
Appears inProceedings of TLCA 2005, Nara, Japan,
LNCS 3461, pp.262–277. Springer-Verlag, 2005

Reducibility and >>-lifting
for Computation Types

Sam Lindley and Ian Stark?

Laboratory for Foundations of Computer Science
School of Informatics, The University of Edinburgh, Scotland

{Ian.Stark,Sam.Lindley}@ed.ac.uk

Abstract. We propose>>-lifting as a technique for extending operational pred-
icates to Moggi’s monadic computation types, independent of the choice of
monad. We demonstrate the method with an application to Girard-Tait reducibil-
ity, using this to prove strong normalisation for the computational metalan-
guageλml . The particular challenge with reducibility is to apply this semantic
notion at computation types when the exact meaning of “computation” (stateful,
side-effecting, nondeterministic, etc.) is left unspecified. Our solution is to define
reducibility for continuationsand use that to support the jump from value types
to computation types. The method appears robust: we apply it to show strong
normalisation for the computational metalanguage extended with sums, and with
exceptions. Based on these results, as well as previous work with local state, we
suggest that this “leap-frog” approach offers a general method for raising con-
cepts defined at value types up to observable properties of computations.

1 Introduction

Moggi’s computational metalanguageλml is a typed calculus for describing program-
ming languages with real-world features like exceptions, nondeterminism and side-
effects. It refines the pure simply-typed lambda-calculus by explicitly distinguishing
valuesfrom computationsin the type system: for each typeA of values, there is a type
TA of programs that compute a value of typeA. The calculus specifies that the type
constructorT be astrong monad, which is enough to support a wide range of notions
of computation [5, 21, 22, 33].

In this paper we present>>-lifting: a method for reasoning about properties of
computations inλml , independent of the underlying monad, by raising up concepts
defined explicitly on values.

We demonstrate the technique with a type-directed proof of strong normalisation
for λml , extending Girard-Tait reducibility to handle computation types. We also apply
it to some extensions ofλml , and observe that>>-lifting gives a smooth treatment of
reducibility for commuting conversions.

Section 2 provides a brief review of the computational metalanguage and related
systems. Reduction inλml properly extends that in the simply-typed lambda-calculus,
with three reductions specific to computations. One of these,T.assoc, is a commuting

? Supported by an EPSRC Advanced Research Fellowship

http://www.ed.ac.uk/~stark/reducibility.html

http://www.ed.ac.uk/~stark/reducibility.html

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

conversion; another,T.β, involves substituting one term within another; which may
make a term grow larger, and create subterms not present before. As usual with these
kinds of reduction, the consequence is that straightforward induction over the structure
of terms or types is not enough to prove termination ofλml reduction.

In earlier work, Benton et al. proved strong normalisation forλml terms by
translating them into a lambda-calculus with sums, and then invoking Prawitz’s result
for that system [4]. Our alternative is to use>>-lifting to give a standalone proof of
strong normalisation, inductively on the structure ofλml types.

Section 3 sets out the details. We define an auxiliary notion ofreducibility at every
type, that is linked to strong normalisation but amenable to induction over the structure
of types. This is a standard technique from the lambda-calculus: roughly, reducibility is
the logical predicate induced by strong normalisation at ground types. We show that all
reducible terms are strongly normalising, and go on to prove the fundamental theorem
of logical relations, that in fact all definable terms are reducible.

The challenge, and the chief technical contribution of this paper, is to find a suitable
definition for reducibility at computation types. Some such definition is essential, as
the type constructorT is intentionally left unspecified. A first informal attempt might
be to echo the definition for functions, and look at the immediate application of a
computation:

(Bad 1) TermM of typeTA is reducible if for all reducibleN of typeTB, the term
let x⇐M in N is reducible.

This is not inductive over types, as the definition of reducibility at typeTA depends on
reducibility at typeTB, which may be more complex. We can try to patch this:

(Bad 2) TermM of type TA is reducible if for all strongly normalisingN of
typeTB, the termlet x⇐M in N is strongly normalising.

However, this turns out to be too weak to prove properties ofM in richer contexts
like let y ⇐ (let x⇐ (−) in N) in P . Examining the structure of these, we define a
continuationK as a nested sequence oflet xi ⇐ (−) in Ni, and use these for our
definition of reducibility:

(Good 1) TermM of typeTA is reducible if for all reducible continuationsK, the
applicationK @ M is strongly normalising.

Here application means pasting termM into the hole(−) within K. Of course, we now
have to define reducibility for continuations:

(Good 2) ContinuationK accepting terms of typeTA is reducible if for all re-
ducibleV of typeA, the applicationK @ [V] is strongly normalising.

The term[V] is the trivial computation returning valueV . By moving to the simpler
value typeA we avoid a potential circularity, and so get a notion of reducibility defined
by induction on types. What is more, the characterisation by continuations is strong
enough to treat both the commuting conversionT.assoc and substitution inT.β, and
the strong normalisation proof goes through without undue difficulty.

