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Abstract
Link prediction and entailment graph induc-
tion are often treated as different problems.
In this paper, we show that these two prob-
lems are actually complementary. We train a
link prediction model on a knowledge graph
of assertions extracted from raw text. We
propose an entailment score that exploits the
new facts discovered by the link prediction
model, and then form entailment graphs be-
tween relations. We further use the learned en-
tailments to predict improved link prediction
scores. Our results show that the two tasks
can benefit from each other. The new entail-
ment score outperforms prior state-of-the-art
results on a standard entialment dataset and the
new link prediction scores show improvements
over the raw link prediction scores.

1 Introduction

Link prediction and entailment graph induction
are often treated as different problems. The for-
mer (Figure 1A) is used to infer missing relations
between entities in existing knowledge graphs
(Socher et al., 2013; Bordes et al., 2013; Riedel
et al., 2013). The latter (Figure 1B) constructs en-
tailment graphs with relations as nodes and entail-
ment rules as edges between them (Berant et al.,
2011, 2015; Hosseini et al., 2018) for the task of
answering questions from text. In this paper, we
show that these two problems are complementary
by demonstrating how link prediction can help
identify entailments and how discovered entail-
ments can help predict missing links.

Methods to learn entailment graphs (Berant
et al., 2011, 2015; Hosseini et al., 2018) process
large text corpora to find local entailment scores
between relations based on the Distributional In-
clusion Hypothesis which states that a word (rela-
tion) r entails another word (relation) q if and only
if in any context that r can be used, q can be used
in its place (Dagan et al., 1999; Geffet and Da-
gan, 2005; Kartsaklis and Sadrzadeh, 2016). They
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Figure 1: A link prediction knowledge graph (A) and an
entailment graph (B) for entities of types politician,country.
The solid lines are discovered correctly, but the dashed ones
are missing. However, evidence from the link prediction
model can be used to add the missing entailment rule in the
entailment graph (B). Similarly, the entailment graph can be
used to add the missing link in the knowledge graph (A).

use types such as person, location and time, to
disambiguate polysemous relations (e.g., person
born in location and person born in time). Entail-
ment graphs are then formed by imposing global
constraints such as transitivity of the entailments
(Berant et al., 2011). The paraphrase1 and entail-
ment relations provide an interpretable resource
that can be used to answer questions, when the
answer is not explicitly stated in the text. For ex-
ample, while we can find on the web the assertion
Loch Fyne lies at the foot of mountains, we can-
not find a sentence directly stating that Loch Fyne
is located near mountains by querying Google as
of 4th March 2019. Knowledge of the entailment
relation between lies at the foot of and is located

1Relations that entail each other in both directions are re-
garded as paraphrases.



near can be used to answer such questions.

On the other hand, link prediction (or knowl-
edge base completion) models are based on dis-
tributional methods and directly predict the source
data. These models have received much attention
in the recent years (Socher et al., 2013; Bordes
et al., 2013; Riedel et al., 2013; Toutanova et al.,
2016; Trouillon et al., 2016; Dettmers et al., 2018).
The current methods learn embeddings for all en-
tities and relations and a function to score any po-
tential relation between the entities. One of the
main capabilities of these models is that they im-
plicitly exploit entailment relations such as per-
son born in country entails person be from coun-
try (Riedel et al., 2013). However, entailment re-
lations are not learned explicitly. For example,
we cannot simply compute the cosine similarity of
the vector representations of the two relations to
detect the entailment between them, because co-
sine similarity is symmetric (§5.1). These methods
are usually applied to augment existing knowledge
graphs such as Freebase (Bollacker et al., 2008),
DBPedia (Auer et al., 2007) and Yago (Suchanek
et al., 2007), but they can also be applied to asser-
tions extracted from raw text.

