
On the Observable Properties of

Higher Order Functions that

Dynamically Create Local Names

(preliminary report)

Andrew Pitts1 Ian Stark2

University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, England

Tel: +44 223 334629 Fax: +44 223 334678
Email: {Andrew.Pitts,Ian.Stark}@cl.cam.ac.uk

Abstract

The research reported in this paper is concerned with the problem of reasoning
about properties of higher order functions involving state. It is motivated by the
desire to identify what, if any, are the difficulties created purely by locality of state,
independent of other properties such as side-effects, exceptional termination and non-
termination due to recursion. We consider a simple language (equivalent to a fragment
of Standard ML) of typed, higher order functions that can dynamically create fresh
names. Names are created with local scope, can be tested for equality and can be
passed around via function application, but that is all.

We demonstrate that despite the simplicity of the language and its operational se-
mantics, the observable properties of such functions can be very subtle. Two methods
are introduced for analyzing Morris-style observational equivalence between expres-
sions in the language. The first method introduces a notion of ‘applicative’ equivalence
incorporating a syntactic version of O’Hearn and Tennent’s relationally parametric
functors and a version of representation independence for local names. This applica-
tive equivalence is properly contained in the relation of observational equivalence,
but coincides with it for first order expressions (and is decidable there). The second
method develops a general, categorical framework for computationally adequate mod-
els of the language, based on Moggi’s monadic approach to denotational semantics.
We give examples of models, one of which is fully abstract for first order expressions.
No fully abstract (concrete) model of the whole language is known.

1Supported by UK SERC grant GR/G53279 and CEC ESPRIT project CLICS-II

2Supported by UK SERC studentship 91307943 and CEC SCIENCE project PL910296



1 Introduction

Programming languages combining higher order features with the manipulation of local
state present severe problems for the traditional techniques of programming language
semantics and logics of programs. For denotational semantics, the problems manifest
themselves as a lack of abstraction in existing semantic models: some expressions that
are observationally equivalent (i.e. that can be interchanged in any program without af-
fecting its behaviour when executed) are assigned different denotations in the model. For
operational semantics, the problems manifest themselves partly in the fact that simple
techniques for analyzing observational equivalence in the case of purely functional lan-
guages (such as Milner’s ‘Context Lemma’ [9], or more generally, notions of applicative
bisimulation [1]) break down in the presence of state-based features. Furthermore, opera-
tionally based approaches to properties of programs are often inconveniently intensional,
e.g. the familiar congruence properties of equational logic fail to hold. (See [7, Sect. 5(A)],
for example.) These problems have been intensively studied for the case of local variables
in block-structured, Algol-like languages and to a lesser extent for the case of languages
involving the dynamic creation of mutable locations (such as ML-style references). See
[20, 2, 8, 3, 21, 15, 16, 7, 4]. Our interest in this subject stems primarily from a desire
to improve and deepen the techniques which are available for reasoning about program
behaviour in the ‘impure’ functional language Standard ML [10].

Our motivation here is to try to identify what, if any, are the difficulties created
purely by locality of state, independent of other properties such as side-effects, exceptional
termination and non-termination due to recursion. Accordingly we consider higher order
functions which can dynamically create fresh names of things, but ignore completely what
kind of thing (references, exceptions, etc.) is being named. Names are created with local
scope, can be tested for equality, and are passed around via function application, but
that is all. Because of this limited framework, there is some hope of obtaining definitive
results—fully abstract models and complete proof techniques. As the vehicle for this study
we formulate an extension of the call-by-value, simply typed lambda calculus, called the
nu-calculus and introduced in Sect. 2. In ML terms, it contains higher order functions
over ground types bool and unit ref—the latter being the type of dynamically created
references to the unique element of type unit. This acts as a type of ‘names’ because
only one thing can be (and is) stored in such a reference, so that its only characteristic
is its name. We have purposely excluded recursion from the nu-calculus and as a result
any closed expression evaluates to an essentially unique canonical form. Indeed, the nu-
calculus appears at first sight to be an extremely simple system. On closer inspection,
we find that nu-calculus expressions can exhibit very subtle behaviour with respect to an
appropriate notion of observational equivalence. Thus our first contribution is somewhat
in the spirit of Meyer and Seiber [8]: we observe that even for this extremely simple case of
local state there are observationally equivalent expressions which traditional denotational
techniques will fail to identify (Example 2.8).

In Sect. 3 we introduce a notion of ‘logical relation’ for the nu-calculus incorporating
a version of representation independence for local names. Our technique is a syntactic
version of the relationally parametric semantics of O’Hearn and Tennent [16]. There are
also interesting similarities with Plotkin and Abadi’s parametricity schema for existential
types [19, Theorem 7]. We use our version of logical relations to establish the termination
properties of the nu-calculus (Theorem 3.3) and to provide a useful, notion of ‘applicative’
equivalence between nu-calculus expressions which implies observational equivalence (The-



orem 3.5). In fact the two notions of equivalence coincide for expressions of first order types
(Theorem 3.8) and are decidable there, but differ for higher order types (Example 3.7).

