
Outline of a Denotational Semantics

for the π-Calculus

Ian Stark. Dipartimento di Informatica, Università di Pisa, June 1995.

It appears possible to give a fairly standard denotational semantics for the π-calculus,
provided that we work within a functor category indexed by a category I of finite
sets and injections. The construction is driven by the expansion law, and resembles
Abramsky’s domain of synchronisation trees [1]. It also extends Ingólfsdóttir’s work on
domain models of value-passing CCS [4].

The relevant predomain equations are the following:

Pi ∼= 1 + P ◦ (Pi⊥ + In +Out)

In ∼= N × (N → Pi⊥)

Out ∼= N × (N × Pi⊥ + (N (Pi⊥)).

This captures the late semantics of the π-calculus. For Sangiorgi’s πI-calculus, where
every communication uses a new name [7], we would use In ∼= Out ∼= N × (N (Pi⊥).

To give this equation meaning, we need to choose some suitable O-category in which
to solve it; together with a power operation ‘P ◦ −’, an object N , and a non-standard
exponential ‘(’. The intention is that N should be an object of names, and elements
of (N (A) functions that, given a fresh name, return an element of A. The exact
meanings of ‘name’ and ‘fresh’ are made explicit by the choice of category.

The object Pi is then recursively defined by the equations above. These express
any π-calculus process as the set of things it may do: a silent action to become another
process, an input action, or an output action. Both input and output actions are
indexed by their subject: for example, a free output action is represented by an element
of (N × (N ×Pi⊥)), comprising subject, object and succeeding process. Bound output
is given by an element of (N × (N (Pi⊥)), specifying the output port and an agent
that takes a fresh name to a process.

As ever, the purpose in having a simple equation and a sophisticated category is
that once the construction is made, further work is straightforward. So for example
concretions and abstractions are respectively elements of (N × Pi⊥) and (N → Pi⊥),
with the ‘bound concretion’ 〈νx〉P an element of (N (Pi⊥). The same setting could
also be used to illustrate processes with sorts, or a π-calculus where transitions carry
further annotations to allow analysis of concurrency.

The first section of this note describes an appropriate category, and how it can be
used to solve the above equations. We go on to look at properties of the object Pi ,
and how elements of Pi interpret processes of the π-calculus. We then discuss issues

1

of correctness, adequacy and full abstraction; the final section outlines possibilities for
further work.

1 Choosing a Category

For convenience, we work with predomains rather than domains; selective use of the lift
operation then gives fine control over coalesced sum and smash product. This is mildly
non-standard, and there is clearly a tradeoff here which needs to be handled carefully.
For example, the category we obtain is almost cartesian closed and monoidal closed,
but for countability reasons it only has exponentials of lifted objects. Pitts discusses
the issues involved in recursively defining predomains in his paper on coinduction [6].

We use a functor category, to capture the fact that every π-calculus process is defined
over some finite set of free names, which may change as the process performs input and
output actions. As base category we use B, ω-bifinite predomains (bottomless SFP
domains) and continuous maps, because we want both function spaces and a concrete
description of the Plotkin powerdomain. For index I we take the category of finite sets
of names, and injections between them.

The object of processes Pi⊥ is now a functor I → B: so if s is a set of names, then
Pi⊥s is a domain of processes with free names in s; similarly if f : s→ s′ is a morphism
in I, then Pi⊥f : Pi⊥s→ Pi⊥s

′ is a relabelling operator.

This functor category C = BI inherits an O-structure from B; in particular there is an
evident category Ce of embeddings, which we can use to solve domain equations. Finite
limits can be taken pointwise in C, and lifted function space is formed with the usual

(A→ B⊥)s = HomC(I(s,−)× A,B⊥) A,B ∈ C,

taking advantage of the order structure on the homsets of C. Lift and disjoint union
are also available, taken pointwise. A certain amount of care is required in all of these:
often one considers operations only on the collection of predomains, and functorality
on the corresponding category is useful but not essential; here we do need an action on
morphisms, because every object in C is a functor with a morphism part in B.