In this paper, we explore the synergies between
the two tasks. Current entailment graphs suffer
from sparsity and noise in the data. The link pre-
diction methods discover new facts that can be
used to alleviate the sparsity issue. In addition,
they can remove noise by filtering facts that are not
consistent with the other facts. We propose a new
entailment score based on link prediction (§3.1)
which significantly improves over prior state-of-
the-art results on a standard entailment detection
dataset (5.1). For example, our method can dis-
cover that be elected president of entails run for
presidency of by relying on the predicted links
concerning the two relations (Figure 1).

In addition, we show that the discovered entail-
ments can be used to predict links in knowledge
graphs (§3.2). For example, knowing that run for
presidency of entails be nominated for presidency
of as well as the assertion Le Pen ran for presi-
dency of France, we can infer that she also was
nominated for presidency of France. In our ex-
periments, we show improvements over a state-of-
the-art link prediction model (§4.2).2

2Our code and data are available at https://github.
com/mjhosseini/linkpred_entgraph.

2 Background and Notation

Let T denote the set of all types (e.g., politician),
E(t) the set of entities with type t (e.g., E. Macron)
andR(t1, t2) the set of relations with types (t1, t2)
or (t2, t1) (e.g., be elected president of). We de-
note by E =

⋃
t E(t) the set of all entities and by

R =
⋃
t1,t2
R(t1, t2) the set of all relations. De-

note by H(t1, t2) the knowledge graph consisting
of a set of correct triples (r, e1, e2), where r ∈
R(t1, t2), (e1, e2) ∈ E2(t1, t2) and E2(t1, t2) =(
E(t1) × E(t2)

)
∪
(
E(t2) × E(t1)

)
. We define

E2 =
⋃
t1,t2
E2(t1, t2) the set of all possible en-

tity pairs. We denote by H =
⋃
t1,t2
H(t1, t2) the

knowledge graph consisting of all types. In prac-
tice, we have not observed all the correct triples,
but instead have access to a noisy and incomplete
knowledge graph. We define by Xr,e1,e2 a binary
random variable which is 1 if (r, e1, e2) is in the
knowledge graph and 0, otherwise.

In the rest of this section, we introduce the prob-
lem of link prediction (§2.1) and finding entail-
ment relations (§2.2).

2.1 Link Prediction
For each triple (r, e1, e2), a link prediction model
defines a scoring function f(r, e1, e2) of its plau-
sibility (Socher et al., 2013; Bordes et al., 2013;
Riedel et al., 2013; Toutanova et al., 2016; Trouil-
lon et al., 2016; Dettmers et al., 2018). We use
ConvE (Dettmers et al., 2018), a state-of-the-art
and efficient model, in our experiments. The mod-
els then choose f such that the score f(r, e1, e2)
of a plausible triple (r, e1, e2) ∈ H is higher
than the score f(r′, e′1, e

′
2) of an implausible triple

(r′, e′1, e
′
2) /∈ H (Nguyen, 2017). The plausibility

score f(r, e1, e2) can optionally be mapped into a
probability score Sr,e1,e2 .3 The probability score
Sr,e1,e2 is an estimate of P(Xr,e1,e2=1), i.e., the
probability of the triple being correct. We de-
note by S ∈ [0, 1]|R|×|E

2| the matrix containing
triple probability scores. We define S(t1, t2) ∈
[0, 1]|R(t1,t2)|×|E2(t1,t2)| the submatrix of S with
R(t1, t2) as rows and E2(t1, t2) as columns. We
apply a link prediction model to a knowledge
graph of predicate-argument structures extracted
from text (§4.2).

2.2 Entailment Prediction
The goal is to find entailment scores between
all relations with the same types, where the

3For example by applying the Sigmoid function.

https://github.com/mjhosseini/linkpred_entgraph
https://github.com/mjhosseini/linkpred_entgraph


entities can be in the same or opposite or-
der (Berant et al., 2011; Lewis and Steedman,
2014b; Hosseini et al., 2018). We denote by
W (t1, t2) ∈ [0, 1]|R(t1,t2)|×|R(t1,t2)| the (sparse)
matrix containing all similarity scores Wr,q be-
tween relations r, q ∈ R(t1, t2). We de-
fine W the (block diagonal) matrix consist-
ing of all the similarity matrices W (t1, t2).
For a δ > 0, we define typed entailment
graphs as Gδ(t1, t2) =

(
R(t1, t2), Eδ(t1, t2)

)
,

where R(t1, t2) are the nodes and E(t1, t2) =
{(r, q)|r, q ∈ R(t1, t2),Wr,q ≥ δ} are the edges
of the entailment graphs.