The denotational semantics of the nu-calculus is considered in Sect. 4. Following
Moggi [12], we make use of categorical monads to enforce a distinction between denota-
tions of values (expressions in canonical form) and denotations of computations (arbitrary
expressions). This is helpful, since it allows us to identify explicitly and simply what
structure is needed in a model to give a static meaning for the key dynamic aspect of the
nu-calculus, the action of computing a new name (see equations (10)–(12)). Our main re-
sult here (Theorem 4.2) is to identify some simple structure on a category equipped with a
strong monad sufficient to guarantee that the nu-calculus can be modelled in the category
in a computationally adequate way. Thus if two nu-calculus expressions have equal denota-
tions in such a category, then necessarily they are observationally equivalent. An instance
of this categorical structure can be obtained by adapting Moggi’s [11] ‘dynamic allocation’
monad to O’Hearn and Tennent’s category of relationally parametric functors [16]. This
model is fully abstract at first order types, but not so at higher types. Other instances
of the categorical structure are known and can be used to establish subtle, higher order
observational equivalences (such as (3)). Whilst no concrete model is known to be fully
abstract for the whole of the nu-calculus, we conjecture that a term-model construction on
(a suitable extension of) the syntax of the nu-calculus yields an instance of the categorical
structure which is fully abstract.

2 The nu-calculus

Syntactically, the nu-calculus is a kind of simply typed lambda calculus. The types, σ,
are built up from a ground type o of booleans and a ground type ν of names, by forming
function types, σ→σ′. Expressions take the form

M ::= x variable
| n name
| true | false truth values
| if M then M else M conditional
| M = M equality of names
| νn . M local name declaration
| λx : σ . M function abstraction
| MM function application

where x ∈ Var, an infinite set whose elements are called variables, and n ∈ Nme, an
infinite set (disjoint from Var) whose elements are called names. Function abstraction is
a variable-binding construct (occurrences of x in M are bound in λx : σ . M), whereas
local name declaration is a name-binding construct (occurrences of n in M are bound in
νn . M). We write Var(M) and Nme(M) for the finite subsets of Var and Nme consisting
of the free variables and the free names in an expression M . Henceforward, we implicitly
identify expressions that differ up to α-conversion of bound variables and bound names.
We denote by M [M ′/x] (respectively M [M ′/n]) the result of substituting an expression
M ′ for all free occurrences of x (respectively n) in M .

Expressions will be assigned types via typing assertions of the form

s,Γ `M : σ



(x ∈ dom(Γ))
s,Γ ` x : Γ(x)

(n ∈ s)
s,Γ ` n : ν

(b = true, false)
s,Γ ` b : o

s,Γ ` B : o s,Γ `M : σ s,Γ `M ′ : σ
s,Γ ` if B then M else M ′ : σ

s,Γ ` N : ν s,Γ ` N ′ : ν
s,Γ ` (N = N ′) : o

s⊕ {n},Γ `M : σ

s,Γ ` νn . M : σ

s,Γ⊕ [x : σ] `M : σ′

s,Γ ` λx : σ . M : σ→σ′
s,Γ ` F : σ→σ′ s,Γ `M : σ

s,Γ ` FM : σ′

Table 1: Rules for assigning types in the nu-calculus

where s is a finite subset of Nme, Γ is a finite function from variables to types, σ is a type,
and M is an expression satisfying Nme(M) ⊆ s and Var(M) ⊆ dom(Γ) (the domain of
definition of Γ). The rules generating the valid typing assertions are given in Table 1. In
these rules s⊕{n} indicates the finite set of names obtained from s by adjoining n 6∈ s; and
Γ⊕ [x : σ] denotes the finite function obtained by extending Γ by mapping x 6∈ dom(Γ) to
σ. Clearly, if s,Γ `M : σ holds, then σ is uniquely determined by s, Γ and M . We write

Expσ(s)
def
= {M | s, ∅ `M : σ}

for the set of closed nu-calculus expression of type σ with free names in the set s. The
subset

Canσ(s) ⊆ Expσ(s)

of canonical nu-calculus expressions of type σ with free names in the set s consists of those
closed expressions which are either names (in s), or the booleans constants true and false,
or function abstractions.

We give the operational semantics of the nu-calculus in terms of an inductively de-
fined evaluation relation which matches the computational behaviour of equivalent ML
expressions. The ML equivalent of the expression νn . M is

let n=ref() in M end

(using the ML type unit ref for the type of names). In other words the effect of evaluating
νn . M should be to create a fresh name n and then use it in evaluating M . Whereas in
the definition of ML [10] environments are used to bind identifiers (variables) to addresses
(names), here we have chosen to simplify the form of the evaluation relation by using
‘extended’ expressions containing names explicitly. It would be possible to simplify the
syntax of the nu-calculus even further by identifying the syntactic category of names with
that of variables of type ν. We choose not to do so because names and variables have
different semantic properties. For example, the operational semantics we give commutes
with arbitrary substitutions on variables, but only with restricted forms of substitutions
on names (viz. essentially just permutations of names).