The object of names N in the category C is the inclusion taking a set of names s to
the discrete predomain s. In fact, N is the only exponent that we shall need, and its
(unlifted) function space has the following object part:

(N → A)s ∼= (As)s × A(s+ 1) .

Here naturality constraints in the functor category capture the fact that a function on
names need only specify its behaviour at all existing names, and one new name.

Pitts describes an adaptation P of the Plotkin (convex) powerdomain to bifinite
predomains, with the property that P (D)⊥ = P \(D⊥) for D ∈ B [6, §5]. Applying this

2

by composition, we have an operation ‘P ◦ −’ on C, whose action on objects is given
by:

I
A
−→ B 7−→ I

A
−→ B

P
−→ B .

Abramsky’s adjoining of the empty set [1, Def. 3.4] can then be represented as 1+P ◦(−),
given that in B we have P 0(D⊥) ∼= (1 + P (D))⊥.

With models of names in SetI , it is convenient to restrict attention to functors that
preserve pullbacks, with the consequence that all the image morphisms in the base
category are injections. This restriction corresponds to quite reasonable requirements
on the behaviour of elements as the collection of available names is enlarged; it also
happens to give exactly those functors that comprise the sheaf topos for the atomic
topology on Iop.

It is not immediately clear whether a similar constraint can be laid on the category C.
The difficulty lies in identifying properties that are preserved by the power operation P ;
in particular, its action on morphisms does not in general preserve monos. Nevertheless
the whole of BI does seem rather generous as a working category, and some restriction
on the functors comprising C might be sensible.

An alternative solution, suggested by Moggi, is to choose C first, define the power
operation P abstractly, and then only use its universal properties. Of course if the
subcategory C is reasonable, we shall probably end up with the same object Pi⊥, but
in a more well-behaved setting.

For any element a ∈ As we define the support of a to be the least s′ ⊆ s such that a is
the image of some a′ ∈ As′. This is intended to be the set of names which a actually
needs. For example, the element ⊥ ∈ A⊥s always has empty support; while the element
x ∈ Ns for x ∈ s has support {x} ⊆ s.

There is a symmetric monoidal structure (1,⊗) on C, which captures a notion of
‘non-interference’ between elements. It arises from the disjoint sum ‘+’ in the index
category I, by a standard construction due to B. J. Day [3]. The tensor is given as the
following coend:

A⊗B = Coend i,j∈I(I(i+ j,−)× Ai×Bj) A,B ∈ C.

More explicitly, elements of (A⊗B)s are pairs from As and Bs with disjoint support:

(A⊗B)s = {〈a, b〉 ∈ (A×B)s | ∃f : i→ s, g : j → s, a′ ∈ Ai, b′ ∈ Bj .
a = Afa′ & b = Bgb′ & Im f ∩ Im g = ∅}.

These can be regarded as pairs of mutually non-interfering elements. The identity is
the constant functor to the one-element predomain 1.

There is a corresponding lifted function space ‘(’, with

(A (B⊥)s = HomC(I(s,−)⊗ A,B⊥) A,B ∈ C s ∈ I.

3

N (1 ∼= 1

N ((A×B) ∼= (N (A)× (N (B)

N ((A+B) ∼= (N (A) + (N (B)

N ((P ◦ A) ∼= P ◦ (N (A)

N (A⊥ ∼= (N (A)⊥
N (N ∼= N + 1

Figure 1: Some isomorphisms involving the object of names N .

Now any f ∈ I(s, s′) has support Im f , so elements of (I(s, s′) ⊗ As′) comprise pairs
〈f, a〉 where a has support disjoint from Im f . Informally, an element of (A (B⊥)s is
a function defined at all later stages, but only on arguments that cannot interfere with
it.

There are natural maps:

(A⊗B) −→ (A×B) inclusion
(A→ B⊥) −→ (A (B⊥) surjection.

If A : I → B is a constant functor then both of these are isomorphisms.
An important example of this exponential is that the operation (− ⊗ N) has a right

adjoint (N (−), where N is the object of names given above. As we shall see, this
is legitimate even without lifting. An element of (N (A)s is a function that takes
any fresh name x /∈ s to an element of A(s + {x}). As is usual with exponentials in
a functor category, naturality places some restrictions here: all fresh names must be
treated equally, and hence we have the isomorphism

(N (A)() ∼= A(+ 1).

