a freshness condition onM .
Using our notation, the introduction rule for new may be written as follows.

Γ ∗ n :N ` M : C∗(n:N)

Γ ` new n. M : C

This is derivable in our system by means of the following derivation, in which we
write 1 for the unit type with unique element� :1.

···
Γ ∗ n :N ` � : 1

Γ ` λ∗Hn. � : Hn. 1

Γ ∗ n :N ` M : C∗(n:N)

(Weak)
(Γ ∗ n :N), u :1 ` M : C∗(n:N)

(Weak), (H-E2)
Γ, z :Hn. 1 ` let z be n.u in M : C

(Subst)
Γ ` let (λ∗Hn. �) be n.u in M : C



We use(new n. M) as an abbreviation for the term in the conclusion of this derivation.
In this way, we are using the fact thatHn. 1 is inhabitated to obtain a supply of fresh

names. This generalises the situation in FM set theory or the Theory of Contexts, where
one uses the truth of the proposition( Nn.>) as a supply of fresh names for reasoning.

Abstract Syntax with Variable Binding.A key application of names and binding is for
working with abstract syntax involving variable binders. We encode abstract syntax as
an inductive type, using hidden-name typesHn. A for object-level binders. The duality
of H offers two styles of working with abstract syntax: viewingH asΠ∗ allows us to
work in the style of weak Higher Order Abstract Syntax (wHOAS) [3,11], and view-
ing H asΣ∗ supports the style of FM set theory. In the rest of this section, we give
examples illustrating the advantages of both views as well as showing the benefits of
mixing the two styles.

We take the syntax of the untypedλ-calculus as an example, encoding it as an
inductive typeLam with three constructors:var : N→Lam, app : (Lam×Lam)→Lam
and lam : (Hn. Lam) → Lam. For example, the termλx. λy. (x y) can be encoded
as lam(λ∗Hx. lam(λ∗Hy. app(var(x), var(y)))). In a context with two different namesx
andy, it may also be encoded aslam(x.Hlam(y.Happ(var(x), var(y)))).

Semantically,Lam corresponds to an initial algebra, which lets us define functions
by structural recursion. The following recursion principle follows from the initial alge-
bra whenHn. Lam is viewed asΠ∗n:N. Lam.

x :Lam ` A(x) Type
Γ ` f : Πn:N. A(var(n))
Γ ` g : ΠM,N :Lam. A(M) → A(N) → A(app(M,N))
Γ ` h : ΠM :(Hn. Lam). (Hn. A(M@Hn)) → A(lam(M))

Γ ` rec(f, g, h) : ΠM :Lam. A(M)

with equations (in which we writerec for rec(f, g, h))

rec var(n) = f n

rec app(M,N) = g M N (rec M) (rec N)
rec lam(M) = h M (λ∗Hn. (rec (M@Hn))).

For a closed typeA, this structural recursion produces a unique functionLam → A
for given functionsf :N → A, g :Lam → Lam → A → A → A andh : (Hn. Lam) →
(Hn. A) → A. In FM set theory one has an apparently different recursion principle,
where instead ofh one is essentially given a functionk : Hn. Lam → A → A∗(n:N).
The above recursion principle is also applicable in this case, since fromk we can define
h =df λu : (Hn. Lam). λv : (Hn. A).new n. ((k@Hn) (u@Hn) (v@Hn)). In this way,
we get a second recursion operatorrec′(f, g, k) with the following equation for thelam-
case:(rec′(f, g, k) lam(M)) = new n. ((k@Hn) (M@Hn) (rec′(f, g, k) (M@Hn))).

As a first example of a recursively defined function, we define capture-avoiding
substitution in the style of wHOAS and compare the definition to an FM-style encoding.



Givenm :N andR :Lam, we can userec to definesubst : Lam → Lam satisfying

subst(var(n)) = ifeq 〈m,n〉 then n. R else n. var(n)
subst(app(M,N)) = app(subst(M), subst(N))

subst(lam(M)) = lam(λ∗Hn. subst(M@Hn)).

This definition uses only the view ofH asΠ∗ and is similar in spirit to wHOAS defini-
tions. We can also define substitution in FM-style usingrec′. For thelam-case, we then
havesubst(lam(M)) = new n. (let bindH(n, subst(M@Hn))be w∗n in (lam(w))∗n).
However, this definition is more complex than the first one, since it involves a unique
choice of fresh names via new. In the first definition we could do without the choice of
a fresh name by usingλ∗H to ‘rebind’ the fresh namen.

As a second example, we define the function computing the free variables of a term.
This example makes essential use of the view ofH asΣ∗. We assume an inductive
typeL of lists of names, together with suitably defined functionssingleton : N → L,
concat : L → L → L, andremove : Πn:N. (L → L∗(n:N)). Usingrec, we can define
fv : Lam → L to satisfy the equations

fv(var(n)) = singleton(n)
fv(app(M,N)) = concat(fv(M), fv(N))

fv(lam(M)) = let (λ∗Hn. fv(M@n)) be n.Hy in (remove n y)

This example demonstrates how let-terms can be used for ‘pattern matching’ elements
of Hn. A. A similar pattern matching appears in FreshML. Moreover, the example
shows that it is useful to mix the views ofH asΠ∗ andΣ∗.