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

Looking beyond reducibility, this jump over continuations offers a quite general method
to raise concepts from value typeA up to computation typeTA, whether or not we
know the nature ofT . Suppose that we writeK > M whenK applied toM is strongly
normalising, and for any predicateφ ⊆ A define in turn:

φ> = {K | K > [V] for all V ∈ φ }
φ>> = {M | K > M for all K ∈ φ> } ⊆ TA .

This is our operation of>>-lifting: to take a predicateφ on value typeA and return
anotherφ>> on the computation typeTA, by a “leap-frog” overφ> on continuations.
One informal view of this is that continuationsK represent possible observations on
terms, andφ>> lifts φ to computations based on their observable behaviour.

We believe that the use of>>-lifting in the metalanguageλml is original. It was
inspired by similar constructions applied to specific notions of computation; it is
also related to Pitts’s>>-closure, and that in turn has analogues in earlier work on
reducibility. Section 5.1 discusses this further.

In Sect. 4 we demonstrate>>-lifting for reducibility in some variations ofλml ; treating
sums, exceptions, and Moggi’sλc. For each case we vary our notion of continuation,
but leave the definition of(−)>> unchanged. Notably, this includes the commuting
conversions introduced by sums. Section 5 discusses related work, and concludes with
some possible future directions.

2 The Computational Metalanguage

We start with a standard simply-typed lambda-calculus with ground type0, product
A × B and function spaceA → B for all types A and B. The computational
metalanguageextends this with a type constructorT and two term constructions:

– For eachA there is a typeTA, of computations that return an answer inA.
– The lifted term[M] is the computation which simply returns the answerM .
– Thecompositionterm let x⇐M in N denotes computingM , binding the answer

to x and then computingN .

Fig. 1 presents typing1 and reduction rules for this languageλml . It corresponds to
Moggi’s λMLT [21]. In categorical terms, this is the internal language for a cartesian
closed category with a strong monadT . More concretely, it is also what lies behind the
use of monads in the Haskell programming language, whereT is any type constructor
in theMonad class and the term formers arereturn M for lifting and do {x<-M; N}
for composition [24].

Often we do not require the full power ofλml , and there are two common
simplifications: first, that all functions must return computations, thus having typeA →
TB; and second, that this is the only place whereT can occur. These constrain the

1 Our presentation of typing follows Girard et al. [14], in that we assume a global assignment
of types to variables. This is in contrast to typing “à la Curry” and typing “̀a la Church” [2],
which use localtyping contexts.

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

calculus to represent computations and only computations, disallowingpure functions
of type A → B as well asmetacomputationslike those with typeTA → TB and
T (TA).

With both of these restrictions in place we obtain the sub-calculusλml∗. This
contains the call-by-value embedding [16] of the simply-typed lambda-calculus into
the computational metalanguage; with the attention on functions of typeA → TB
embodying call-by-value semantics.

It turns out that the terms ofλml∗ are so constrained that we can dispense with
explicit lifting and computation types, replacing them by a simple syntactic separation
of valuesV from non-valuesM . This leaves only thelet-construction, and we have
a subsetλc∗ of Moggi’s computational lambda-calculusλc [20]. Sabry and Wadler
discuss in detail the correspondences betweenλml , λml∗, λc∗ andλc [28]. Our results
onλml apply directly to its restrictionλml∗; however,λc has extra reduction rules, and
in Sect. 4.3 we give a>>-lifting approach to cover these too.

The reductions forλml appear in the last part of Fig. 1. These extend those
for the simply-typed lambda-calculus with three reductions that act only on terms
of computation type:T.β, T.η and T.assoc. Before looking more closely at these
three, we review some relevant properties of typed reduction, and the notion of strong
normalisation.

Proposition 1. Reduction in the computational metalanguage preserves types and is
itself preserved under substitution.

(i) If M : A andM → M ′ thenM ′ : A.
(ii) If M → M ′ thenM [x := N] → M ′[x := N].

Proof. Induction on the derivation ofM : A and the structure ofM respectively. ut

Definition 2. A term M in some calculus isstrongly normalising(it is SN) if there is
no infinite reduction sequenceM → M1 → · · · . In this case we writemax (M) for the
length of the longest reduction sequence starting fromM . A calculus itself is strongly
normalising if every term in it is strongly normalising.

We use the results of Prop. 1 repeatedly in the proofs for Sect. 3, and also the following:

Corollary 3. If theλml termM [x := N] is strongly normalising, then so isM .

Proof. By contradiction, from Prop. 1(ii): supposeM has some infinite reduction
sequenceM → M1 → · · · ; then so doesM [x := N] → M1[x := N] → · · · . If
M [x := N] has no such sequence, then neither doesM and both are SN. ut

It is standard that underβ-reduction the untyped lambda-calculus is not strongly
normalising. For example, the termΩ = (λx.xx)(λx.xx) β-reduces to itself, leading to
the infinite reduction sequenceΩ →β Ω →β On the other hand, the simply-typed
lambda-calculus is strongly normalising with respect toβ-reduction [14]: in particular,
Ω has no simple type.