This immediately gives the useful isomorphims of Figure 1. The first two of these are
usual for exponentiation; the others are perhaps a little surprising.

Taking these definitions of N , ‘P ◦ −’ and ‘(’, we can use the O-categorical structure
of C to construct a recursively defined object Pi as an initial solution to the equations
given earlier. The method is standard, though it is significant that Pi itself only appears
lifted on the right hand side of the equations. Indeed, because it also only appears
positively, we could solve the equations in SetI ; but would then be unable to interpret
recursion or replication of processes.

The symmetric monoidal (lift-) closed structure on C is central to its role as a model
for systems involving names. A similar construction can be made in Set I , and the same

4

applies for other choices of ‘possible world’ categories used by various authors to model
state in Algol-like languages [5].

As a further example in SetI , the monad for dynamic name creation from my
thesis [8, Chap. 3, Sect. 5] can be expressed as an I-shaped colimit:

TA ∼= Lim
→I

(N⊗(−) (A) ,

where N⊗s = N ⊗ · · · ⊗N has |s| copies, for s an object of I. Loosely, this says that a
computation of type A is a function taking zero or more fresh names and returning a
value of type A that may use them.

2 Properties of Pi

In order to interpret π-calculus processes in the category C, we need to give some
operations on the object Pi⊥. While we could do this entirely in terms of its universal
properties as a powerdomain, things may be a little more clear if we look first at the
structure of the domain Pi⊥s, and the two predomains In s and Out s, for some s ∈ I.

The standard union ‘]’ and singleton ‘{|−|}’ maps for powerdomains give rise in an
obvious way to morphisms into Pi⊥, making allowance for the empty set:

∅ : 1 −→ Pi⊥ left inclusion

] : Pi⊥ × Pi⊥ −→ Pi⊥

{|−|} : (Pi⊥ + In +Out)⊥ −→ Pi⊥ .

Figure 2 uses these to present definitions of three sets K(Pi⊥s), K(In s) and K(Out s),
which consist of all the finite elements for the corresponding predomains. Here the
elements {|⊥|} and ∅ of K(Pi⊥s) represent the undetermined process and the inactive
process 0 respectively. Element {|⊥|} is the least in Pi⊥s, while ∅ is incomparable save
for {|⊥|} v ∅.

Input and bound output both involve N -exponentials, for which we use the following
isomorphisms:

λy.p ∈ K((N → Pi⊥)s) ∼= K(Pi⊥s)
s ×K(Pi⊥(s+ 1))

λy
¯
.p ∈ K((N (Pi⊥)s) ∼= K(Pi⊥(s+ 1)) .

An element written λy.p is then a function from any name, old or new, to a finite
element of Pi⊥. Here p is not an element itself, but rather gives elements p[z/y] ∈
K(Pi⊥(s ∪ {z})) for any name z, with all fresh names treated equally. Element λy

¯
.p

is less general: the underbar on y is to indicate that it is certain to be instantiated to
a fresh name, so we can essentially take p ∈ K(Pi⊥(s + {y})) for some y /∈ s. This
representation of finite elements recalls the surjection noted earlier:

(N → Pi⊥) −→ (N (Pi⊥)

λy.p 7−→ λy
¯
.p .

5

General processes K(Pi⊥s):

{|⊥|}, ∅ ∈ K(Pi⊥s)

p ∈ K(Pi⊥s) ⇒ {|tau(p)|} ∈ K(Pi⊥s) silent action

i ∈ K(In s) ⇒ {|in(i)|} ∈ K(Pi⊥s) input action

o ∈ K(Out s) ⇒ {|out(o)|} ∈ K(Pi⊥s) output action

p, q ∈ K(Pi⊥s) ⇒ p] q ∈ K(Pi⊥s) choice

Input processes K(In s):

x ∈ s, λy.p ∈ K((N → Pi⊥)s) ⇒ (x, λy.p) ∈ K(In s)

Output processes K(Out s):

x, y ∈ s, p ∈ K(Pi⊥s) ⇒ (x, y, p) ∈ K(In s) free output

x ∈ s, λy
¯
.p ∈ K((N (Pi⊥)s) ⇒ (x, λy

¯
.p) ∈ K(In s) bound output

Figure 2: Finite elements of Pi⊥s, In s and Out s.

