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Abstract. We proposer T-lifting as a technique for extending operational pred-
icates to Moggi's monadic computation types, independent of the choice of
monad. We demonstrate the method with an application to Girard-Tait reducibil-
ity, using this to prove strong normalisation for the computational metalan-
guage\.;. The particular challenge with reducibility is to apply this semantic
notion at computation types when the exact meaning of “computation” (stateful,
side-effecting, nondeterministic, etc.) is left unspecified. Our solution is to define
reducibility for continuationsand use that to support the jump from value types
to computation types. The method appears robust: we apply it to show strong
normalisation for the computational metalanguage extended with sums, and with
exceptions. Based on these results, as well as previous work with local state, we
suggest that this “leap-frog” approach offers a general method for raising con-
cepts defined at value types up to observable properties of computations.

1 Introduction

Moggi's computational metalanguage,; is a typed calculus for describing program-
ming languages with real-world features like exceptions, nondeterminism and side-
effects. It refines the pure simply-typed lambda-calculus by explicitly distinguishing
valuesfrom computationsn the type system: for each typeof values, there is a type

T A of programs that compute a value of tyde The calculus specifies that the type
constructorl’ be astrong monagdwhich is enough to support a wide range of notions
of computation[[5], 21, 22, 33].

In this paper we presentT-lifting: a method for reasoning about properties of
computations in\,,;, independent of the underlying monad, by raising up concepts
defined explicitly on values.

We demonstrate the technique with a type-directed proof of strong normalisation
for \,,.;, extending Girard-Tait reducibility to handle computation types. We also apply
it to some extensions of,,;, and observe thatT-lifting gives a smooth treatment of
reducibility for commuting conversions.

Section[2 provides a brief review of the computational metalanguage and related
systems. Reduction in,,; properly extends that in the simply-typed lambda-calculus,
with three reductions specific to computations. One of th€sgssoc, is a commuting
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conversion; anothefl.3, involves substituting one term within another; which may
make a term grow larger, and create subterms not present before. As usual with these
kinds of reduction, the consequence is that straightforward induction over the structure
of terms or types is not enough to prove terminationgf reduction.

In earlier work, Benton et al. proved strong normalisation fgf; terms by
translating them into a lambda-calculus with sums, and then invoking Prawitz’s result
for that system([4]. Our alternative is to use-lifting to give a standalone proof of
strong normalisation, inductively on the structure\gf; types.

Sectior] B sets out the details. We define an auxiliary noticedidcibility at every
type, that is linked to strong normalisation but amenable to induction over the structure
of types. This is a standard technique from the lambda-calculus: roughly, reducibility is
the logical predicate induced by strong normalisation at ground types. We show that all
reducible terms are strongly normalising, and go on to prove the fundamental theorem
of logical relations, that in fact all definable terms are reducible.

The challenge, and the chief technical contribution of this paper, is to find a suitable
definition for reducibility at computation types. Some such definition is essential, as
the type constructof is intentionally left unspecified. A first informal attempt might
be to echo the definition for functions, and look at the immediate application of a
computation:

(Bad 1) Termi of typeT A is reducible if for all reducibleV of typeT B, the term
let x <= M in N is reducible.

This is not inductive over types, as the definition of reducibility at typedepends on
reducibility at typel' B, which may be more complex. We can try to patch this:

(Bad 2) TermM of type T'A is reducible if for all strongly normalisingV of
typeT B, the termiet x <= M in N is strongly normalising.

However, this turns out to be too weak to prove propertiedfofn richer contexts
like lety < (let x <= (=) in N) in P. Examining the structure of these, we define a
continuation K as a nested sequence lof x; < (—) in N;, and use these for our
definition of reducibility:

(Good 1) TermM of typeT A is reducible if for all reducible continuatiorfs, the
applicationk @ M is strongly normalising.

Here application means pasting tefthinto the hole(—) within K. Of course, we now
have to define reducibility for continuations:

(Good 2) Continuationk’” accepting terms of typ& A is reducible if for all re-
ducibleV of type A, the applicationk” @ [V] is strongly normalising.