We shall be investigating strong normalisation with the additional terms and reduc-
tions of λml from Fig. 1. The reductions to watch areT.β andT.assoc: like →.β, a

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

Syntax

Types A, B ::= 0 | A → B | A×B | TA

Terms L, M, N, P ::= xA | λxA.M | MN | 〈M, N〉 | π1(M) | π2(M)

| [M] | let xA ⇐M in N

Typing

xA : A

M : B

λxA.M : A → B

M : A

[M] : TA

M : A → B N : A

MN : B

M : TA N : TB

let xA ⇐M in N : TB

M : A N : B

〈M, N〉 : A×B

M : A1 ×A2

πi(M) : Ai
i = 1, 2

Reductions

→.β (λx.M)N −→ M [x := N]

→.η λx.Mx −→ M if x/∈fv(M)

× .βi πi(〈M1, M2〉) −→ Mi i = 1, 2

× .η 〈π1(M), π2(M)〉 −→ M

T.β let x⇐ [N] in M −→ M [x := N]

T.η let x⇐M in [x] −→ M

T.assoc let y ⇐ (let x⇐ L in M) in N −→ let x⇐ L in (let y ⇐M in N) if x/∈fv(N)

Fig. 1.The computational metalanguageλml .

T.β step performs substitution, and so may enlarge the term at hand; whileT.assoc is
a commuting conversion, also termed apermutationor permutative conversion. Com-
muting conversions are so named for their transforming action, via the Curry-Howard
isomorphism, on derivation trees in natural deduction (indeed, the counterpart in logic
of T.assoc is described in [4]). They also arise when the lambda-calculus is extended
with sums, and are known for the issues they can cause in proofs over reduction systems.
Prawitz originally addressed this in [27]; see [17] for a discussion and further references.
As we shall see below,>>-lifting uses structured continuations to perform proof over
commuting conversions.

3 Reducibility

We present>>-lifting with the concrete example of a proof of strong normalisation
in λml , by extending the type-directed reducibility approach originally due to Tait [29].
We follow closely the style of Girard et al. [14, Chap. 6]; although in this short

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

presentation we focus on the proof parts specific toλml , with full details appearing
elsewhere [19]. As explained earlier, the key step is to find an appropriate definition
of reducibility for computation types, which we do by introducing a mechanism for
managing continuations.

3.1 Continuations

Informally, a continuation should capture how the result of a computation might be used
in a larger program. Our formal definition is structured to support inductive proof about
these uses.

– A term abstraction(x)N of typeTA (TB is a computation termN of typeTB
with a distinguished free variablex of typeA.

– A continuationK is a finite list of term abstractions, with length|K|.

K ::= Id | K ◦ (x)N
|Id | = 0

|K ◦ (x)N | = |K|+ 1

– Continuations have types assigned using the following rules:

Id : TA (TA
(x)N : TA (TB K : TB (TC

K ◦ (x)N : TA (TC
.

– We apply a continuation of typeTA (TB to a computation termM of typeTA
by wrappingM in let-statements that use it:

Id @ M = M

(K ◦ (x)N) @ M = K @ (let x⇐M in N)

Notice that when|K| > 1 this is a nested stack of computations, not simple
sequencing: i.e.

let x1 ⇐ (let x2 ⇐ (. . . (let xn ⇐M in Nn)) . . . in N2) in N1

rather than

let x1 ⇐M1 in let x2 ⇐M2 in . . . in let xn ⇐Mn in N .

Although these two are interconvertible by a sequence ofT.assoc rewrites, we
cannot identify them while we are looking to confirm strong normalisation in the
presence of substituting rewrites like→.β andT.β.
In fact, it is exactly this nesting structure that we use to tackleT.assoc in our key
Lemma 7; essentially, the stack depth of a continuation tracks the action of the
commuting conversion.

– We define a notion of reduction on continuations:

K → K ′ def⇐⇒ ∀M . K @ M → K ′ @ M

⇐⇒ K @ x → K ′ @ x

where the second equivalence follows from Prop. 1(ii). A continuationK is
strongly normalisingif all reduction sequences starting fromK are finite; and in
this case we writemax (K) for the length of the longest.

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

Lemma 4. If K → K ′, for continuationsK andK ′, then|K ′| ≤ |K|.

Proof. SupposeK = Id ◦ (x1)Nn ◦ · · · ◦ (xn)Nn. Then its applicationK @ x =
let x1 ⇐ (. . . (let xn ⇐ x in Nn) . . .) in N1 and there are only two reductions that
might change the length ofK.

– T.η whereNi = [xi] for somei. ThenK → K ′ whereK ′ = Id ◦ (x1)N1 ◦ · · · ◦
(xi−1)Ni−1 ◦ (xi+1)Ni+1 ◦ · · · ◦ (xn)Nn and|K ′| = |K| − 1.