6

Rather than work explicitly with elements of Pi⊥s, it would be preferable to talk of
morphisms to Pi⊥ in C, using some internal language. Indeed the use of λy.p and λy

¯
.p

above anticipates just such a language. Unfortunately, there are well-known difficulties
in doing this for a category with distinct cartesian and monoidal closed structures. On
the other hand, the morphisms that we want to describe are very limited (only into Pi⊥
and (N (Pi⊥), and only from ‘×’ and ‘⊗’ products of N), so it might yet be possible.

We can now define two particular morphisms of C:

new : (N (Pi⊥) −→ Pi⊥

par : Pi⊥ × Pi⊥ −→ Pi⊥ .

The morphism new is used to interpret name restriction. It takes an agent expecting a
new name to a process, essentially by providing a fresh private name. The morphism
par interprets parallel composition as interleaving.

Both of these maps could be (recursively) defined by unfolding the definition of Pi⊥
and using various properties of N , ‘(’ and ‘P ◦ −’, including the isomorphisms of
Figure 1. Such an abstract description would then allow other choices of category,
by highlighting the general structure required. However, without a suitable internal
language, this manipulation of morphisms is rather unilluminating; so we give instead
an explicit description, specific to the functor category C.

As new and par are just natural transformations, it is enough to give their action
at each stage s ∈ I:

news : (N (Pi⊥)s −→ Pi⊥s

pars : Pi⊥s× Pi⊥s −→ Pi⊥s,

where we recall that (N (Pi⊥)s is isomorphic to Pi⊥(s+1). Both maps are continuous,
so we need only specify their value at finite elements. Certain linearities with respect
to ‘]’ also help.

Figure 3 defines the map news in this way. The various clauses for input and output
reflect the fact that under name restriction:

• any action on the restricted channel becomes unavailable;

• free output may become bound output.

Note that we use s ∪ {z} for set union and s+ {z} for disjoint union.
The interaction between the cartesian and monoidal closed structures of C plays a

significant part in these definitions. For example, in the clause for input, the exchange
of λx

¯
. and λz. is justified by the canonical map

(N ((N → Pi⊥)) −→ (N → (N (Pi⊥)) ,

7

news(λx
¯
.∅) = ∅

news(λx
¯
.{|⊥|}) = {|⊥|}

news(λx
¯
.(p] q)) = news(λx

¯
.p)] news(λx

¯
.q)

news(λx
¯
.{|tau(p)|}) = {|tau(news(λx

¯
.p))|}

news(λx
¯
.{|in(y, λz.p)|}) =







∅ x = y
{|in(y, λz.new(s∪{z})(λx

¯
.p))|} x 6= y

with α-conversion to ensure x 6= z

news(λx
¯
.{|out(y, z, p)|}) =







∅ x = y
{|out(y, λx

¯
.p)|} x = z 6= y

{|out(y, z, news(λx
¯
.p))|} otherwise

news(λx
¯
.{|out(y, λz

¯
.p)|}) =







∅ x = y
{|out(y, λz

¯
.new(s+{z})(λx

¯
.p))|} x 6= y

with α-conversion to ensure x 6= z

Figure 3: Definition of the map news for name restriction

8

and this in turn is derived from the inclusion

N ⊗ (N × A) −→ N × (N ⊗ A)

which holds for any A.
For parallel composition, we break down the map pars with two auxiliary maps:

pars(p, q) = lpars(p, q)] lpars(q, p)] lcoms(p, q)] lcoms(q, p) .

Here lpars(p, q) is prioritised parallel composition: first p does a transition, then q
interleaves with its residue. Process lcoms(p, q) allows p to send to q, and interleaves
their residues. The two maps are defined by mutual recursion, according to the equations
in Figure 4; again, by continuity and some degree of linearity, the significant clauses
are those for singletons of finite elements.

