
Strong Normalization for the λ-calculus with

Computational Monads

Ian Stark and Sam Lindley

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh

Friday 15 November 2002

Overview

We are interested in general methods for reasoning about λML, a
lambda-calculus with types that distinguish computations from
values. As an example, we prove strong normalization in two
different ways.

Outline of talk:

• Background and motivation: λML, computation types, MLj.

• Strong normalization by translation

• Strong normalization by reducibility

1

Background

Moggi’s computational metalanguage λML provides a way to
explicitly describe computations with side-effects within a pure typed
lambda-calculus. The central feature is a new type constructor:

For any type A of values there is a type TA of computations
that return an answer in A.

Examples of computational effects include non-termination,
exceptions, I/O, state, nondeterminism and jumps.

2

Types and terms of λML

Types A,B,C ::= O | A→ B | TA

Terms M,N, P ::= x:A | λx:A.M | MN

| [M] | let x:A⇐M in N

Γ `M : A

Γ ` [M] : TA

Γ `M : TA Γ, x:A ` N : TB

Γ ` let x:A⇐M in N : TB

The type constructor T acts as a categorical strong monad.

3

Motivation

The MLj and SML.NET compilers use a monadic intermediate
language (MIL) to manage the translation from a higher-order
functional language (Standard ML) into an imperative object-oriented
bytecode (JVM / .NET).

Typed SML source code

��
Complex MIL

��
Simplified MIL

����
Verifiable bytecode

MIL is λML extended with
datatypes, exceptions, effects, etc.

This is type-preserving compilation,
carrying types right through
compilation to guide optimisation
and help generate verifiable code.

4

Reduction in λML

(λx.M)N −→M[N/x](β)

λx.Mx −→M(η)

let x⇐ [V] in N −→ N[V/x](let β)

let x⇐M in [x] −→M(let η)

(let assoc) let x⇐ (let y⇐M in N) in P

−→ let y⇐M in (let x⇐ N in P) y /∈ fn(P)

Theorem. λML is strongly normalizing: no term M ∈ λML has an
infinite reduction sequence M→M1 → · · ·

5

First proof — translation

[[O]] = O [[x]] = x [[[M]]] = [[M]]

[[TA]] = [[A]] [[MN]] = [[M]][[N]] [[let x⇐M in N]] = (λx.[[N]])[[M]]

[[A→ B]] = [[A]]→ [[B]] [[λx.M]] = λx.[[M]]

Interpret T as the identity type constructor, with no computational effects.

6

Reductions translated

Standard lambda-calculus reductions are unchanged: β to β, η to η.

[[let β]] (λx.N)M→ N[M/x]

[[let η]] (λx.x)M→M

[[let assoc]] (λx.P)((λy.N)M)→ (λy.(λx.P)N))M y /∈ fn(P)

This last rule is a strict extension of λβη, although it is known in work
on continuation-passing.

7

Strong normalization for λβηassoc

The following asymmetric measure decreases under η and (λassoc).

s(x) = 1 s(λx.M) = s(M) s(MN) = s(M) + 2s(N)

It may increase under β, so in addition we take
b(M) = max # β-reductions of M and use 〈b(M), s(M)〉 ordered
lexicographically.

Lemma. b((λx.P)((λy.N)M)) ≥ b((λy.(λx.P)N)M)

Proof. Explicit matching of β-reductions on the right with others on
the left, with some careful carrying and borrowing.

Thus λβηassocis strongly normalizing, hence λMLis also.

8

Second proof — reducibility

By translating to λβηassoc, we are reusing strong normalization for
β-reduction. Can we instead show this for λML directly?

For example, Tait’s method for λβη, as presented in [GLT89]:

• Define reducibility of terms, by induction on types.

• Show useful properties of reducibility (CR 1–3) by induction on
types.

• Show that all terms are reducible, by induction on term structure.

9

Reducibility for λβη

The definition of reducibility is by induction on types:

• A ground term M : O is reducible iff M is strongly normalizing.

• A function term M : A→ B is reducible iff for all reducible N : A

the application MN : B is reducible.

10

Properties of reducibility

(CR1) If M is reducible then it is strongly normalizing.

(CR2) If M is reducible and M→M ′ then M ′ is reducible.

(CR3) If M is neutral (a variable or an application), and for all
M→M ′ we have M ′ reducible, then M is reducible too.

Theorem. All terms are reducible.

Corollary. All terms are strongly normalizing.

11

Defining reducibility at computation types

• A continuation (x)K : A ◦→ TB is a computation term with a
distinguished free variable x of type A.

• A continuation K is defined as let-reducible if (let x⇐ [V] in K) is
strongly normalizing for all reducible values V .

• Define a computation M : TA to be reducible if (let x⇐M in K)

is strongly normalizing for all let-reducible continuations K.

Now follow your nose to prove properties (CR1–3) and hence strong
normalization for all of λML.

12

General technique

Given a property QA defined by induction on the structure of type A,
define some further properties as follows:

M ⊥ K ⇐⇒ (let x⇐M in K) is strongly normalizing

Value V ∈ QA
Continuation K ∈ Q⊥A ⇐⇒ ∀V ∈ QA . [V] ⊥ K

Computation M ∈ Q⊥⊥A ⇐⇒ ∀K ∈ Q⊥A . M ⊥ K

Take QTA = Q⊥⊥A

In situations without explicit computation types, this game of
“leapfrog” can create a notion of property Q on expressions from one
on values only.

13

Summary of results

λβηassoc is strongly normalizing, building on the fact that λβη is.

λML is strongly normalizing, by translation to λβηassoc.

λML is strongly normalizing, by reducibility.

“Leapfrog” allows us to define reducibility for computations without
knowing any specific details of the type constructor T .

14

Some related work

Normalization in the computational metalanguage:

• Benton, Bierman and de Paiva (1998) give a modal logic
corresponding to λML, with accompanying proof normalization.

• Filinski (2001) performs normalization by evaluation for λC,
which is equivalent to a proper subsystem of λML.

Extending reasoning methods from values to computations:

• Pitts and Stark (1997) leapfrog a relation for proving operational
equivalences between functional programs with local state.

• Pitts (1998) uses leapfrog in operational reasoning about
parametric polymorphism, where the relevant computational
effect is nontermination.

15