– T.assoc may occur at positioni for 1 ≤ i < n to give K ′ = (x1)N1 ◦ · · · ◦
(xi−1)Ni ◦ (xi+1)(let xi ⇐ Ni+1 in Ni) ◦ (xi+2)Ni+2 ◦ · · · ◦ (xn)Nn. Again
|K ′| = |K| − 1.

Hence|K ′| ≤ |K| as required. ut

3.2 Reducibility and Neutrality

Figure 2 defines two sets by induction on the structure of types: reducible termsredA of
typeA, and reducible continuationsred>A of typeTA (TB for someB. As described
in the introduction, for computations we useredTA = red>>A .

We also need to classify some terms asneutral; we do this by decomposing every
reduction into a rewrite context with a hole that must be plugged with a term of a
particular form (see Fig. 2 again). From this we define:

– TermM is activeif R[M] is a redex for at least one of the rewrite contexts.
– TermM is neutral if R[M] is not a redex for any of the rewrite contexts.

The neutral terms are those of the formx, MN , π1(M) andπ2(M); i.e. computation
types add no new neutral terms. The basic properties of reducibility now follow (CR 1)–
(CR 4) of [14].

Theorem 5. For every termM of typeA, the following hold.

(i) If M ∈ redA, thenM is strongly normalising.
(ii) If M ∈ redA andM → M ′, thenM ′ ∈ redA.

(iii) If M is neutral, and wheneverM → M ′ thenM ′ ∈ redA, thenM ∈ redA.
(iv) If M is neutral and normal (has no reductions) thenM ∈ redA.

Proof. Part (iv) is a trivial consequence of (iii), so we only need to prove (i)–(iii),
which we do by induction over types. The proof for ground, function and product types
proceeds as usual [14]. Here we expand the details for computation types:

(i) SayM ∈ redTA. By the induction hypothesis (i), for everyN ∈ redA we have that
N is SN, and so[N] is too. This is enough to show thatId : TA (TA is in red>A,
and soId @ M = M is SN as required.

(ii) SupposeM ∈ redTA andM → M ′. For allK ∈ red>A, applicationK @ M is SN,
andK @ M → K @ M ′; thusK @ M ′ is SN andM ′ ∈ redTA as required.

(iii) Take M : TA neutral withM ′ ∈ redTA wheneverM → M ′. We have to show that
K @M is SN for eachK ∈ red>A. First, we have thatK @[x] is SN, asx ∈ redA by
the induction hypothesis (iv). HenceK itself is SN, and we can work by induction
onmax (K).

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

Reducibility for terms and continuations

M ∈ red0 if the ground termM is strongly normalising

F ∈ redA→B if FM ∈ redB for all M ∈ redA

P ∈ redA×B if π1(P) ∈ redA andπ2(P) ∈ redB

M ∈ redTA if K @ M is strongly normalising for allK ∈ red>A

K ∈ red>A if K @ [N] is strongly normalising for all termsN ∈ redA.

Reduction Rewrite context Active term

→.β −N λx.M

→.η − λx.Mx

×.βi πi(−) 〈M, N〉
×.η − 〈π1(M), π2(M)〉

T.β let x⇐− in M [N]

T.η let x⇐M in − [x]

T.assoc let y ⇐− in N let x⇐ L in M

Fig. 2.Reducibility and neutrality forλml

ApplicationK @ M may reduce as follows:

• K @ M ′, whereM → M ′, which is SN asK ∈ red>A andM ′ ∈ redTA.

• K ′@M , whereK → K ′. For anyN ∈ redA, K@[N] is SN asK ∈ red>A; and
K @ [N] → K ′ @ [N], soK ′ @ [N] is also SN. From this we haveK ′ ∈ red>A
with max (K ′) < max (K), so by the induction hypothesisK ′ @ M is SN.

There are no other possibilities asM is neutral. HenceK @ M is strongly
normalising for everyK ∈ red>A, and soM ∈ redTA as required. ut

3.3 Reducibility Theorem

We show that all terms are reducible, and hence strongly normalising, by induction on
their syntactic structure. This requires an appropriate lemma for each term constructor.
Here we set out proofs for the new constructors associated with computation: lifting[−]
andlet . The other cases follow as usual from the properties of Thm. 5, and are set out
in [19].

Lemma 6. Lifting preserves reducibility: if termP ∈ redA then[P] ∈ redTA.

Proof. For any continuationK ∈ red>A, the applicationK @ [P] is SN, asP ∈ redA;
and so[P] ∈ redTA. ut

We next wish to show that formation oflet-terms preserves reducibility. That will be
Lemma 8, but we first need a result on the strong normalisation oflet-terms in context.

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

This is the key component of our overall proof, and is where our attention to the
stack-like structure of continuations pays off: the challenging case is the commuting
conversionT.assoc, which does not change its component terms; but it does alter
the continuation stack length, and this gives enough traction to maintain the induction
proof.

Lemma 7. Let P : A be a term,(x)N : TA (TB a term abstraction, and
K : TB (TC a continuation, such that bothP andK @ (N [x := P]) are strongly
normalising. ThenK @ (let x⇐ [P] in N) is strongly normalising.