3 Interpreting the π-calculus

With the machinery of the previous section, it is straightforward to construct an
interpretation of the π-calculus in the category C. For any process P with free names
in s, we describe a morphism

[[P]]s : N
s −→ Pi⊥ ,

where N s is the object of s-environments. Again this would be done best abstractly,
using an internal language for morphisms of C. In the absence of such a language,
we instead describe first certain elements of Pi⊥s, and then build the morphisms from
these.

For a π-calculus process P with free names in s, Figure 5 defines an element

([P])s ∈ Pi⊥s

by recursion on the structure of P . Notice that the definition of replication uses the
order structure of the domain, with ([!P])s a least fixed point of pars. If we replace
replication with mutually recursive process definitions, these too would be solved as
least fixed points in Pi⊥s.

To raise ([P])s from an element to a morphism, suppose that s′ ∈ I and ρ ∈ N ss′;
that is, ρ : s→ s′ is some substitution on names. Then the natural transformation

[[P]]s : N
s −→ Pi⊥

is defined by its action at stages such as s′, with

[[P]]ss
′ρ = ([P [ρ(x)/x | x ∈ s]])s′ .

The most significant difference between the two forms is that interpreting a process
as an element of Pi⊥s assumes that all names are distinct, whereas the morphism
(N s → Pi⊥) in C includes behaviour under all possible name identifications. Thus
([−])s is the ‘ground’ notion, and [[−]]s the more general one.

9

Parallel composition:

pars(p, q) = lpars(p, q)] lpars(q, p)] lcoms(p, q)] lcoms(q, p) .

Prioritised version lpars:

lpars({|⊥|}, q) = {|⊥|}

lpars(∅, q) = ∅

lpars(p] p′, q) = lpars(p, q)] lpars(p
′, q)

lpars({|tau(p)|}, q) = {|tau(pars(p, q))|}

lpars({|in(x, λy.p)|}, q) = {|in(x, λy.pars∪{y}(p, q))|}

lpars({|out(x, y, p)|}, q) = {|out(x, y, pars(p, q))|}

lpars({|out(x, λy
¯
.p)|}, q) = {|out(x, λy

¯
.pars(p, q))|}

Single communication lcoms:

lcoms({|⊥|}, q) = {|⊥|}

lcoms(p, {|⊥|}) = {|⊥|}

lcoms(∅, q) = ∅

lcoms(p, ∅) = ∅











lcoms({|out(x, y, p)|}, {|in(x, λz.q)|})

lcoms({|out(x, λy
¯
.p)|}, {|in(x, λz.q)|})

lcoms({|a|}, {|b|})

=

=

=

{|tau(pars(p, q[y/z]))|}

{|tau(news(λy
¯
.pars+{y}(p, q[y/z])))|}

∅ otherwise

lcoms(p] p′, q) = lcoms(p, q)] lcoms(p
′, q)

lcoms(p, q] q′) = lcoms(p, q)] lcoms(p, q
′)

Figure 4: Definition of the map pars for parallel composition.

10

([x̄y.P])s = {|out(x, y, ([P])s)|}

([x(y).P])s = {|in(x, λz.([P [z/y]])s∪{z})|}

([νxP])s = news(λx
¯
.([P])s+{x})

([[x = y]P])s =

{

∅ x 6= y
([P])s x = y

([0])s = ∅

([P +Q])s = ([P])s] ([Q])s
([P | Q])s = pars(([P])s, ([Q])s)

([!P])s = µp.pars(([P])s, p)

Figure 5: Interpretation of π-calculus processes as elements of Pi⊥s.

4 Soundness and Other Matters

This section describes soundness, adequacy and full abstraction results for the denotational
semantics of the π-calculus described above, together with an indication of proof methods.
We look in turn at how the interpretation respects transitions, bisimilarity, equivalence
and equivalence up to distinctions.

The operational semantics of a π-calculus process P is given by its transitions; these
are soundly interpreted in C, with results such as

P
x̄y
−→ Q =⇒ {|out(x, y, ([Q])s)|} ∈ ([P])s .