Existing entailment similarity measures for re-
lation entailment such as Weeds (Weeds and Weir,
2003), Lin (Lin, 1998), and Balanced Inclusion
(BInc; Szpektor and Dagan, 2008) are typically
defined on feature vectors consisting of entity-
pairs (e.g., Obama-Hawaii), where the values
are frequencies or pointwise mutual information
(PMI) between the relations and the features (Be-
rant et al., 2011, 2012, 2015). While these meth-
ods currently hold state-of-the-art results on re-
lation entailment datasets (Hosseini et al., 2018),
they suffer from low recall because the feature
vectors are usually sparse and do not have high
overlap with each other. The link prediction mod-
els, on the other hand, can predict the probability
of any triple being in the knowledge graph. Using
predicted probability scores can hugely alleviate
the sparsity problem by increasing the overlap be-
tween feature vectors (§3.1).

3 Duality between Entailment Scores
and Link Prediction

We discuss the relationship between link pre-
diction scores S(t1, t2) and entailment scores
W (t1, t2). We claim that while these two tasks
are usually treated separately, they are comple-
mentary. We propose a method to predict entail-
ment scores by using link prediction scores. The
proposed score estimates the probability of rela-
tions given one another. It exploits the strength
of the link prediction models, i.e., predicting new
facts as well as removing noise from the existing
ones (§3.1). We further show how we can improve
link prediction scores by using predicted entail-
ment scores. Having access to an entailment re-
lation r → q, we use the link prediction scores
of r to refine the scores of q for any entity pairs
(§3.2). All the methods in this section are applied
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Figure 2: A small Markov chain with two relations
(squares) and four entity-pairs (ovals). Directed edges
connect each relation to its related entity-pairs, and vice
versa. Transition probabilities are shown on each edge.
The outgoing probabilities from each node sum to 1.

for each type pair separately; however, in the rest
of the paper, we drop (t1, t2) for simplicity of the
notation.

3.1 Entailment Scores From Link Prediction

In this section, we show how we can use link pre-
diction scores to predict entailment scores. In or-
der to compute the entailment scores, we apply a
link prediction method on the knowledge graphH.
We define a new entailment score based on link
prediction scores.

More specifically, We reform the knowledge
graph representation into a Markov chain over a
bipartite graph M = (VM , EM ), where VM =
R ∪ E2 are the nodes of the graph, and EM con-
tains edges (〈r〉, 〈e1, e2〉) and (〈e1, e2〉, 〈r〉) iff
P(Xr,e1,e2=1) ≥ 0. Figure 2 shows an exam-
ple Markov chain with only two relations and four
entity-pairs. The transition probabilities of the
chain are:

P(〈e1, e2〉 | 〈r〉) =
P(Xr,e1,e2=1)∑

e1,e2∈E2 P(Xr,e1,e2=1)

P(〈r〉 | 〈e1, e2〉) =
P(Xr,e1,e2=1)∑
r∈R P(Xr,e1,e2=1)

For relations r and q, we define the entailment
score Wr,q = P(〈q〉|〈r〉), where we compute the
probability by considering only the paths of length
2 between r and q that pass through one entity-pair
node.4 We define:

4Longer paths did not yield better performance in our ex-
periments while increasing the memory and running time re-
quirements.



P(〈q〉|〈r〉) =
∑

e1,e2∈E2
P(〈q〉|〈e1, e2〉) P(〈e1, e2〉|〈r〉).