The term[V] is the trivial computation returning valué. By moving to the simpler
value typeA we avoid a potential circularity, and so get a notion of reducibility defined
by induction on types. What is more, the characterisation by continuations is strong
enough to treat both the commuting conversidnssoc and substitution irf".3, and

the strong normalisation proof goes through without undue difficulty.
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Looking beyond reducibility, this jump over continuations offers a quite general method
to raise concepts from value typk up to computation typd'A, whether or not we
know the nature of". Suppose that we writ& T M whenK applied to)M is strongly
normalising, and for any predicateC A define in turn:

' ={K|KT[V]forallV ¢}
o' T ={M|KTMforal Ke¢' } CTA.

This is our operation of-T-lifting: to take a predicate> on value typeA and return
anothery ™ T on the computation typ& A, by a “leap-frog” overp ' on continuations.
One informal view of this is that continuatioris represent possible observations on
terms, andy" " lifts ¢ to computations based on their observable behaviour.

We believe that the use afT-lifting in the metalanguage.,,,; is original. It was
inspired by similar constructions applied to specific notions of computation; it is
also related to Pitts’s T-closure, and that in turn has analogues in earlier work on
reducibility. Sectiofi 5]1 discusses this further.

In Sect[ 4 we demonstrater-lifting for reducibility in some variations ok,,,;; treating

sums, exceptions, and Moggis.. For each case we vary our notion of continuation,

but leave the definition oq‘—)TT unchanged. Notably, this includes the commuting
conversions introduced by sums. Secfipn 5 discusses related work, and concludes with
some possible future directions.

2 The Computational Metalanguage

We start with a standard simply-typed lambda-calculus with ground @ygeoduct
A x B and function spaced — B for all types A and B. The computational
metalanguagextends this with a type constructbrand two term constructions:

— For eachA there is a typd' A, of computations that return an answerAn

— Thelifted term[M] is the computation which simply returns the answeér

— Thecompositiorterm let x < M in N denotes computing/, binding the answer
to x and then computingy.

Fig. @ presents typitﬂgand reduction rules for this language,;. It corresponds to
Moggi's AM L [21]]. In categorical terms, this is the internal language for a cartesian
closed category with a strong monadMore concretely, it is also what lies behind the
use of monads in the Haskell programming language, wiiégeany type constructor
in theMonad class and the term formers areturn M for lifting anddo {x<-M; N}
for composition[[24].

Often we do not require the full power of,,, and there are two common
simplifications: first, that all functions must return computations, thus havingAype
T B; and second, that this is the only place wh&rean occur. These constrain the

1 Our presentation of typing follows Girard et dl. [14], in that we assume a global assignment
of types to variables. This is in contrast to typirgla Curry” and typing & la Church”[[2],
which use locatyping contexts
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calculus to represent computations and only computations, disallgwirgfunctions
of type A — B as well asmetacomputationske those with type’A — T'B and
T(TA).

With both of these restrictions in place we obtain the sub-calcalys. This
contains the call-by-value embeddirig [16] of the simply-typed lambda-calculus into
the computational metalanguage; with the attention on functions of #ype T'B
embodying call-by-value semantics.

It turns out that the terms of,,;, are so constrained that we can dispense with
explicit lifting and computation types, replacing them by a simple syntactic separation
of valuesV from non-values)M. This leaves only théet-construction, and we have
a subset\., of Moggi's computational lambda-calculus. [20]. Sabry and Wadler
discuss in detail the correspondences betwegn A,.i«, Ac. @and. [28]. Our results
on \,,; apply directly to its restriction\,,;.; however\. has extra reduction rules, and
in Sect[4.B we give aT-lifting approach to cover these too.

The reductions for\,,; appear in the last part of Fi§j] 1. These extend those
for the simply-typed lambda-calculus with three reductions that act only on terms
of computation typeT.3, T.n and T.assoc. Before looking more closely at these
three, we review some relevant properties of typed reduction, and the notion of strong
normalisation.

Proposition 1. Reduction in the computational metalanguage preserves types and is
itself preserved under substitution.