An appropriate notion of state for this simple language is just a finite subset of Nme,
indicating the names which have been created so far. So we will use an evaluation relation



(CAN)
s ` C ⇓σ C

(COND1)
s ` B ⇓o (s1)true s⊕ s1 `M ⇓σ (s2)C

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C

(COND2)
s ` B ⇓o (s1)false s⊕ s1 `M ′ ⇓σ (s2)C ′

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C ′

(EQ)
s ` N ⇓ν (s1)n s⊕ s1 ` N ′ ⇓ν (s2)n′

s ` (N = N ′) ⇓o (s1 ⊕ s2)δnn′

(LOCAL)
s⊕ {n} `M ⇓σ (s1)C

s ` νn . M ⇓σ ({n} ⊕ s1)C

(APP)

s ` F ⇓σ→σ′ (s1)λx : σ . M ′ s⊕ s1 `M ⇓σ (s2)C

s⊕ s1 ⊕ s2 `M ′[C/x] ⇓σ′ (s3)C ′

s ` FM ⇓σ′ (s1 ⊕ s2 ⊕ s3)C ′

Table 2: Rules for evaluating nu-calculus expressions



of the form
s `M ⇓σ (s′)C (1)

where s and s′ are disjoint finite sets of names, M ∈ Expσ(s) and C ∈ Canσ(s ⊕ s′).
The intended meaning of (1) is: ‘in state s, expression M evaluates to canonical form C,
creating fresh, local names s′ in the process’. The rules for generating the relation are
given in Table 2. In rule (EQ) we use the notation δnn′ , where

δnn′
def
=

{
true if n = n′

false if n 6= n′

It is important to note that the rules in Table 2 refer to the collection of judgements as
in (1) that are well-formed, i.e. satisfy the conditions mentioned above. For example, in
rule (LOCAL) the well-formedness of the hypothesis and the conclusion entail that n is
not an element of either s or s1.

The rules follow the state convention of Standard ML [10], i.e. order of evaluation
is from left to right, with state accumulating sequentially. In fact, because we are deal-
ing with state that can be created but cannot be mutated, some of this sequentiality
is spurious. For example, in rule (COND1) the second hypothesis can be strengthened
by removing s1, without affecting the collection of valid instances of evaluation; similar
strengthenings can be made to the second hypotheses of (COND2), (EQ) and (APP).

It is easy to see that evaluation is deterministic up to renaming created names, in the
following sense:

Lemma 2.1 If s `M ⇓σ (s1)C and s `M ⇓σ (s2)C ′, then there is a bijection R : s1 ↔ s2

so that C ′ is α-convertible with the expression C[n′/n | (n, n′) ∈ R].

The initial state s in the evaluation (1) has the structural properties of an affine
linear logic context, in the sense that derived rules of weakening and exchange are valid,
but a rule of contraction is not. For example when M is n = n′ and C is false, then
{n, n′} ` M ⇓o (∅)C is valid, but {n} ` M [n/n′] ⇓o (∅)C[n/n′] is not. (Compare the use
made of affine linear logic by O’Hearn in [14].)

The evaluation relation (1) can be used to define a Morris-style contextual equivalence
between nu-calculus expressions: two expressions are equivalent if they can be interchanged
in any program without affecting the observable result of evaluating it. Here we will take
a ‘program’ to be a closed expression of type o, and the possible observable results of
evaluating a program to be the booleans true and false, disregarding any local names that
are created in the process of evaluation. (It would not change the notion of observational
equivalence given below if we also allowed programs to be of type ν and observable results
to include pre-existing names.) In the following definition, as usual the ‘context’ B[−] is
an expression in which some subexpressions have been replaced by a place-holder, −; and
then B[M ] denotes the result of filling the place-holder with an expression M .

Definition 2.2 (Observational equivalence) Given M1,M2 ∈ Expσ(s), we write

s `M1 ≈σ M2

to mean that for all B[−] and all b ∈ {true, false},

∃s1(s ` B[M1] ⇓o (s1)b) ⇔ ∃s2(s ` B[M2] ⇓o (s2)b) .

In this case we say that M1 and M2 are observationally equivalent.



The following result shows that one need only consider contexts that immediately
evaluate their arguments in order to establish observational equivalence. It is the analogue
of Theorem (ciu) in [4].

Lemma 2.3 s ` M1 ≈σ M2 if and only if for all b ∈ {true, false} and all λx : σ . B ∈
Canσ→ o(s)

∃s1(s ` (λx : σ . B)M1 ⇓o (s1)b) ⇔ ∃s2(s ` (λx : σ . B)M2 ⇓o (s2)b) .

The following instances of observational equivalence are easily established using the lemma.

Corollary 2.4 (i) If M ∈ Expσ(s) and n 6∈ s, then s ` νn . M ≈σ M .

(ii) If M ∈ Expσ(s⊕ {n} ⊕ {n′}), then s ` νn . νn′ . M ≈σ νn′ . νn . M .