Proof. We show by induction on|K| + max (K @ N) + max (P) that the reducts of
K @ (let x⇐ [P] in N) are all SN. The interesting reductions are as follows:

– T.β giving K @ (N [x := P]), which is SN by hypothesis.

– T.η whenN = [x], giving K @ [P]. But K @ [P] = K @ (N [x := P]), which is
again SN by hypothesis.

– T.assoc in the case whereK = K ′ ◦ (y)M with x /∈ fv(M); giving the reduct
K ′@(let x⇐ [P] in (let y ⇐N in M)). We aim to apply the induction hypothesis
with K ′ and(let y ⇐N in M) for K andN , respectively. Now

K ′ @ ((let y ⇐N in M)[x := P]) = K ′ @ (let y ⇐N [x := P] in M)
= K @ (N [x := P])

which is SN by hypothesis. Also

|K ′|+max (K ′@(let y ⇐N in M))+max (P) < |K|+max (K@N)+max (P)

as |K ′| < |K| and (K ′ @ (let y ⇐N in M)) = (K @ N). This last equal-
ity explains our use ofmax (K @ N); it remains fixed underT.assoc, un-
like max (K) and max (N). Applying the induction hypothesis gives that
K ′ @ (let x⇐ [P] in (let y ⇐N in M)) is SN as required.

Other reductions are confined toK, N or M , and can be treated by the induction
hypothesis, decreasing eithermax (K @ N) or max (M). ut

We are now in a position to prove that composing computations inlet-terms preserves
reducibility.

Lemma 8. If M ∈ redTA and (x)N : TA (TB hasN [x := P] ∈ redTB for all
P ∈ redA, then(let x⇐M in N) ∈ redTB .

Proof. Given a continuationK ∈ red>B , we must show thatK @ (let x⇐M in N) is
SN. Now for anyP ∈ redA, applicationK @ (N [x := P]) is SN, asK ∈ red>B and
N [x := P] ∈ redTB by hypothesis. ButP is also SN, by Thm. 5(i), and so Lemma 7
shows thatK @ (let x⇐ [P] in N) is SN too. This proves that(K ◦ (x)N) ∈ red>A, so
applying it toM ∈ redTA gives thatK @ (let x⇐M in N) is SN as required. ut

We finally reach the desired theorem via a stronger result on substitutions into open
terms.

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

Theorem 9. Let M : B be some term with free variablesx1 : A1, . . . , xk : Ak. Then
for anyN1 ∈ redA1 , . . . , Nk ∈ redAk

we haveM [x1 := N1, . . . , xk := Nk] ∈ redB .

Proof. By induction on the structure of the main term. For computation terms we have:

– [P], whereP : A. By the induction hypothesisP [~x := ~N] ∈ redA, and by Lemma 6
we get[P][~x := ~N] = [P [~x := ~N]] ∈ redTA as required.

– let x ⇐ L in M , whereL : TC andM : TB. The induction hypothesis is that
L[~x := ~N] ∈ redTC , andM [~x := ~N, x := P] ∈ redTA for all P ∈ redC . Lemma 8
gives(let x⇐ L in M)[~x := ~N] = let x⇐L[~x := ~N] in M [~x := ~N] ∈ redTA. ut

Theorem 10. Eachλml termM : A is in redA, and hence strongly normalising.

Proof. Apply Thm. 9 withNi = xi, wherexi ∈ redAi by Thm. 5(iv). This tells us that
M ∈ redA, and by Thm. 5(i) also strongly normalising. ut

4 Extensions

In this section we apply>>-lifting to reducibility in some extensions ofλml : with
sum types, with exceptions; and in the computational lambda-calculusλc. Both sums
and exceptions have existing normalisation results in the standard lambda-calculus (for
example, [11] and [18, Thm. 6.1]); we know of no prior proofs for them inλml . More
important, though, is to see how>>-lifting adapts to these features. The key step is to
extend our formalized continuations with new kinds of observation. Once this is done,
we can use these to lift predicates to computation types. The case of reducibility, and
hence a proof of strong normalisation, then goes through as usual. Here we can only
summarize, and full details appear in [19].

4.1 Reducibility for Sums

Prawitz first showed how to extend reducibility to sums [27]. His method is quite
intricate: for a termM of sum type to be reducible, not only must the immediate
subterms ofM be reducible, but also a certain class of subterms ofM ′ must be reducible
wheneverM reduces toM ′. We avoid this complexity by defining reducibility for sums
as we do for computations, by a leap-frog over continuations.

We begin by extendingλml with sum types and acase construct where each branch
must be a computation (we later lift this constraint):

M : A

ι1(M) : A + B

M : B

ι2(M) : A + B

M : A + B N1 : TC N2 : TC

case M of ι1(x1
A)⇒N1 | ι2(x2

B)⇒N2 : TC

To record possible observations of sum terms, we introducesum continuations:

S ::= K ◦ 〈(x1)N1, (x2)N2〉
(K ◦ 〈(x1)N1, (x2)N2〉) @ M = K @ (case M of ι1(x1)⇒N1 | ι2(x2)⇒N2).