@) f M:AandM — M’ thenM’ : A.
(i) f M — M’ thenM[x:= N] — M'[x:= N].

Proof. Induction on the derivation af/ : A and the structure of/ respectively. 0O

Definition 2. A term M in some calculus istrongly normalising(it is SN) if there is
no infinite reduction sequendd — M; — - - -. In this case we writenaz (M) for the
length of the longest reduction sequence starting fidmA calculus itself is strongly
normalising if every term in it is strongly normalising.

We use the results of Prqg. 1 repeatedly in the proofs for Sect. 3, and also the following:

Corollary 3. If the \,,; term M [z := N] is strongly normalising, then so i§.

Proof. By contradiction, from Prop[]f{ii): supposk&/ has some infinite reduction
sequenceV/{ — M; — ---; then so doeM [z := N] — Mz :=N|] — ---. If
M [z := NJ] has no such sequence, then neither ddeand both are SN. |

It is standard that undes-reduction the untyped lambda-calculus is not strongly
normalising. For example, the teffh= (A\z.zx)(Az.zz) S-reduces to itself, leading to
the infinite reduction sequencdg —3 {2 —4 .... On the other hand, the simply-typed
lambda-calculus is strongly normalising with respecfteduction[14]: in particular,
{2 has no simple type.

We shall be investigating strong normalisation with the additional terms and reduc-
tions of \,,,; from Fig.[]. The reductions to watch ares andT.assoc: like —.3, a
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Syntax
Types AB == 0| A—-B| AxB | TA
Terms L ,M,N,P == z* | \e® M | MN | (M,N) | m (M) | m(M)
| [M] | letz™ < Min N
Typing
M:B M:A—B N:A M:A N:B
A M:A— B MN : B (M,N): Ax B
A .
at A M:A M:TA N:TB M:AixAs
[M]:TA letzA <= MinN:TB m(M): A,
Reductions
—.0 (Az.M)N — M|z := N]
—.n .Mz — M if x¢fu(M)
X ﬂ’t 7T1(<M17M2>) —>M»L 221,2
x.n (w1 (M), m2(M)) — M
T8 lete < [N]in M — M|z := N]
T letx <= Minz] — M

T.assoc lety < (letx<=LinM)in N — letx < Lin(lety<= Min N) if z¢fo(N)

Fig. 1. The computational metalanguagsg;.

7.5 step performs substitution, and so may enlarge the term at hand; Thideoc is

a commuting conversigralso termed g@ermutationor permutative conversiorCom-

muting conversions are so named for their transforming action, via the Curry-Howard
isomorphism, on derivation trees in natural deduction (indeed, the counterpart in logic
of T.assoc is described in]4]). They also arise when the lambda-calculus is extended
with sums, and are known for the issues they can cause in proofs over reduction systems.
Prawitz originally addressed this in [27]; seel[17] for a discussion and further references.
As we shall see below; T-lifting uses structured continuations to perform proof over
commuting conversions.

3 Reducibility

We presentrT-lifting with the concrete example of a proof of strong normalisation
in \.,;, by extending the type-directed reducibility approach originally due to[Talit [29].
We follow closely the style of Girard et al._[14, Chap. 6]; although in this short
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presentation we focus on the proof parts specifid tg, with full details appearing
elsewhere[[19]. As explained earlier, the key step is to find an appropriate definition
of reducibility for computation types, which we do by introducing a mechanism for
managing continuations.

3.1 Continuations

Informally, a continuation should capture how the result of a computation might be used
in a larger program. Our formal definition is structured to support inductive proof about
these uses.

— A term abstraction(z) N of typeT A — T'B is a computation ternV of typeT B
with a distinguished free variableof type A.
— A continuationk is a finite list of term abstractions, with lengti|.
|Id| =0
|[Ko(x)N|=|K|+1
— Continuations have types assigned using the following rules:
(x)N:TA—-TB K:TB—-TC
Ko(z)N:TA—-TC
— We apply a continuation of typEA — T'B to a computation term/ of typeT' A
by wrapping)M in [et-statements that use it:
IdaM=M
(Ko(z)N)@M =K Q (letx < M in N)

K =1Id | Ko(zx)N

Id: TA—TA

Notice that when K| > 1 this is a nested stack of computations, not simple
sequencing: i.e.

letx1 < (letxg <= (... (letxy, <= M in Ny)) ... in Na) in Ny
rather than
letx1 <= Myinletxo <= My in .. .inletx, < M, in N .