(iii) If s ` M ⇓σ (s′)C, then s ` M ≈σ νs′ . C. Here νs′ . C stands for νn1 . . . νnk . C

if s′ = {n1, . . . , nk} for some k > 0, and stands for C if s′ = ∅. (By part (ii), up to
observational equivalence, it does not matter which order we enumerate the elements
of s′ in νs′ . C.)

(iv) If s, [x : σ] `M : σ′ and C ∈ Canσ(s), then s ` (λx : σ . M)C ≈σ′ M [C/x].

In the next section we will show that evaluation of nu-calculus expressions always
terminates (Theorem 3.3). It follows from this and the above Corollary that, up to obser-
vational equivalence, the only closed expressions of type o are true and false and the only
closed expression of type ν not involving any free names is

new
def
= νn . n .

However, at higher types things become rapidly more complicated. The following exam-
ple gives infinitely many expressions of type ν→ ν which are mutually observationally
inequivalent.

Example 2.5 For each p ≥ 1, consider the nu-calculus expression of type ν→ ν which
first creates p+1 local names n0, . . . , np and then acts as the function cyclically permuting
these names and mapping any other name to n0:

Fp
def
= νn0 . . . νnp . λx : ν . if x = n0 then n1 else

if x = n1 then n2 else

· · ·
if x = np then n0 else n0 .

Then ∅ ` Fp 6≈ν→ νFp′ whenever p 6= p′, because

Bq
def
= λf : ν→ ν . νn . (f (q+2)(n) = f(n))

has the property that for all q ∈ {1, . . . , p}, ∅ ` BqFp ⇓o ({n0, . . . , np, n})true if and only
if q = p. (In Bq, f

(q+2) indicates f iterated q + 2 times.)



Example 2.6 Here is a simple example to illustrate the fact that local name declaration
and function abstraction in general do not commute up to observational equivalence. The
expressions

M
def
= νn . λx : ν . n and N

def
= λx : ν . νn . n

are not observationally equivalent, because B
def
= λf : ν→ ν . (fnew = fnew) has the

property that ∅ ` BM ⇓o ({n, n1, n2})true whereas ∅ ` BN ⇓o ({n, n1, n2})false.

Example 2.7 The rule (APP) in Table 2 embodies a form of strict, or ‘call-by-value’,
application. Part (iv) of Corollary 2.4 shows that the appropriate restricted form of
beta-conversion (Plotkin’s βv [18]) holds up to observational equivalence. Although there
is no non-termination in our simple language, the general form of beta-conversion fails
for the nu-calculus, because of the dynamics of name creation. For example, the beta
redex (λx : ν . x = x)new is not observationally equivalent to the corresponding reduct
new = new since

∅ ` (λx : ν . x = x)new ⇓o ({n1})true

∅ ` (new = new) ⇓o ({n1, n2})false .

For the simple functional language PCF, Milner’s context lemma [9] shows that obser-
vational equivalence may be established by testing just with applicative contexts—those of
the form [−]C1C2 . . . Ck. Not surprisingly, this fails in the nu-calculus. For example, the
expressions Fp are in fact indistinguishable by such applicative contexts, even though they
can be distinguished by more complicated contexts (like Bq([−])) which carry out ‘anony-
mous’ manipulation of the private names n0, . . . , np. It would seem that the properties of
higher order functions which create and pass around private names can be quite subtle.
Two contrasting examples of observational equivalence, more subtle than those in Corol-
lary 2.4, are given below. The first one illustrates the fact that local names are always
distinct from externally supplied names; the second illustrates the fact that any two local
names are indiscernible by externally supplied boolean tests. (This second equivalence is
quite delicate—it certainly would not hold in languages where evaluation of functions can
have side-effects on mutable state.) Operational and denotational methods for proving
such observational equivalences of nu-calculus expressions will be developed in the rest of
this paper.

Example 2.8

∅ ` νn . λx : ν . (x = n) ≈ν→ o λx : ν . false (2)

∅ ` νn . νn′ . λf : ν→ o . (fn = fn′) ≈(ν→ o)→ o λf : ν→ o . true . (3)

In (3), the boolean equality test fn = fn′ is an abbreviation for

if fn then (if fn′ then true else false) else (if fn′ then false else true) .

3 Representation independence for local names

This section develops a notion of (binary) logical relation for the nu-calculus and shows
how to use it to establish instances of observational equivalence between nu-calculus ex-
pressions.



Given finite subsets s1, s2 ⊆ Nme of names, we write R : s1 
 s2 to indicate that R is
(the graph of) a partial bijection from s1 to s2. In other words, R ⊆ s1 × s2 satisfies

m1 R m2 ∧ n1 R n2 ⇒ (m1 = n1⇔m2 = n2) . (4)

(We use infix notation for binary relations.) Writing s⊕ s′ for the union of disjoint sets,
note that R ⊕ R′ : s1 ⊕ s′1 
 s2 ⊕ s′2 when R : s1 
 s2 and R′ : s′1 
 s′2. The identity
(partial) bijection, Is : s 
 s, is given by:

n1 Is n2 ⇔ n1 = n2 . (5)

Definition 3.1 For each type σ we define a family of binary relations between canonical
expressions

(Rσ ⊆ Canσ(s1)×Canσ(s2) | R : s1 
 s2)

by induction on the structure of σ as in (7), (8) and (9) below; clause (9) makes use of
associated relations between expressions, Rσ ⊆ Expσ(s1)× Expσ(s2) defined by (6).