The use of the element form ([−])s reflects the fact that transition in the π-calculus is
a ‘ground’ notion. Proof is by rule induction: the translation respects every rule of the
operational semantics.

The converse to soundness is that the model is adequate with respect to transitions:
this involves properties like

{|tau(q)|} ∈ ([P])s =⇒ ∃Q . P
τ
−→ Q& ([Q])s = q .

To prove this would require a formal approximation relation similar to that used in
adequacy proofs for the λ-calculus.

The remaining adequacy results all follow in a fairly straightforward way from the fact
that we have a sound and adequate model of transitions in the π-calculus. Adequacy
with respect to strong bisimilarity (strong ground equivalence) is that

([P])s = ([Q])s =⇒ P ∼̇ Q .

11

Again as this is a ground notion an interpretation in terms of elements is appropriate.
Later we shall see how to express the same assertion with morphisms alone.

Given that we work with predomains, we might expect that the order structure
on Pi⊥ would correspond to similarity of π-calculus processes. However this is not
the case: the ordering on Pi⊥ only relates to under-specified behaviour, appropriate
for defining [[!P]]s as a limit; while similarity in the π-calculus occurs when the (fully
specified) behaviour of one process is included in that of another.

As an aside, we could add a divergent process Ω to the π-calculus, with a matching
assertion P↑ ‘process P may diverge’. The approximation relation in Pi⊥ then corresponds
to ‘partial bisimilarity’ of π-calculus processes, defined as

P .̇ Q ⇐⇒ P simulates Q
& if P↓ then Q↓ and Q simulates P

where P↓ ‘process P converges’ is the negation of P↑.
Moving to non-ground notions, adequacy for strong equivalence is expressed by

[[P]]s = [[Q]]s =⇒ P ∼ Q .

As noted earlier, the morphisms [[−]]s : N
s → Pi⊥ include behaviour under all possible

name identifications. Hence this is the right form to express the fact that P ∼ Q if and
only if they are strongly bisimilar under all substitutions.

The object N s here has as elements all possible substitutions on the names in s,
including those where different names become identified. By comparison, the object

N⊗s = N ⊗ · · · ⊗N with |s| copies of N

comprises all s-environments which keep the names distinct. There is an inclusion
⊗ ↪→ × through which we can define another interpretation of processes as morphisms:

[[−]] 6=s : N ⊗ · · · ⊗N ↪−→ N × · · · ×N
[[−]]

s−→ Pi⊥

with |s| copies of N in both cases. This [[P]] 6=s is the ground interpretation of P , keeping
all names distinct. Indeed the object N⊗s is isomorphic to I(s,−), so by the Yoneda
Lemma,

HomC(N
⊗s,Pi⊥) ∼= Pi⊥s

and the morphism [[−]] 6=s corresponds to the element ([−])s across this isomorphism. We
can use this to reinterpret adequacy for bisimilarity in terms of morphisms:

[[P]] 6=s = [[Q]] 6=s =⇒ P ∼̇ Q .

Between bisimilarity and equivalence lies a spectrum of relations indexed by distinctions.
These express permanent inequalities of names; specifically, a distinctionD is a symmetric,

12

irreflexive relation on a set of names s. Corresponding to any distinction there is an
object ND: if s′ is some other set of names, then the elements of NDs′ are substitutions
ρ : s → s′ that respect the distinction D. For example, the objects N⊗s and N s

correspond to the total and empty distinctions respectively. As a more complicated
example, consider the distinction

{w, x 6= y 6= z } on the set {w, x, y, z}.

This corresponds to the object

Nw × (Ny ⊗ (Nx ×Nz))

where for clarity the copies of N are indexed by the name they interpret. Not all
distinctions can be so simply represented; however, there is always a canonical inclusion
ND ↪→ N s. One of the difficulties in devising an internal language for C, to describe
morphisms into Pi⊥, is the need for objects like ND as contexts (‘typotheses’).

We can define morphisms that interpret the behaviour of a process under some
distinction D:

[[−]]D : ND ↪−→ N s [[−]]
s−→ Pi⊥ .