Although these two are interconvertible by a sequenc&.aksoc rewrites, we
cannot identify them while we are looking to confirm strong normalisation in the
presence of substituting rewrites like.5 andT. 3.
In fact, it is exactly this nesting structure that we use to ta@klessoc in our key
Lemma[]; essentially, the stack depth of a continuation tracks the action of the
commuting conversion.

— We define a notion of reduction on continuations:

KoK & vy KeM—-KaM

<~ KQz—> K Qx
where the second equivalence follows from Profp.] 1(ii). A continuafidris

strongly normalisingf all reduction sequences starting frof are finite; and in
this case we writenaz (K) for the length of the longest.
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Lemma4. If K — K, for continuationsk” and K, then|K'| < |K]|.

Proof. SupposeK = Id o (1)N, o --- o (x,)N,. Then its applicationk @ » =
letzy < (...(letx, <z inN,)...)in Ny and there are only two reductions that
might change the length df.

— T.n whereN; = [z;] for somei. ThenK — K’ whereK’ = Id o (x1)Nyo---0
(xi—1)Ni—1 0 (zi41)Niy1 00 (z,)N, and|K'| = |K| — 1.

— T.assoc may occur at positiori for 1 < i < ntogive K’ = (z1)Nyo---o0
(xi—l)Ni o (zi+1)(letwi = Ni+1 m Nz) o (I¢+2)Ni+2 O+ 0 (xn)Nn Again
|K'| = |K]| — 1.

Hence|K’| < |K]| as required. O

3.2 Reducibility and Neutrality

Figure[2 defines two sets by induction on the structure of types: reducible tetmef
type A, and reducible continuatiomsd} of typeT' A — T'B for someB. As described
in the introduction, for computations we usel; 4 = red ) ' .

We also need to classify some termsnasitrat we do this by decomposing every
reduction into a rewrite context with a hole that must be plugged with a term of a
particular form (see Fi¢.]2 again). From this we define:

— Term M is activeif R[M] is a redex for at least one of the rewrite contexts.
— Term M is neutralif R[M] is not a redex for any of the rewrite contexts.

The neutral terms are those of the fosmM N, 71 (M) andwe(M); i.e. computation
types add no new neutral terms. The basic properties of reducibility now fol&nlj—
(CR 4) of [14].

Theorem 5. For every termM of type A, the following hold.

(i) If M € red 4, thenM is strongly normalising.

(iiy f M eredqgandM — M’',thenM’ € red 4.
(iii) If M is neutral, and wheneveWl — M’ thenM’ € red 4, thenM & redy4.
(iv) If M is neutral and normal (has no reductions) th&h e red 4.

Proof. Part [iV) is a trivial consequence dfiii), so we only need to prdye [(i}—(iii),
which we do by induction over types. The proof for ground, function and product types
proceeds as usual [14]. Here we expand the details for computation types:

(i) SayM € redr4. By the induction hypothesif (i), for evefy € red 4 we have that
N is SN, and sdN] is too. This is enough to show thét : TA — T Aisinred},
and sold @ M = M is SN as required.

(i) SupposeM € redp4 andM — M'. ForallK € red;l;, applicationK @ M is SN,
andK @ M — K @ M’;thusK @ M’ is SN andM’ € redr 4 as required.