M1 Rσ M2 ⇔ ∃R′ : s′1 
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) . (6)

s1 `M1 ⇓σ (s′1)C1 ∧ s2 `M2 ⇓σ (s′2)C2 ∧C1 (R⊕R′)σ C2

b1 Ro b2 ⇔ b1 = b2 (7)

n1 Rν n2 ⇔ n1 R n2 (8)

λx : σ . M1 Rσ→σ′ λx : σ . M2⇔ (9)

∀R′ : s′1 
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) .

C1 (R⊕R′)σ C2⇒M1[C1/x] (R ⊕R′)σ′ M2[C2/x]

(It is implicit in (6) and (9) that each s′i is required to be disjoint from si.)

Clause (9) of the definition is a syntactic version of O’Hearn and Tennent’s approach
to relational parametricity in [16]. The main interest in the definition lies in clause (6)
where the relation Rσ on expressions is defined in terms of the relation Rσ on canonical
expressions. This clause embodies a form of ‘representation independence’ for the dynam-
ically created local names. (Cf. Plotkin and Abadi’s parametricity schema for existential
types [19, Theorem 7].)

The family (Rσ | σ) is a form of binary ‘logical relation’ for nu-calculus expressions.
Since we choose in (7) to take the logical relation to be the identity at the ground type
o, the whole family is determined by what we take at the other ground type ν. We wish
related expressions to be mapped to related expressions by any nu-calculus function, and
we have to impose the restriction (4) on the relation R to ensure this property holds for the
function testing equality of names. The following proposition expresses this fundamental
property of our notion of logical relation. It is proved by induction on the derivation of
typing assertions.



Proposition 3.2 Suppose

s, [x1 : σ1, . . . , xk : σk] `M : σ .

Then for all R : s1 
 s2 with s1 and s2 disjoint from s, and for all Ci ∈ Canσi(s ⊕ s1)
and C ′i ∈ Canσi(s⊕ s2) (i = 1, . . . , k) one has(

k∧
i=1

Ci (Is ⊕R)σi C
′
i

)
⇒

M [C1/x1, . . . , Ck/xk] (Is ⊕R)σ M [C ′1/x1, . . . , C
′
k/xk]

where Is is the identity partial bijection, defined in (5).

Theorem 3.3 (Termination) For all closed expressions M , of type σ and with free
names in the set s say, there is some set of names s′ (disjoint from s) and some canonical
expression C ∈ Canσ(s⊕ s′) such that s `M ⇓σ (s′)C.

Proof The k = 0 case of Proposition 3.2 implies that M (Is)σ M for all M ∈ Expσ(s).
Termination follows from this, given the definition of Rσ in (6). �

We now show how the fundamental property of our notion of logical relation embodied
in Proposition 3.2 can be used to establish observational equivalences.

Definition 3.4 (Applicative equivalence) We say that two expressions M1,M2 ∈
Expσ(s) are applicatively equivalent if M1 (Is)σ M2.

Theorem 3.5 Applicative equivalence implies observational equivalence.

Proof Suppose M1 (Is)σ M2. We employ Lemma 2.3 to see that M1 and M2 are
observationally equivalent. By (6) there is some R : s1 
 s2, and C1, C2 with s ` Mi ⇓σ
(si)Ci (i = 1, 2) and C1 (Is ⊕R)σ C2. Then for any λx : σ . B ∈ Canσ→ o(s), applying
Proposition 3.2 we get B[C1/x] (Is ⊕R)o B[C2/x]. Hence by (6) again, there is some
R′ : s′1 
 s′2 and b1, b2 with s⊕ si ` B[Ci/x] ⇓o (s′i)bi (i = 1, 2) and b1 (Is ⊕R⊕R′)o b2,
i.e. with b1 = b2 (by (7)). Applying the rules in Table 2, we deduce that s ` (λx : σ .
B)Mi ⇓o (si ⊕ s′i)bi with b1 = b2. Thus Lemma 2.3 and the deterministic nature of the
evaluation relation (Lemma 2.1) imply that M1 ≈σ M2. �

Example 3.6 Theorem 3.5 provides quite a powerful method for establishing some ob-
servational equivalences, since (Is)σ is much easier to deal with than ≈σ. For example,
the observational equivalence (2) can be established by this method. For with

C1
def
= λx : ν . (x = n) and C2

def
= λx : ν . false

it is not hard to see that C1 (I∅ ⊕R)ν→ o C2 where R : {n} 
 ∅ is necessarily the empty
partial bijection; hence νn . C1 (I∅)ν→ o C2, as required.

However, not every observational equivalence can be established via Theorem 3.5, as
the following example shows. Thus applicative equivalence is in general a strictly weaker
relation than observational equivalence.