If two processes are bisimilar under all name substitutions that respect some distinctionD,
then they are said to be D-equivalent. Adequacy for D-equivalence is expressed by

[[P]]D = [[Q]]D =⇒ P ∼D Q .

This specializes to the assertions of adequacy for bisimilarity and equivalence given
above.

Full abstraction results are the converse of all of these, as follows:

P ∼D Q =⇒ [[P]]D = [[Q]]D
P ∼̇ Q =⇒ [[P]] 6=s = [[Q]] 6=s

P ∼ Q =⇒ [[P]]s = [[Q]]s .

Proof is straightforward, provided that we have an ‘internal full abstraction’ result for
the domain Pi⊥s. This says that elements of the domain are completely determined by
the transitions they interpret; see Pitts [6, §5] for a general coinductive proof method.

Figure 6 summarises how the various operational notions of process behaviour are
interpreted by the categorical model.

13

Operation Denotation

Transitions: P
x̄y
−→ Q {|out(x, y, ([Q])s)|} ∈ ([P])s etc.

Bisimilarity: P ∼̇ Q ([P])s = ([Q])s ∈ Pi⊥s

[[P]] 6=s = [[Q]] 6=s : N⊗s −→ Pi⊥

Equivalence: P ∼ Q [[P]]s = [[Q]]s : N s −→ Pi⊥

D-equivalence: P ∼D Q [[P]]D = [[Q]]D : ND −→ Pi⊥

Figure 6: Behaviour of π-calculus processes: operational notions and their
interpretation in the categorical model.

5 Further Work

This might include any of the following.

• Expand and complete proofs of correctness, adequacy, full abstraction.

• Early as well as late semantics for input actions.

• Open bisimilarity, weak bisimilarity, . . .

• Internal language for C. With graphs as typotheses to express non-interference?

• What logic corresponds to this model?

• More abstract construction of the model and interpretation.

• Connection to Moggi’s work on models for CCS-like languages.

• What happens when this method of indexing by I is applied to other categorical
models of concurrency [2, 9] ?

• Higher-order π-calculus. This might just be a matter of replacing N by Pi⊥ as
the object of input and output clauses, but it can hardly be that simple.

• What does the induced model of the lambda-calculus look like?

Other possibilities will no doubt suggest themselves to the reader.

14

References

[1] S. Abramsky. A domain equation for bisimulation. Information and Computation,
92(2):161–218, June 1991.

[2] A. Corradini, G. Ferrari, and U. Montanari. Transition systems with algebraic
structure as models of computations. In Semantics of Systems of Concurrent

Processes, Lecture Notes in Computer Science 469, pages 185–222. Springer-Verlag,
1990.

[3] B. J. Day. On closed categories of functors. In Reports of the Midwest Category

Seminar, Lecture Notes in Mathematics 137, pages 1–38. Springer-Verlag, 1970.

[4] A. Ingólfsdóttir. A semantic theory for value-passing processes, late approach. Part I:
A denotational model and its complete axiomatization. BRICS Report RS-95-3,
Department of Computer Science, University of Aarhus, January 1995.

[5] P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent. Syntactic control
of interference revisited. In Mathematical Foundations of Programming Semantics:

Proceedings of the 11th International Conference, Electronic Notes in Theoretical
Computer Science 1. Elsevier, 1995.

[6] A. M. Pitts. A co-induction principle for recursively defined domains. Theoretical

Computer Science, 124:195–219, 1994.

[7] D. Sangiorgi. π-calculus, internal mobility, and agent-passing calculi. Draft Paper,
November 1994.

[8] I. Stark. Names and Higher-Order Functions. PhD thesis, University of Cambridge,
December 1994. Also published as Technical Report 363, University of Cambridge
Computer Laboratory.

[9] G. Winskel and M. Nielsen. Models for concurrency. BRICS Report RS-94-12,
Department of Computer Science, University of Aarhus, May 1994. To appear as a
chapter in the Handbook of Logic and the Foundations of Computer Science, vol. 4,
Oxford University Press.

15