(i) Take M : T A neutral withM’ € redr 4 wheneveiM — M’. We have to show that
K @M is SN for eachi € red ;. First, we have thak @ [z] is SN, ast € red 4 by
the induction hypothesif§ {iv). Hende itself is SN, and we can work by induction
onmaz(K).
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Reducibility for terms and continuations

M € redo if the ground term\/ is strongly normalising
Feredap if FM € redp forall M € reds

P credaxp if mi(P) € reds andma(P) € redp

M € redra if K @ M is strongly normalising for alK” € red

K €red) if K @[N] is strongly normalising for all terma&’ € red 4.
Reduction Rewrite context Active term
—.0 —-N Ax. M
—.n - Ax.Mx
x.31 mi(—) (M, N)
X1 - (m1 (M), w2 (M))
T3 letx <= —in M [N]
T letx <= M in — [x]
T.assoc lety<=—in N letz < Lin M

Fig. 2. Reducibility and neutrality fon,,,;

Application K @ M may reduce as follows:

e K @M', whereM — M’, whichis SN agi € red ), andM’ € redrp 4.

e K'@M,whereK — K'.ForanyN € reds, K @Q[N]is SN ask € red,; and
K @[N] — K' @[N], soK’ @ [N]is also SN. From this we hav§’ ¢ red
with maz(K’) < maz(K), so by the induction hypothesis’ @ M is SN.

There are no other possibilities d9 is neutral. HenceK @ M is strongly
normalising for everyx € redg, and soM € redr 4 as required. O

3.3 Reducibility Theorem

We show that all terms are reducible, and hence strongly normalising, by induction on
their syntactic structure. This requires an appropriate lemma for each term constructor.
Here we set out proofs for the new constructors associated with computation:[lffing
andlet. The other cases follow as usual from the properties of Thm. 5, and are set out
in [19].

Lemma 6. Lifting preserves reducibility: if tern® € red 4 then[P] € redp 4.

Proof. For any continuatiors” € red }, the applicationk” @ [P] is SN, asP ¢ red ;
and so[P] € redr 4. O

We next wish to show that formation &ft-terms preserves reducibility. That will be
Lemmd 8, but we first need a result on the strong normalisatiést @érms in context.
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This is the key component of our overall proof, and is where our attention to the

stack-like structure of continuations pays off: the challenging case is the commuting
conversionT.assoc, which does not change its component terms; but it does alter

the continuation stack length, and this gives enough traction to maintain the induction
proof.

Lemma7.Let P : A be aterm,(x)N : TA — TB a term abstraction, and
K : TB — TC a continuation, such that botR and K’ @ (N[z := P]) are strongly
normalising. Therk @ (let x < [P] in N) is strongly normalising.

Proof. We show by induction ofK| + maz(K @Q N) + maz(P) that the reducts of
K Q (letx < [P]in N) are all SN. The interesting reductions are as follows:

— T.fgiving K @Q (Nz := P]), which is SN by hypothesis.

— T.nwhenN = [z], giving K @Q [P]. But K Q [P] = K @ (N[z:= P]), which is
again SN by hypothesis.

— T.assoc in the case wher& = K’ o (y)M with z ¢ fvo(M); giving the reduct
K'Q(letx < [P]in (lety < N in M)). We aim to apply the induction hypothesis
with K’ and(let y <= N in M) for K and N, respectively. Now

K' @ ((lety<= NinM)[z:=P]) =K' Q (lety < N[z :=Plin M)
— K@ (N[z:= P))

which is SN by hypothesis. Also
|K'|+maz(K'Q(lety < N in M))+maz(P) < |K|+maz(K QN)+maz(P)

as|K'| < |K|and(K' @ (lety< NinM)) = (K @ N). This last equal-
ity explains our use ofmaz(K @ N); it remains fixed underl.assoc, un-
like maz(K) and maz(N). Applying the induction hypothesis gives that
K' @ (letx < [P]in (lety < N in M)) is SN as required.

Other reductions are confined 6, N or M, and can be treated by the induction
hypothesis, decreasing eitheuz (K @ N) or maz(M). O

We are now in a position to prove that composing computatiostiterms preserves
reducibility.

Lemma8. If M € redrs and (z)N : TA — TB hasN[x := P] € redrp for all
P credy, then(letz <= M in N) € redrp.