Example 3.7 The pair of second order expressions in (3) are observationally equivalent
(this can be established via the denotational methods sketched in Sect. 4), but they are not
related by (I∅)(ν→ o)→ o. For the only possible partial bijection R : {n, n′} 
 ∅ is R = ∅;
but λf : ν→ o . (fn = fn′) and λf : ν→ o . true are not related by (I∅ ⊕ R)(ν→ o)→ o,
because for the canonical expressions C1 and C2 defined in Example 3.6, C1 (I∅ ⊕R)ν→ o

C2, whereas it is not the case that (fn = fn′)[C1/f ] (I∅ ⊕R)o true[C2/f ].

Nevertheless, the converse of Theorem 3.5 does hold when σ is a first order type, i.e. of
the form σk→σk−1→· · ·→σ0 with each σi either ν or o.

Theorem 3.8 Observational equivalence coincides with applicative equivalence for expres-
sions of first order types.

Proof We have to show that s `M1 ≈σ M2 implies M1 (Is)σ M2 for first order σ. Here
we merely indicate the key idea of the proof. By Theorem 3.3, s `Mi ⇓σ (si)Ci for some
Ci ∈ Canσ(s⊕ si) (i = 1, 2). Define R ⊆ s1× s2 to consist of those pairs of names (n1, n2)
for which there is some s, x : σ ` N : ν with s⊕ si ` N [Ci/x] ⇓ν (s′i)ni for each i = 1, 2.
The assumption that s `M1 ≈σ M2 implies that R is a partial bijection. For this R (and
using the fact that σ is first order) it is possible to show that C1 (Is ⊕R)σ C2. Thus
M1 (Is)σ M2. �

Given that the observable behaviour of nu-calculus expressions of such first order types
can be complicated (see Example 2.5), the theorem is non-trivial. As a corollary of the
theorem we obtain the following result.

Corollary 3.9 The relation of observational equivalence between nu-calculus expressions
of first order type is decidable.

Proof In view of the theorem, it suffices to see that the relations Rσ are decidable for
first order σ. For this, it is sufficient to establish the decidability of the relations Rσ (for
first order σ) since Theorem 3.3 ensures that we can calculate s′1 and s′2 in clause (6),
and then there are only finitely R′ for which a decidable property has to be checked. The
decidability of Rσ can be established by induction on the structure of the first order type
σ, the base cases being trivial, and the induction step following from the fact that clause
(9) can be simplified as follows when σ ∈ {o, ν}:

C1 Ro→σ′ C2 ⇔ ∀b ∈ {true, false} . C1b Rσ′ C2b

C1 Rν→σ′ C2 ⇔ ∀(n1, n2) ∈ R . C1n1 Rσ′ C2n2

∧ C1n (R⊕ I{n})σ′ C2n

where in the last clause n is some name not in s1 ∪ s2. �

4 Denotational semantics

In this section we sketch our approach to the denotational semantics of the nu-calculus and
summarize the main results. We make use of Moggi’s monadic approach to denotational
semantics [12]. The nu-calculus will be modelled in cartesian closed categories C equipped
with, amongst other things, a strong monad T . Our notation for this categorical structure
and its associated internal language (the ‘computational lambda calculus’) will be as in



[17, Sect. 2]. In particular, nu-calculus function types and associated expressions are
interpreted via Moggi’s call-by-value translation of simply typed lambda calculus into
computational lambda calculus: see [17, Table 5]. To model the type of booleans we
assume the coproduct 1+1 of the terminal object 1 exists in C. For adequacy of the model
(Theorem 4.2) we require C to have all finite limits and for the coproduct 1+1 to be stable
and disjoint (and hence also for C to have a strict initial object 0); these are standard
concepts from categorical logic—see [13, Chap. 1, Sect. 4]. To model the type of names
we assume C contains a decidable object N . Decidability means that there is morphism
eq : N ×N −→ 1 + 1 classifying the diagonal subobject of N , i.e. 〈id, id〉 : N � N ×N
is the pullback along eq of the left coproduct insertion true : 1 −→ 1 + 1. The morphism
eq is used to interpret the equality test on names (as in the definition of [[op(e1, e2)]] in
[17, Table 5]). It remains to explain how local name declaration expressions νn . M are
modelled.