We can now define reducibility for sum continuations, and thence for sums.

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

– Sum continuationS : A + B (TC is in red>A+B if:
• S @ (ι1(M)) is strongly normalising for allM ∈ redA and
• S @ (ι2(N)) is strongly normalising for allN ∈ redB .

– Sum termP : A + B is in redA+B if S @ P is strongly normalising for all
S ∈ red>A+B .

This is then sufficient to prove strong normalisation forλml with sums in the manner of
Sect. 3.3.

To apply this to a more generalcaseconstruction, we can move toframe stacks:
nested collections of elimination contexts for any type constructor [26]. Frame stacks
generalise continuations, and we have been able to use them to give a leap-frog definition
of reducibility not just for computations, but also for sums, products and function types.
This in turn gives a proof of strong normalisation forλml with full sums, as well as the
simply-typed lambda-calculus with sums [19,§3.5].

One special case of this brings us full circle:λml trivially embeds into the simply-
typed lambda-calculus withunarysums.

[M] 7−→ ι(M) let x⇐M in N 7−→ case M of ι(x)⇒N

The two languages are essentially the same, except thatλml has tighter typing rules
and admits fewer reductions. Frame stacks and>>-reducibility then provide strong
normalisation for both calculi.

4.2 Reducibility for Exceptions

Benton and Kennedy propose a novel syntax for incorporating exceptions intoλml ,
which they use within the SML.NET compiler [9]. They combine exceptions andlet
into the single constructiontry xA ⇐ M in N unless H. This first evaluatesM , then
binds the result tox and evaluatesN ; unless an exception was raised inM , in which case
it evaluates thehandlerH instead. The control flow oftry-in-unless strictly extends
the classictry-catch metaphor: for more on this see [9]; and also the rationale [10] for
a similar recent extension of exception handling in the Erlang programming language.

Here we take exceptionsE ranging over some fixed (possibly infinite) set; this is
necessary to ensure termination [18]. A handlerH : TB is then a list of pairs(E,P)
of exceptions and computations of typeTB: evaluation picks the first pair that matches
the exception to be handled; unmatched exceptions are re-raised. Typing rules are:

raise(E) : TA

M : TA N : TB H : TB

try xA ⇐M in N unless H : TB
.

The originallet is now a special case oftry , with empty handler:let x ⇐ M in N =
try x⇐M in N unless {}. Notice that we are not fixing our choice of monadT ; it must
support exceptions, but it may incorporate other effects too.

For >>-lifting in this calculus, we generalise continuations to cover the new
observable behaviour of exception raising, by associating a handler to every step of
the continuation.

K ::= Id | K ◦ 〈(x)N, H〉
(K ◦ 〈(x)N, H〉) @ M = K @ (try x⇐M in N unless H)

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

We now say that continuationK is in red>A if:

– K @ [N] is strongly normalising for allN ∈ redA; and in addition
– K @ (raise(E)) is strongly normalising for all exceptionsE.

Building >>-reducibility on this is enough to give strong normalisation forλml with
exceptions, with a proof in the style of Sect. 3.3.

4.3 Reducibility for the Computational Lambda-Calculus

Strong normalisation forλml immediately gives strong normalisation for the subcalcu-
lusλml∗ described in Sect. 2. However, despite the close correspondence betweenλml∗
andλc, explored in [28], we do not immediately get strong normalisation forλc. This
is because of two additional reduction rules inλc:

let .1 PM −→ let x⇐ P in xM if x /∈ fv(M)
let .2 V Q −→ let y ⇐Q in V y if y /∈ fv(V)

whereP,Q range over non-values, andV ranges over values.
We can adapt our proof, again using continuations in a leap-frog definition of

reducibility:

Ground value V ∈ red0 if V is strongly normalising

Function value V ∈ redA→B if, for all M ∈ redA ∪ red>>A , V M ∈ red>>B

Continuation K ∈ red>A if, for all V ∈ redA, K @ V is strongly normalising

Non-value P ∈ red>>A if, for all K ∈ red>A, K @ P is strongly normalising

The distinction between values and non-values is crucial. There is no explicit compu-
tation type constructor inλc, but non-values are always computations. ThusredA is
reducible values of typeA, andred>>A is reducible non-values of typeA, playing the
role of redTA. This>>-reducibility leads as before to a proof of strong normalisation
for λc, accounting for both additional reductions.

5 Conclusion

We have presented the leap-frog method of>>-lifting as a technique for raising
operational predicates from typeA to type TA, based on the observable behaviour
of terms. This is independent of the nature of computationsT , and introduces the
opportunity of proof by induction on the structure of continuations.

As a concrete example, we demonstrated>>-lifting in a definition of reducibility
for λml , and thence a type-directed proof of strong normalisation. We have also applied
this to some extensions ofλml , addressing in particular the robustness of the method in
treating systems with commuting conversions.

In this final section we expand on the relation to other work on this topic, and
comment on some possibilities for future research.