Proof. Given a continuatiors € redj;, we must show thak’ @ (let z: < M in N) is
SN. Now for anyP & red4, applicationk @ (N[z:= P]) is SN, asK € red, and
Nz := P] € redpp by hypothesis. BuP is also SN, by Thni.]§(i), and so Lemipa 7
shows that’ @ (let - < [P] in N) is SN too. This proves thgi o (z)N) € red }, S0
applying ittoM € redp 4 gives thatil @ (let x < M in N) is SN as required. O

We finally reach the desired theorem via a stronger result on substitutions into open
terms.
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Theorem 9. Let M : B be some term with free variables : Aq,...,z; : A;. Then
foranyN; € redy,,..., Nk € redg, we haveM [z := Ny,...,xy := Ni| € redp.

Proof. By induction on the structure of the main term. For computation terms we have:
— [P], whereP : A. By the induction hypothesiB[#:=N] € red 4, and by LemmE|6

we get[P][Z := N| = [P[Z := N]] € redr as required.
— letz < Lin M, whereL : TC and M : T'B. The induction hypothesis is that
L[Z:= N] € redrc, andM[Z := N,z := P| € redr4 forall P € redc. Lemm

gives(let z < Lin M)[i:=N] = let x < L[Z := N] in M[Z := N] € redp4. O
Theorem 10. Each\,,,; term M : Ais inred 4, and hence strongly normalising.

Proof. Apply Thm.[ withN; = 2;, wherez; € red 4, by Thm[5{iV). This tells us that
M € red 4, and by Thm[ i) also strongly normalising. O

4 Extensions

In this section we applyrT-lifting to reducibility in some extensions of,,;: with

sum types, with exceptions; and in the computational lambda-caléyluBoth sums

and exceptions have existing normalisation results in the standard lambda-calculus (for
example,[[11] and [18, Thm. 6.1]); we know of no prior proofs for themjpn. More
important, though, is to see howr-lifting adapts to these features. The key step is to
extend our formalized continuations with new kinds of observation. Once this is done,
we can use these to lift predicates to computation types. The case of reducibility, and
hence a proof of strong normalisation, then goes through as usual. Here we can only
summarize, and full details appearlin [19].

4.1 Reducibility for Sums

Prawitz first showed how to extend reducibility to surns|[27]. His method is quite
intricate: for a termM of sum type to be reducible, not only must the immediate
subterms of\/ be reducible, but also a certain class of subternig binust be reducible
wheneverM reduces ta\/’. We avoid this complexity by defining reducibility for sums
as we do for computations, by a leap-frog over continuations.

We begin by extending,,,; with sum types and aase construct where each branch
must be a computation (we later lift this constraint):

M:A M:B
1w(M): A+ B to(M): A+ B

M:A+B N;:TC Ny:TC
case M of 11(z14) = Ny | 1a(22B) = Ny : TC
To record possible observations of sum terms, we introduag continuations
S:=Ko <($1)N17 ($2)N2>
(K o {(z1)N1, (x2)N2)) @M = K Q (case M of t1(x1) = Ny | t2(x2) = Na).

We can now define reducibility for sum continuations, and thence for sums.
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— Sum continuatior§ : A+ B — TC'isinred ) g if:
e S Q (11(M)) is strongly normalising for alM € red 4 and
e S @ (19(N)) is strongly normalising for allV € red.
— SumtermP : A+ Bisinredayp if S @ P is strongly normalising for all
Se redLrB.

This is then sufficient to prove strong normalisation Xgy; with sums in the manner of
Sect[3.3.

To apply this to a more generahseconstruction, we can move foame stacks
nested collections of elimination contexts for any type constructdr [26]. Frame stacks
generalise continuations, and we have been able to use them to give a leap-frog definition
of reducibility not just for computations, but also for sums, products and function types.
This in turn gives a proof of strong normalisation foy,; with full sums, as well as the
simply-typed lambda-calculus with sunis [£3,5].

One special case of this brings us full cirche;,; trivially embeds into the simply-
typed lambda-calculus withnary sums.

[M] — (M) letz=Min N — case M of () = N

The two languages are essentially the same, except\thahas tighter typing rules
and admits fewer reductions. Frame stacks andreducibility then provide strong
normalisation for both calculi.