In general, the use of categorical monads permits abstraction away from a detailed
representation of state in denotational descriptions of languages with imperative features
(see Wadler [22]). For the nu-calculus, the relevant notion of state is hardly very com-
plicated. Nevertheless we find that the type-theoretic distinction between denotations
of values (expressions in canonical form) and denotations of computations (arbitrary ex-
pressions) enforced by a monad is helpful, since it allows us to identify explicitly and
simply what structure is needed in C to give a static meaning for the key dynamic as-
pect of the nu-calculus, the action of computing a new name. We do this by requir-
ing T (N) to possess a global element new : 1 −→ T (N) such that for any morphisms
e : X × (1 + 1) ×N ×N −→ T (X ′), f : X ×N ×N −→ T (X ′) and g : X −→ T (X ′) the
following equations in the internal language of C are satisfied:

[x : X,n : N ] ` let n′⇐new in e(x, eq(n, n′), n, n′) = (10)

let n′⇐new in e(x, false, n, n′)

[x : X,n : N,n′ : N ] ` let n⇐new in (let n′⇐new in f(x, n, n′)) = (11)

let n′⇐new in (let n⇐new in f(x, n, n′))

[x : X] ` let n⇐new in g(x) = g(x) (12)

where in (10) false : 1 −→ 1+ 1 is the right coproduct insertion. These equations could be
expressed equivalently, but less comprehensibly, via commutative diagrams asserting the
equality of various morphisms in C. Equation (10) expresses statically the fundamental
requirement that evaluating new produces something new. Equations (11) and (12) cor-
respond respectively to properties (ii) and (i) in Corollary 2.4. (They are automatically
satisfied if the monad is respectively commutative and affine—see [5].)

Given the above structure in the category C, for each nu-calculus type σ one gets an
object [[σ]] of C by defining:

[[o]]
def
= 1 + 1 [[ν]]

def
= N [[σ→σ′]]

def
= [[σ]]→ T ([[σ′]]) .

And for each valid typing assertion s,Γ ` M : σ one can define, by induction on the
structure of M , a morphism in C of the form

[[M ]] : [[s]]× [[Γ]] −→ T ([[σ]])

where [[s]] and [[Γ]] are the finite products

[[s]]
def
=
∏
n∈s

N [[Γ]]
def
=

∏
x∈dom(Γ)

[[Γ(x)]] .



In particular, each M ∈ Expσ(s) gives rise to a morphism [[M ]] : N |s| −→ T ([[σ]]) (where
|s| denotes the number of elements of the finite set s). When M is a canonical expression,
this morphism factors through the unit of the monad at [[σ]], η : [[σ]] −→ T ([[σ]]).

Proposition 4.1 (Soundness) Using finite limits in C, for each s form the subobject
6=(s)� N |s| in C corresponding to the conjunction

[x1 : N, . . . , x|s| : N ] `
∧

1≤i6=j≤|s|
(eq(xi, xj) = false) .

Then for each valid evaluation s `M ⇓σ (s′)C, the morphisms

[[M ]] � 6=(s)
def
=

(
6=(s)� N |s|

[[M ]]−→ T ([[σ]])

)
[[νs′ . C]] � 6=(s)

def
=

(
6=(s)� N |s|

[[νs′.C]]−→ T ([[σ]])

)
are equal (i.e. [[M ]] and [[νs′ . C]] are equal when applied to distinct |s|-tuples). In
particular, when s = ∅ (so that M contains no free names), ∅ ` M ⇓σ (s′)C implies
[[M ]] = [[νs′ . C]].

This Proposition together with the termination property Theorem 3.3 and the compo-
sitional nature of the denotational semantics yield:

Theorem 4.2 (Adequacy) Let the category C be a model of the nu-calculus as described
above which is non-degenerate, in the sense that 0 6∼= 1 and η : (1 + 1) −→ T (1 + 1) is
a monomorphism. Then for all M1,M2 ∈ Expσ(s), [[M1]] � 6=(s)= [[M2]] � 6=(s) implies that
s `M1 ≈σ M2.

Thus instances of this kind of categorical structure can be used to establish the validity
of observational equivalences via denotational equalities.

Examples 4.3 We list, without giving details, various examples of models satisfying the
requirements of Theorem 4.2.

(i) C is the category of pullback preserving functors from the category I of finite ordinals
and injective functions to the category Set of all sets and functions. The monad T

is one of Moggi’s ‘dynamic allocation’ monads [11]: the value of T at a functor X is
the functor T (X) sending the finite ordinal n to the quotient set

T (X)(n)
def
= {(m,x) | m ∈ N ∧ x ∈ X(n+m)}/∼

where (m1, x1) ∼ (m2, x2) if and only if there are injective functions fi : mi � m

(i = 1, 2) with X(idn + f1)(x1) = X(idn + f2)(x2). The object of names N is the
inclusion functor I ↪→ Set. Although this model is adequate, it is far from being
fully abstract: for example neither pair of observationally equivalent expressions in
Example 2.8 is equated in this model.

(ii) The model in (i) can be modified to incorporate O’Hearn and Tennent’s semantic
notion of ‘relational parametricity’ [16, Sect. 6], where the relations one takes for I are
the partial bijections used in Sect. 3. A dynamic allocation monad can be defined on
parametric functors which mimicks the key definition (6) of Sect. 3. Drawing upon



Theorem 3.8, we are able to show that the resulting model is fully abstract for first
order expressions, i.e. in this model the implication in Theorem 4.2 can be reversed
when σ is first order. However, the model is not fully abstract for the whole of the
nu-calculus, since in fact the expressions in (3) are not equated.