(1)
We use Sr,e1,e2 from the link prediction model

as an estimate of P(Xr,e1,e2=1) to compute Equa-
tion 1. We can compute the scores for all r, q ∈ R
efficiently, by normalizing each row of the matri-
ces S and S> and multiplying them.5 Note that
building the matrix S for all possible triples make
the computation of the scores intractable, espe-
cially for large number of relations (§4.1). In our
experiments, we consider any (r, e1, e2) seen in
the corpus. In addition, we add a subset of high
scoring triples not seen in the corpus (§4.2).

3.2 Improving Link Prediction Scores using
Entailment Scores

In the previous section, we demonstrated how we
can use link prediction methods to learn entail-
ment scores. In this section, we consider the in-
verse problem, i.e., we use the predicted entail-
ment relations to improve link prediction scores.
We assume the Distributional Inclusion Hypoth-
esis (DIH) which states that a word (relation) r
entails another word (relation) q if and only if in
any context that r can be used, v can be used in its
place (Dagan et al., 1999; Geffet and Dagan, 2005;
Kartsaklis and Sadrzadeh, 2016). In particular, in
a correct and complete knowledge graph, we have:

r→q =⇒ ∀(e1, e2) ∈ E2 :
Xr,e1,e2 = 1→ Xq,e1,e2 = 1

=⇒ Xr,e1,e2 ≤ Xq,e1,e2 . (2)

Therefore when r → q, it is reasonable to as-
sume P(Xr,e1,e2 = 1) ≤ P(Xq,e1,e2 = 1) for all
entity pairs e1, e2. This would suggest we can de-
fine a new link prediction score based on entail-
ment relations:

Sentq,e1,e2 = max
r∈R: r→q

Sr,e1,e2 . (3)

However, since we do not have access to the en-
tailment relations and can only rely on the predic-
tions, Equation 3 is likely to be very noisy. We
smooth Equation 3 by using a weighted average of
the scores of each entailment relation. We define:

5An alternative approach would be based on sampling
paths over the Markov Chain, but we compute the exact solu-
tion by performing matrix multiplication.

Sentq,e1,e2 = max
(
Sq,e1,e2 ,

∑
r∈R

W ′r,qSr,e1,e2

)
,

where W ′r,q is defined by normalizing the qth
column of the matrix W .

W ′r,q =
Wr,q∑

r′:r′→qWr′,q
.

4 Experimental Set-up

In this section, we discuss the details of our exper-
iments. We first describe the text corpus and ex-
tracted triples which are used as the input to our
method (§4.1). We then describe the details of
the link prediction model (§4.2), the datasets used
to test the models (§4.3) and the baseline systems
(§4.4).

4.1 Text Corpus

Link prediction models are often applied to exist-
ing knowledge graphs such as Freebase (Bollacker
et al., 2008), DBPedia (Auer et al., 2007) and Yago
(Suchanek et al., 2007); however, we chose to ex-
periment on assertions extracted from raw text.
This is because we can then evaluate the predicted
entailments on existing entailment datasets with
examples stated in natural language (§4.3).

We use the multiple-source NewsSpike corpus
of Zhang and Weld (2013). The NewsSpike corpus
includes 550K news articles and is well-suited for
finding entailment and paraphrasing relations as it
includes different articles from different sources
describing identical news stories. We use the
triples released by Hosseini et al. (2018)6 who
run the semantic parser of Reddy et al. (2014),
GraphParser, to extract binary relations between
a predicate and its arguments. GraphParser uses
Combinatorial Categorial Grammer (CCG) syn-
tactic derivations by running EasyCCG (Lewis and
Steedman, 2014a). The parser converts sentences
to neo-Davisonian semantics, a first order logic
that uses event identifiers and extracts one binary
relation for each event and pair of arguments (Par-
sons, 1990). The entities are typed by first linking
to Freebase (Bollacker et al., 2008) and then se-
lecting the most notable type of the entity from
Freebase and mapping it to FIGER types (Ling
and Weld, 2012) such as building, disease and per-
son. They use the first level of the FIGER types

6Accessed from https://github.com/mjhosseini/entGraph.



hierarchy to assign one of the 49 types (out of 113
total types) to the entities (Hosseini et al., 2018).