4.2 Reducibility for Exceptions

Benton and Kennedy propose a novel syntax for incorporating exceptions.,into
which they use within the SML.NET compilér![9]. They combine exceptionsland
into the single constructionry 24 < M in N unless H. This first evaluated/, then
binds the result ta and evaluated’; unless an exception was raisediify in which case
it evaluates thdandler H instead. The control flow ofry-in-unless strictly extends
the classidry-catch metaphor: for more on this see€ [9]; and also the rationale [10] for
a similar recent extension of exception handling in the Erlang programming language.
Here we take exceptiong ranging over some fixed (possibly infinite) set; this is
necessary to ensure terminationi[18]. A hand¥er T'B is then a list of pairgE, P)
of exceptions and computations of typé3: evaluation picks the first pair that matches
the exception to be handled; unmatched exceptions are re-raised. Typing rules are:

M:TA N:TB H:TB
raise(E) : TA try x4 < M in N unless H : TB ~

The originallet is now a special case @fy, with empty handlerietx < M in N =
try x <=M in N unless {}. Notice that we are not fixing our choice of moriEgit must
support exceptions, but it may incorporate other effects too.

For TT-lifting in this calculus, we generalise continuations to cover the new
observable behaviour of exception raising, by associating a handler to every step of
the continuation.

K:=1Id | Ko{(z)N,H)
(Ko{(z)N,H))QM = KQ (tryxz < M in N unless H)
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We now say that continuatioli is in red } if:

— K @[N] is strongly normalising for allV € red 4; and in addition
— K Q (raise(E)) is strongly normalising for all exceptioris.

Building TT-reducibility on this is enough to give strong normalisation foy; with
exceptions, with a proof in the style of Sdct.]3.3.

4.3 Reducibility for the Computational Lambda-Calculus

Strong normalisation fok,,; immediately gives strong normalisation for the subcalcu-
lus A, described in Sedt] 2. However, despite the close correspondence betygen
and )\, explored in[[28], we do not immediately get strong normalisatiomforThis

is because of two additional reduction rules\in

let.1 PM — letx<=PinzM if v ¢ fo(M)
let.2 VQ — lety<=QinVy if y & fu(V)
whereP, ) range over non-values, affiranges over values.

We can adapt our proof, again using continuations in a leap-frog definition of
reducibility:

Ground value V € redg if V is strongly normalising

Functionvalue V €reds_.p if, forall M credyUred) ' ,VM €redy’
Continuation K € redz if, forall V' € red 4, K @ V is strongly normalising
Non-value Pe redXT if, for all K € red}, K @ P is strongly normalising

The distinction between values and non-values is crucial. There is no explicit compu-
tation type constructor if\., but non-values are always computations. Thas, is
reducible values of typel, andredXT is reducible non-values of typé, playing the

role of red7 4. This TT-reducibility leads as before to a proof of strong normalisation
for \., accounting for both additional reductions.

5 Conclusion

We have presented the leap-frog methodTof-lifting as a technique for raising
operational predicates from typé to type T'A, based on the observable behaviour
of terms. This is independent of the nature of computati®nsnd introduces the
opportunity of proof by induction on the structure of continuations.

As a concrete example, we demonstratedlifting in a definition of reducibility
for \,,.;, and thence a type-directed proof of strong normalisation. We have also applied
this to some extensions af,,;, addressing in particular the robustness of the method in
treating systems with commuting conversions.

In this final section we expand on the relation to other work on this topic, and
comment on some possibilities for future research.
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5.1 Related Work

We believe that our use of T-lifting for computation types in\,,; is new. It is,
however, inspired by similar constructions applied to specific notions of computation.
Pitts and Stark [25] apply the method to give a structurally inductive characterisation of
observational equivalence for a functional language with local state. They then use this
to validate certain proof techniques for reasoning about dynamically-allocated reference
cells. Direct validation of these techniques had proved fruitless, because even though
the precise form of computational effects was known — non-termination, state, and
dynamic allocation — the interaction between them was intractable.