(iii) The category C in (i) is known to be equivalent to the category of continuous G-sets
for the topological group G of permutations of N topologized as a subspace of Baire
space NN (see [6, Lemma 1.8] for example). In this guise, one can modify the model
in (i) by considering G-PERs instead of G-sets—that is, continuous G-sets given by
quotienting N by a partial equivalence relation, and G-equivariant functions which are
tracked by partial recursive functions. This model gives a means of establishing the
observational equivalence (3), since it can be shown that no morphism to T (1 + 1)
in it distinguishes between the denotations of these two terms (even though the
denotations are in fact distinct). Observational equivalence then follows by applying
Lemma 2.3.

None of the above models is fully abstract for the whole of the nu-calculus, in the sense
that the implication in Theorem 4.2 can be reversed (i.e. [[M1]] � 6=(s)= [[M2]] � 6=(s) holds
in the model if and only if s ` M1 ≈σ M2). Indeed we do not know of any ‘concrete’
model that is fully abstract. However we conjecture that a term-model construction on (a
suitable extension of) the syntax of the nu-calculus yields an instance of the categorical
structure which is fully abstract.

Acknowledgements

We are grateful to Eugenio Moggi, Peter O’Hearn, Allen Stoughton and Robert Tennent for
making their unpublished work available to us. We have benefited from many conversations
with them on the topic of this paper.

References

[1] S. Abramsky. The Lazy Lambda Calculus. In D. Turner (ed.), Research Topics in
Functional Programming (Addison-Wesley, 1990), pp 65–116.

[2] H.-J. Boehm. Side-effects and aliasing can have simple axiomatic descriptions, ACM
Trans. Prog. Lang. Syst. 7(1985) 637–655.

[3] M. Felleisen and D. P. Friedman. A Syntactic Theory of Sequential State, Theoretical
Computer Science 69(1989) 243–287.

[4] F. Honsell, I. A. Mason, S. Smith and C. Talcott. A Variable Typed Logic of Effects.
In Proc. Computer Science Logic 1992, Lecture Notes in Computer Science (Springer-
Verlag, Berlin, 1993), to appear.

[5] B. Jacobs. Semantics of Weakening and Contraction. Preprint, May 1992.

[6] P. T. Johnstone. Quotients of Decidable Objects, Math. Proc. Camb. Philos. Soc.
93(1983) 409–419.

[7] I. A. Mason and C. Talcott. References, local variables and operational reasoning.
In Proc. 7th Annual Symp. on Logic in Computer Science, Santa Cruz, 1992 (IEEE
Computer Society Press, Washington, 1992) pp 186–197.



[8] A. Meyer and K. Sieber. Towards fully abstract semantics for local variables: prelim-
inary report. In Conf. Record 15th Symp. on Principles of Programming Languages,
San Diego, 1988 (ACM, New York, 1988) pp 191-203.

[9] R. Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science
4(1977) 1–22.

[10] R. Milner, M. Tofte and R. Harper. The Definition of Standard ML (MIT Press,
1990).

[11] E. Moggi. An Abstract View of Programming Languages. Lecture Notes, July 1989,
46pp.

[12] E. Moggi. Notions of Computation and Monads, Information and Computation
93(1991) 55–92.

[13] M. Makkai and G. E. Reyes. First Order Categorical Logic, Lecture Notes in
Math. Vol. 611 (Springer-Verlag, Berlin, 1977).

[14] P. W. O’Hearn. A Model for Syntactic Control of Interference, Mathematical Struc-
tures in Computer Science, to appear.

[15] P. W. O’Hearn and R. D. Tennent. Semantics of Local Variables. In M. P. Four-
man, P. T. Johnstone and A. M. Pitts (eds), Applications of Categories in Computer
Science, L.M.S. Lecture Note Series 177 (Cambridge University Press, 1992), pp 217–
238.

[16] P. W. O’Hearn and R. D. Tennent. Relational Parametricity and Local Variables. In
Conf. Record 20th Symp. on Principles of Programming Languages, Charleston, 1993
(ACM, New York, 1993) pp 171–184.

[17] A. M. Pitts. Evaluation Logic. In G. Birtwistle (ed.), IVth Higher Order Workshop,
Banff, 1990, Workshops in Computing (Springer-Verlag, Berlin, 1991), pp 162–189.

[18] G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical com-
puter Science 1(1975) 125–159.

[19] G. D. Plotkin and M. Abadi. A Logic for Parametric Polymorphism. In Proceedings
of the Conference on Typed Lambda Calculus and its Applications, Utrecht, 1993,
Lecture Notes in Computer Science Vol. 664 (Springer-Verlag, Berlin, 1993) pp 361-
375.

[20] J. C. Reynolds. Syntactic Control of Interference. In Conf. Record 5th Symp. on
Principles of Programming Languages, Tucson, 1978 (ACM, New York, 1978) pp 39–
46.

[21] R. D. Tennent. Semantic Analysis of Specification Logic, Information and Computa-
tion 85(1990) 135–162.

[22] P. Wadler. Comprehending Monads. In Proc. 1990 ACM Conf. on Lisp and Functional
Programming (ACM, New York, 1990) pp 61–78.