Hosseini et al. (2018) extract 29M unique bi-
nary relations. We follow them by filtering any
relation that is seen with less than three unique
entity-pairs, and any entity-pairs that is seen with
less than three unique relations. The filtered cor-
pus has 3.9M relations covering 304K typed rela-
tions (101K untyped relations).

4.2 Link Prediction

We randomly split the corpus into training (95%),
validation (4%) and test (1%) sets. We train the
link prediction model on the training set and use
the validation set for parameter tuning. We ap-
ply ConvE (Dettmers et al., 2018)7, a state-of-
the-art model for link prediction, on the training
set. ConvE is an efficient multi-layer convolu-
tional network model. Unlike most other link pre-
diction models that take as input an entity pair and
a relation as a triple (r, e1, e2) and score it (1-1
scoring), ConvE takes one (r, e1) pair and scores it
against all entities e2 (1-N scoring). This improves
the training time of ConvE, however more impor-
tantly, it is very fast at inference time as well. This
is particularly important for our method as we ap-
ply the link prediction model exhaustively to pre-
dict new high-quality facts (§4.4).

We learn 200-dimensional vectors for each en-
tity and relation. We use the default parameter
settings of the ConvE model as those parameters
yielded good results on the validation set.8 We
run the model for 80 epochs where the model has
converged (less than 10−5 change in training loss).
We learn embeddings for each predicate and its re-
verse to handle examples where the argument or-
der of the two predicates are different.

For evaluating on the entailment task, we calcu-
late entailment scores by using the predictions of
the link prediction model on the triples in train,
development and test sets. This is because the
other baselines have also access to the whole set
of triples (§4.4). However, for evaluating the link
prediction model, we compute entailment scores
by only considering the predictions in the training
set. This is essential as the entailment scores will
be used to predict improved link prediction scores
on the test set. Therefore, the comparison will not

7Accessed from https://github.com/TimDettmers/ConvE.
8We experimented with chaning the learning and dropout

rates, but the results did not improve on the validation set.

be valid if the method has access to the test triples
while computing entailment scores.

4.3 Evaluation Datasets
We discuss the datasets that we use to test the pro-
posed methods for the entailment detection and the
link prediction tasks.

Entailment Detection Evaluation. For
the entailment detection task, we evaluate on
Levy/Holt’s dataset (Levy and Dagan, 2016; Holt,
2018). Each example in the dataset contains a pair
of triples where the entities are the same (possi-
bly in the reverse order), but the relations are dif-
ferent. The label of the examples are either pos-
itive or negative, meaning that the first triple en-
tails or does not entail the second triple. For ex-
ample Bartlett was interviewed on television, en-
tails Bartlett appeared on television, but the latter
does not entail the former. The dataset contains
18, 407 examples (3,916 positive and 14,491 neg-
ative). We use the split of the dataset into devel-
opment (30%) and test sets (70%) chosen by Hos-
seini et al. (2018) in our experiments.

Link Prediction Evaluation. For the link pre-
diction task, we evaluate the models on the test
set of the NewsSpike corpus (§4.2) that has 40K
triples. For each triple, we compare the link pre-
diction score with the score of a corrupted triple
by changing one of the entities in the triple.

4.4 Comparison
We compare the following entailment scores for
evaluating on the entailment detection dataset.

MC is the entailment score based on the
Markov chain (3.1), when the link prediction
scores are computed only for the predicates we
have seen in the corpus. While the link prediction
method can assign scores to any possible triple, we
report this results to check how the Markov chain
model performs compared to the other scores that
are directly computed for the triples in the corpus.