Note that, in the equation forlam, the subterm(remove n y) has typeL∗(n:N), and
that this freshness information is necessary for the let to be typeable. Intuitively, this is
because the choice of representativen.y must not affect the computation. Dependency
in the type ofremove is therefore essential for the pattern matching in the definition
of fv. Without dependency we could writeremove with typeN → L → L, but then
fv as above would not be typeable. Indeed, this problem arises in FreshML, wherefv
cannot be defined using a remove function of this type (Nevertheless,fv can be defined
in FreshML).

Again, we can userec′ to give an alternative definition offv so that it satisfies the
equationfv(lam(M)) = new n. (remove n (fv(M@n))). Note that, by means of new,
this encoding also uses the view ofH asΣ∗, and this is in fact essential. The Theory of
Contexts, for example, axiomatises a ‘is not free in’-predicate rather than definingfv.

4 Discussion and Further Work

We have introduced a bunched dependent type theory that integrates FM concepts for
working with names and binding.

One decision in the design of the bunches was to allow dependency for additive
context extension but to forbid any dependency for multiplicative context extension.
There are other possibilities for combining bunches and dependency. Pym [20,§15.15],



for example, outlines a bunched dependent calculus allowing more dependency. The
problem with using this for names and binding, which has lead us to the current design,
is that it would require to generalise the monoidal product∗ to a monoidal product on
the slices ofS, and there seems to be no sensible way of doing this.

We stress that, although the examples in this paper concentrate on programming,
reasoning with names and binding can also be accommodated in the type theory. In-
deed, it is possible to define a higher-order logic over the dependent type theory [12,
§11]. In addition to the usual logical connectives, this logic also features the multi-
plicative quantifiers∃∗ and∀∗, similar to∀new and∃new from BI [20], as well as the
freshness quantifierN. This higher-order logic supports reasoning with names similar to
the Theory of Contexts. For example, the Theory of Contexts has an ‘extensionality’ ax-
iom, which may be expressed asΓ | ∃∗n :N. (M@Hn =A N@Hn) ` (M =Hn. A N),
whereM andN have typeHn. A and=A denotes Leibniz equality. Making essential
use of the equation(η3), this sequent is derivable in the logic. In another direction, one
may also ask how the logic relates to Nominal Logic [18]. For this it is necessary to
consider swapping, an essential ingredient of Nominal Logic that is absent from the
type theory. We briefly discuss the possibilities of adding swapping below.

Another possibility for reasoning is to use dependent types to encode propositions
as types. Alongside the usual encodings of∀ asΠ and∃ asΣ, one can encode∀∗ as
Π∗, ∃∗ asΣ∗, and NasH. Although such an encoding is possible, the use of∃∗ is very
restricted, because the rules forΣ∗ use types of the formϕ∗(n:N), and, at least in this
paper, we allow such types only whenϕ is closed. Considering a higher-order logic is a
way of side-stepping this problem, since, because of Prop. 2.4, we have an equivalence
of ϕ∗(n:N) andϕ, so that freefrom types can be avoided altogether in the logic.

Although we have based our type theory on freshness rather than swapping, we
nevertheless think that swapping can be useful in type theory. Swapping can be added
to the type theory as a special kind of explicit substitution, as is done in [1,23]. One
application of swapping is to make available more information about the isomorphism
Σ∗

N
∼= Π∗

N than is given by the commuting triangle in Prop. 2.3. The triangle only ex-
plains the instantiation ofn.Hx at n. With swapping, we can explain the instantiation
of n.Hx at names other thann by adding the equation(n.Hx)@Hm = (m n) ·M . Fur-
thermore, with swapping, we should get a logic close to Nominal Logic; see also [16].

Regarding the categorical semantics of the type theory, it is natural to ask how it
compares to other categorical approaches to names and binding. Besides the Schanuel
topos, two other categories used frequently [9,4,5, . . . ] for names and binding areSetV,
whereV is the category of finite cardinals and all functions between them, andSetI,
whereI is the category of finite cardinals and injections. However, neither category has
all of the structure of Prop. 2. InSetV names do not have decidable equality, whereas
SetI does not have a freshness quantifier and not all the canonical mapsA∗B → A×B
are monomorphic. In this light, Prop. 2 should be viewed as identifying the categorical
structure underlying the work with names and binding, while for particular applica-
tions it may well be sufficient to have only some of this structure. Another example of
such a substructure is Menni’s axiomatisation of binders [16]. Nevertheless, there are
categories other than the Schanuel topos having the structure of Prop. 2. One such cat-
egory is a variation of the Schanuel topos in which the elements are allowed to contain



countably many names rather than just finitely many, see [18, p.13]. There is also a
realisability category having almost all of the structure of Prop. 2, the only restriction
being that the typeΣ∗x:A.B can only be formed whenA belongs to a certain restricted
class of types (which includes all types with decidable equality). Moreover, this cate-
gory models an impredicative universe, so that it should provide the basis for a bunched
calculus of constructions.

There are many directions for further work. First, an immediate point requiring
further work is the restriction thatB∗(M :A) can only be formed for closedB. Second,
the proof theory of the bunched type theory needs further work. Also, variants such as a
non-affine version of the type theory should be possible. Finally, algorithmic questions
such as the decidability of type-checking should be considered.
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