In [26], Pitts employsr T-closureto define an operational form of relational parametric-
ity for a polymorphic PCF. Here the computational effect is nontermination(aljﬂiT
leads to an operational analogue of the semantic concept of “admissible” relations.
Abadi in [1] investigates further the connection betweenclosure and admissibility.
The notion of TT-closed is different from our lifting: it expresses a property of
a set of terms at a single type, whereas we lift a predigate terms of typeAd to
"7 on terms of a different typ& A. However, the concept is clearly related, and the
closure operation makes some appearance in the literature on reducibility, in connection
with saturationand saturatedsets of terms. Loosely, saturation is the property one
wishes candidates for reducibility to satisfy; and this can sometimes be expressed as
TT-closure. Examples include Girard's reducibility candidates for linear lagit [13,
pp. 72—73] and Parigot’s work ok and classical natural deductidn [23, pp. 1469—
1471]. For Girard the relevant continuations are the linear ddalswhile for Parigot
they are applicative contexts, lists of arguments in normal f&ffi+’. We conjecture
that in their style ourrT-lifting could be presented as an insertiofi’] | V : red4 }
followed by saturation (although we then lose the notion of reducible continuations).
Mellieés and Vouillon usbiorthogonalityin their work on ideal models for types; this
is a closure operation based on an orthogonality relation matching oun\/ [31],[32].
They make a case for the importance of orthogonality, highlighting the connection
to reducibility. They also deconstruct contexts into frame stacks for finer analysis:
elsewhere, Vouillon notes the correspondence between different forms of continuation
and possible observations [30].

There are evident echoes of continuation-passing style in the leap-frog character of
TT-lifting; and its independence from the choice of monad recalls Filinski's result
that composable continuations can simulate all definable mohads [12]. The apparent
connection here is appealing, but we have not been able to make any formal link.

Goubault-Larrecq et al. investigate logical relations for computation types, propos-
ing a distributivity law that these should satisfy [15]. They give a humber of examples
of logical relations lifted to specific monads; and, again, their chosen relation for the
continuations monad has a similar structure tooutlifting.

As mentioned in the introduction, existing proofs of strong normalisation\fgr

are based on translations into other calculi that are already known to be strongly
normalising. We have said how Benton et al., working from a logical perspective,
used a translation into a lambda-calculus with sums [4]. In a repoma@madic type
systems— a generalisation of pure type systems and the computational metalanguage
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— Barthe et al.[[B] prove strong normalisation by translation into a lambda-calculus
with an extra reductiop’. Finally, Hatcliff and Danvyl[[16] state th&t-reductions are
strongly normalising, although they do not indicate a specific proof method.

5.2 Further Work

Subsequent to the work described here, we have developethalisation by evalu-
ation algorithm for \,,;, which we prove correct using the strong normalisation result.
Normalisation by evaluation (NBE) then leads to further results on the theoxy, of
namely, that convertibility of terms is decidable, and reduction is confluent. This is de-
scribed in detail in the first author's PhD thesis|[19], which implements NBE for the
version of)\,,,; used as an intermediate language in the SML.NET compiler [7, 8], and
evaluates its performance compared to conventional rewriting.

There is an extensive and growing body of work on the problem of normalisation for
many varieties of typed lambda-calculi, with reducibility as just one approach. Joachim-
ski and Matthes have proposed an alternative induction method, that characterises the
strongly normalisable terms in a calculls|[17]. This is proof-theoretically simpler, and it
would be interesting to see how this applies to computation typs,inTheir method
covers sum types, commuting conversions and, most interestingly fgensralized
applicationsof the forms(¢, y.r). These have some resemblance to our decomposition
of continuations: herg.r is a term abstraction, to which will be passed the result of
applying functions to argument.

The broader test forT-lifting is to investigate its application to other predicates
or relations on)\,,; terms. Ultimately we want to make precise, and confirm, the
informal conjecture of Kennedy and Benton tmat)TT captures “observation”: i
is some predicate on values, then " is a “best observable approximation” to it on
computations [6].
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