Aug MC is our novel entailment score that is
based on the Markov chain, but augments the ma-
trix S of the MC model with new entries. We use
the link prediction method to compute scores on
the original set of triples as well as new predicted
triples. For each triple (r, e1, e2), we compute the
score Sr,e1,e′2 for all candidate entities e′2 that have
been seen with e1 for any other relation r′. We
augment the matrix S with the K highest scores.
We similarly score Sr,e′1,e2 for all candidate enti-
ties e′1 and augment the matrix S with the K high-



est scores, accordingly. In our experiments, we
used K = 50.9

Cos is the cosine similarity of the embeddings
of the relations if the cosine is positive, and 0 oth-
erwise. We also compare to three Sparse Bag-of-
Word (SBOW) methods: Weeds (Weeds and Weir,
2003), Lin (Lin, 1998), and Balanced Inclusion
(BInc; Szpektor and Dagan, 2008). These similar-
ities check the set of entity-pairs for each relation
pair and compute how much one set is included in
the other, and/or how much they overlap. Follow-
ing previous work, we have computed these scores
based on the Pointwise Mutual Information (PMI)
between the relations and the entity pairs.

Berant’s ILP is the method of Berant et al.
(2011). It computes local similarities and then
learns global entailment graphs satisfying transi-
tivity constraints by solving an Integer Linear Pro-
gramming. We downloaded Berant et al. (2011)’s
entailment graphs and tested it on the Levy/Holt’s
dataset.10

For all the above similarities, we report results
both in the local setting, where the similarities
are computed for each relation pair independent
of the others and the global setting, where we ap-
ply the global soft constraints of Hosseini et al.
(2018). We apply two sets of global soft con-
straints: a) Cross Graph which transfers simi-
larities between relations in different, but related
typed graphs; and b) Paraphrase Resolution which
encourages paraphrase relations to have the same
patterns of entailment. We tune the parameters of
the global soft constraints on the development set
of the Levy/Holt’s dataset.

For the link prediction task, we compare the
ConvE model with our proposed link prediction
score. We test how MC and Aug MC entailment
scores can improve the link prediction scores in
both local and global settings.

5 Results and Discussion

We first compare our proposed entailment score
with the previous state-of-the-art results (§5.1) and
then show that we can use entailment decisions to
improve the link prediction task (§5.2).

9Higher values of K was not feasible on our machines.
We performed our experiments on a 32-core 2.3 GHz ma-
chine with 256GB of RAM.

10Berant et al. (2015)’s entailment graphs yield similar re-
sults.

5.1 Entailment Scores based on Link
Prediction

In this section, we compare the variants of our
method to the previous state-of-the-art results on
the Levy/Holt’s dataset. We compute similarity
scores and report precision-recall curve by chang-
ing the threshold for entailment between 0 and 1.
In order to have a fair comparison with Berant’s
ILP method, we first test a set of rule-based con-
straints proposed by them (Berant et al., 2011).
We also apply the lemma baseline heuristic pro-
cess of Levy and Dagan (2016) before testing the
methods.

Figure 3 shows the precision-recall curve of all
the methods in both local (A) and global (B) set-
tings. From the SBOW methods, we only show the
BInc score in the graphs as it got the best results on
the development set. For Berant’s ILP method, we
only have one point of precision and recall, as we
had access to their entailment graphs for only one
sparsity level. In both settings, Aug MC works
better than all the other methods. This confirms
that the link prediction method is indeed useful
for finding entailment relations. Aug MC consis-
tently outperforms MC suggesting that adding the
missing entries before forming the Markov chain
alleviates the sparsity problem inherent to the en-
tailment task.

Interestingly, while the MC model has access
to the same set of entity-pairs as the BInc score,
it outperforms it in most of the recall range (es-
pecially in the high recall range). Note that the
link prediction method might still assign a low
score to a triple (r, e1, e2) in the corpus if it is not
consistent with the other facts. This is especially
important when the input triples are noisy. For
triples extracted directly from text, the noise might
come from various sources such as the relation ex-
traction components (e.g, parsing and named en-
tity linking) or fake or inconsistent news. The
MC model seems to be successful in removing the
noise from the input triples.11 The cos similarity
is worse than the other methods. This is mainly
attributed to the fact that cos is symmetric, while
the entailment relation is directional.