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

5.1 Related Work

We believe that our use of>>-lifting for computation types inλml is new. It is,
however, inspired by similar constructions applied to specific notions of computation.
Pitts and Stark [25] apply the method to give a structurally inductive characterisation of
observational equivalence for a functional language with local state. They then use this
to validate certain proof techniques for reasoning about dynamically-allocated reference
cells. Direct validation of these techniques had proved fruitless, because even though
the precise form of computational effects was known — non-termination, state, and
dynamic allocation — the interaction between them was intractable.

In [26], Pitts employs>>-closureto define an operational form of relational parametric-
ity for a polymorphic PCF. Here the computational effect is nontermination, and(−)>>

leads to an operational analogue of the semantic concept of “admissible” relations.
Abadi in [1] investigates further the connection between>>-closure and admissibility.

The notion of>>-closed is different from our lifting: it expresses a property of
a set of terms at a single type, whereas we lift a predicateφ on terms of typeA to
φ>> on terms of a different typeTA. However, the concept is clearly related, and the
closure operation makes some appearance in the literature on reducibility, in connection
with saturationand saturatedsets of terms. Loosely, saturation is the property one
wishes candidates for reducibility to satisfy; and this can sometimes be expressed as
>>-closure. Examples include Girard’s reducibility candidates for linear logic [13,
pp. 72–73] and Parigot’s work onλµ and classical natural deduction [23, pp. 1469–
1471]. For Girard the relevant continuations are the linear dualsA⊥, while for Parigot
they are applicative contexts, lists of arguments in normal formN<ω. We conjecture
that in their style our>>-lifting could be presented as an insertion{ [V] | V : redA }
followed by saturation (although we then lose the notion of reducible continuations).

Melli ès and Vouillon usebiorthogonalityin their work on ideal models for types; this
is a closure operation based on an orthogonality relation matching ourK > M [31, 32].
They make a case for the importance of orthogonality, highlighting the connection
to reducibility. They also deconstruct contexts into frame stacks for finer analysis:
elsewhere, Vouillon notes the correspondence between different forms of continuation
and possible observations [30].

There are evident echoes of continuation-passing style in the leap-frog character of
>>-lifting; and its independence from the choice of monad recalls Filinski’s result
that composable continuations can simulate all definable monads [12]. The apparent
connection here is appealing, but we have not been able to make any formal link.

Goubault-Larrecq et al. investigate logical relations for computation types, propos-
ing a distributivity law that these should satisfy [15]. They give a number of examples
of logical relations lifted to specific monads; and, again, their chosen relation for the
continuations monad has a similar structure to our>>-lifting.

As mentioned in the introduction, existing proofs of strong normalisation forλml

are based on translations into other calculi that are already known to be strongly
normalising. We have said how Benton et al., working from a logical perspective,
used a translation into a lambda-calculus with sums [4]. In a report onmonadic type
systems— a generalisation of pure type systems and the computational metalanguage

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

— Barthe et al. [3] prove strong normalisation by translation into a lambda-calculus
with an extra reductionβ′. Finally, Hatcliff and Danvy [16] state thatT -reductions are
strongly normalising, although they do not indicate a specific proof method.

5.2 Further Work

Subsequent to the work described here, we have developed anormalisation by evalu-
ation algorithm forλml , which we prove correct using the strong normalisation result.
Normalisation by evaluation (NBE) then leads to further results on the theory ofλml :
namely, that convertibility of terms is decidable, and reduction is confluent. This is de-
scribed in detail in the first author’s PhD thesis [19], which implements NBE for the
version ofλml used as an intermediate language in the SML.NET compiler [7, 8], and
evaluates its performance compared to conventional rewriting.

There is an extensive and growing body of work on the problem of normalisation for
many varieties of typed lambda-calculi, with reducibility as just one approach. Joachim-
ski and Matthes have proposed an alternative induction method, that characterises the
strongly normalisable terms in a calculus [17]. This is proof-theoretically simpler, and it
would be interesting to see how this applies to computation types inλml . Their method
covers sum types, commuting conversions and, most interestingly for us,generalized
applicationsof the forms(t, y.r). These have some resemblance to our decomposition
of continuations: herey.r is a term abstraction, to which will be passed the result of
applying functions to argumentt.

The broader test for>>-lifting is to investigate its application to other predicates
or relations onλml terms. Ultimately we want to make precise, and confirm, the
informal conjecture of Kennedy and Benton that(−)>> captures “observation”: ifφ
is some predicate on values, thenφ>> is a “best observable approximation” to it on
computations [6].

References

[1] M. Abadi. >>-closed relations and admissibility.Math. Struct. Comp. Sci., 10(3):313–320,
2000.

[2] H. P. Barendregt. Lambda calculi with types. InHandbook of Logic in Computer Science,
vol. II, pp. 118–309. OUP, 1992.

[3] G. Barthe, J. Hatcliff, and P. Thiemann. Monadic type systems: Pure type systems for
impure settings. InProc. HOOTS II, ENTCS 10. Elsevier, 1997.