We also report area under the precision recall
curve. Because the different methods cover differ-
ent ranges of precision and recall values, we com-

11We tested the MC model when the transition probabili-
ties were computed by frequency information or PMI of en-
tity pairs and relations, and the results were worse than the
MC model based on the link prediction scores.
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Figure 3: Comparison of the Markov chain (MC) and Augmented Markov chain (Aug MC) models to the BInc score (SBOW
model) on Levy/Holt’s dataset in local (A) and global (B) settings.

pute area under the precision recall curve for the
precision range [0.5, 1], as it is covered by all the
baselines and the precision values higher than ran-
dom are more important for end applications such
as semantic parsing or summarization. Table 1
shows the area under precision-recall curves for all
the methods. In the global setting, Aug MC shows
about 13% improvement relative to the best result
of the methods based on SBOW vectors (.187 vs
.165). In addition, it is 25% higher relative to the
cos score (15%). Similar patterns can be seen in
the local setting.

5.2 Effect of Entailment Scores for
Improving Link Prediction

We now test the proposed method for improving
the link prediction score. Each triple (r, e1, e2) in
the test set is corrupted by either replacing its first
or second entity by any possible entities. The can-
didate entities are then ranked in descending order
based on their plausibility score. The original en-
tity is then ranked among all the other entities. We
report results using a filtered setting, i.e., we rank
test triples against all other triples not appearing in
the training, validation or test sets (Bordes et al.,
2013). We report Hits@1 (the proportion of the
test triples for which the correct entity was ranked
as the first prediction), Hits@10, Mean Rank (MR)
and Mean Reciprocal Rank (MRR).

Table 2 shows the results of link prediction. We
report the results for all entities as well as infre-
quent entities, where in the latter case we have re-
moved any triple with an entity in the top 20 most
frequent entities. In each setting, the first row is

the plain ConvE model. We then test how the
different variants of our entailment scores change
the results. We observe that adding the entail-
ment scores improve the rankings of the correct
triples. The value of MRR, Hits@1 and Hits@10
have increased after applying any of the methods
for learning entailment scores.

It is interesting to see that the improvements ob-
tained by the different entailment scores are gen-
erally consistent with the results on the entailment
detection task, i.e., the scores with better results
on the Levy/Holt’s dataset, show more improve-
ments on this task as well. The change of the mean
rank (MR) is more apparent. For example, MR
has decreased about 50% when we apply our best
method (Global Aug MC) to re-rank the link pre-
diction scores. This means using entailment rela-
tions is more useful to improve the link prediction
for harder examples. The results of all methods
for infrequent entities are worse than the results on
all entities; however, we observe the same trends
among the different methods.

Note that the amount of the data that is used for
all the methods is the same. In particular, we have
only used the triples from the NewsSpike corpus
for both link prediction and entailment detection
tasks and the gain in performance of the both tasks
is merely because the two tasks learn complemen-
tary information.

6 Related Work

Link Prediction. In recent years, many link pre-
diction models have been proposed that learn vec-



SBOW Link Prediction
Weeds Lin BInc Cos MC Aug MC

Local .073 .074 .076 .067 .079 .085
Global .147 .149 .165 .150 .174 .187

Table 1: Area under precision-recall curve (for precision >
0.5) on Levy/Holt’s dataset.

Hits@1 Hits@10 MR MRR
ALL entities

ConvE 20.36 47.93 1999.29 29.58
+ Local MC 20.66 48.64 1157.33 30.03

+ Local Aug MC 20.68 48.90 1018.37 30.12
+ Global MC 20.68 49.13 1012.54 30.19

+ Global Aug MC 20.64 49.16 987.13 30.19
INFREQUENT entities

ConvE 19.05 45.59 2124.71 27.94
+ Local MC 19.26 46.10 1303.56 28.25

+ Local Aug MC 19.30 46.36 1154.06 28.33
+ Global MC 19.29 46.60 1154.28 28.41

+ Global Aug MC 19.28 46.66 1118.09 28.43

Table 2: Link prediction results on the test set of NewsSpike
for all entities (top) and infrequent entities (below). We test
the effect of refining ConvE scores with entailment relations.