[4] P. N. Benton, G. Bierman, and V. de Paiva. Computational types from a logical perspective.
J. Funct. Prog., 8(2):177–193, 1998.

[5] P. N. Benton, J. Hughes, and E. Moggi. Monads and effects. InApplied Semantics;
Advanced Lectures, LNCS 2395, pp. 42–122. Springer-Verlag, 2002.

[6] P. N. Benton and A. Kennedy. Personal communication, December 1998.
[7] P. N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Java bytecodes. In

Proc. ICFP ’98. ACM Press, 1998.
[8] P. N. Benton, A. Kennedy, C. Russo, and G. Russell. The SML.NET compiler. Available

athttp://www.cl.cam.ac.uk/Research/TSG/SMLNET/.
[9] P. N. Benton and A. J. Kennedy. Exceptional syntax.J. Funct. Prog., 11(4):395–410, 2001.

http://www.cl.cam.ac.uk/Research/TSG/SMLNET/

Sam Lindley and Ian Stark Reducibility and>>-lifting for Computation Types

[10] R. Carlsson, B. Gustavsson, and P. Nyblom. Erlang’s exception handling revisited. InProc.
ERLANG ’04, pp. 16–26. ACM Press, 2004.

[11] P. de Groote. On the strong normalisation of intuitionistic natural deduction with
permutation-conversions.Inf. & Comp., 178(2):441–464, 2002.

[12] A. Filinski. Representing monads. InConf. Record POPL ’94, pp. 446–457. ACM Press,
1994.

[13] J.-Y. Girard. Linear logic.Theor. Comp. Sci., 50(1):1–102, 1987.
[14] J.-Y. Girard, Y. Lafont, and P. Taylor.Proofs and Types. CUP, 1989.
[15] J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types. In

Proc. CSL ’02, pp. 553–568, 2002.
[16] J. Hatcliff and O. Danvy. A generic account of continuation-passing styles. InConf. Record

POPL ’94, pp. 458–471. ACM Press, 1994.
[17] F. Joachimski and R. Matthes. Short proofs of normalization.Arch. Math. Log., 42(1):58–

87, 2003.
[18] M. Lillibridge. Unchecked exceptions can be strictly more powerful than call/cc.Higher-

Order & Symb. Comp., 12(1):75–104, 1999.
[19] S. Lindley.Normalisation by Evaluation in the Compilation of Typed Functional Program-

ming Languages. PhD thesis, U. Edinburgh, 2005.
[20] E. Moggi. Computational lambda-calculus and monads. InProc. LICS ’89, pp. 14–23.

IEEE Comp. Soc. Press, 1989.
[21] E. Moggi. Notions of computation and monads.Inf. & Comp., 93(1):55–92, 1991.
[22] J. Newburn. All about monads, v1.1.0.http://www.nomaware.com/monads.
[23] M. Parigot. Proofs of strong normalisation for second order classical natural deduction.J.

Symb. Log., 62(4):1461–1479, 1997.
[24] S. Peyton Jones, ed.Haskell 98 Language and Libraries: The Revised Report. CUP, 2003.
[25] A. Pitts and I. Stark. Operational reasoning for functions with local state. InHigher Order

Operational Techniques in Semantics, pp. 227–273. CUP, 1998.
[26] A. M. Pitts. Parametric polymorphism and operational equivalence.Math. Struct. Comp.

Sci., 10:321–359, 2000.
[27] D. Prawitz. Ideas and results in proof theory. InProc. 2nd Scand. Log. Symp., Stud. Log.

Found. Math. 63, pp. 235–307. North Holland, 1971.
[28] A. Sabry and P. Wadler. A reflection on call-by-value.ACM Trans. Prog. Lang. Syst.,

19(6):916–941, 1997.
[29] W. W. Tait. Intensional interpretations of functionals of finite type I.J. Symb. Log.,

32(2):198–212, 1967.
[30] J. Vouillon. Subtyping union types. InProc. CSL ’04, LNCS 3210, pp. 415–429. Springer-

Verlag, 2004.
[31] J. Vouillon and P.-A. Mellìes. Recursive polymorphic types and parametricity in an

operational framework. Submitted for publication, 2004.
[32] J. Vouillon and P.-A. Mellìes. Semantic types: a fresh look at the ideal model for types. In

Conf. Record POPL ’04, pp. 52–63. ACM Press, 2004.
[33] P. Wadler. Monads for functional programming. InAdvanced Functional Programming,

LNCS 925, pp. 24–52. Springer-Verlag, 1995.

http://www.nomaware.com/monads

	Reducibility and TT-lifting for Computation Types
	1 Introduction
	2 The Computational Metalanguage
	3 Reducibility
	3.1 Continuations
	3.2 Reducibility and Neutrality
	3.3 Reducibility Theorem

	4 Extensions
	4.1 Reducibility for Sums
	4.2 Reducibility for Exceptions
	4.3 Reducibility for the Computational Lambda-Calculus

	5 Conclusion
	5.1 Related Work
	5.2 Further Work