tor or matrix representations for relations and en-
tities (Socher et al., 2013; Bordes et al., 2013;
Riedel et al., 2013; Wang et al., 2014; Lin et al.,
2015; Toutanova et al., 2016; Nguyen et al., 2016;
Trouillon et al., 2016; Dettmers et al., 2018;
Schlichtkrull et al., 2018; Nguyen et al., 2018).
These models are trained by assigning higher plau-
sibility scores to correct facts than incorrect ones.
For example, the well-known TransE model (Bor-
des et al., 2013) captures relational similarity be-
tween entity pairs by considering a translation vec-
tor for the relations connecting them. In particular,
it learns embeddings for entities and relations such
that ~e2 − ~e1 ≈ ~r for any correct triple (r, e1, e2).
In our experiments we have used ConvE (Dettmers
et al., 2018), however, our proposed score can be
computed based on any link prediction model and
the discovered entailment relations might be use-
ful for improving any link prediction model.

Entailment Graph Induction. Entailment
graphs are learned by imposing global constraints
on local entailment decisions. Berant et al. (2011,
2012, 2015) have used transitivity constraints and
applied Integer Linear Programming (ILP) or ap-
proximation methods to learn entailment graphs.
Hosseini et al. (2018) have used two sets of
global soft constraints to: (a) transfer similari-
ties between different but related typed entailment
graphs; and (b) encouraging paraphrase relations
to have the same patterns of entailments. Our
method, in contrast, learns a new entailment score

to improve local decisions, which in turn improves
the entailment graphs.

Entailment Rule Injection for link predic-
tion. There are some attempts in recent years
to improve link prediction by injecting entailment
rules. Wang et al. (2015) incorporate various set
of heuristic rules, including entailment rules, into
embedding models for knowledge base comple-
tion. They formulate inference as an ILP prob-
lem, with the objective function generated from
embeddings models and the constraints translated
from the rules. Guo et al. (2016) extend the TransE
model by defining plausibility scores for grounded
logical rules as well as triples and learning entity
and relation embeddings that score positive exam-
ples higher than negative ones. Guo et al. (2018)
take an iterative approach where in each iteration
a set of unseen triples are scored according to the
current link prediction model and a small set of
precomputed logical rules. The new triples and
their scores are then used to update the current link
prediction model.

The above models need grounding of logical
rules. A few recent works do not need ground-
ing and are more space and time efficient (De-
meester et al., 2016; Ding et al., 2018). They in-
corporate logical rules into distributed represen-
tations of relations. These models constrain en-
tity or entity-pair vector representations to be non-
negative. They encourage partial ordering over
relation embeddings based on implication rules;
however, their methods can be only applied to
(multi-)linear link prediction models such as Com-
plEx (Trouillon et al., 2016). In contrast, our
method can be applied to any type of link predic-
tion model.

All these methods require entailment rules as
their input. In most cases (Wang et al., 2015; De-
meester et al., 2016; Guo et al., 2016), the entail-
ment rules are constructed manually, or selected
from lexical resources such as WordNet (Miller,
1995). Therefore, the improvement of such meth-
ods come from out-of-domain knowledge (manu-
ally built lexical resources or expert knowledge),
while our entailment rules come from in-domain
knowledge, i.e., the same data which is used for
link prediction. The number of entailment rules in
all the previous models is very small because of
scalability issues (at most a few hundred rules in
Ding et al. (2018)). In contrast, our method can
incorporate millions of automatically discovered



entailment rules.

7 Conclusion

We have shown that link prediction and entail-
ment graph induction are complementary tasks.
We have introduced a new score for entailment de-
tection by performing link prediction on predicate-
argument structures extracted from text. We re-
form the normal knowledge graph representation
into a Markov chain with relations and entity-pairs
as its states. The score is computed by estimating
transition probabilities between the relation states.
Our experiments show that the entailment graphs
built by our proposed score outperform previous
state-of-the-art results because link prediction is
effective in filtering noise and adding new facts.
We have additionally considered the reverse prob-
lem, i.e., using the learned entailment graphs to
improve link prediction. Our results show that the
two tasks can benefit from each other.
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