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Connectionist or neural computational representations are based on numbers of
multiplely connected identical neuron-like parallel processing units, the connec-
tions bearing modifiable weights adjusted on the basis of locally available infor-
mation using a learning algorithm. Symbolic representations, by contrast, are
defined in terms of rules relating expressions in a formal language. Among the
claims that have been made for the former class of models is the “emergence”
of generalizations that had been claimed to require the mediation of rule-based
grammars and modular symbolically-represented processing architectures. A
more convincing linguistic role for neural computational networks lies in their
potential for inducing grounded conceptual structure and statistical models as in-
frastructure for acquisition and processing of standard symbolist representations
of lexicalized syntax and semantics.

1 The Approaches

Connectionist theories of the parallel distributed processing (PDP) variety
(Rumelhart et al. 1986) begin from the reasonable belief that phenomena of
mind are the result of computation in richly interconnected networks of neu-
rons or neuron-like units. They embody the hypothesis that the nature of this
computational device critically determines the nature of the computation itself.
Symbolic theories begin from the equally reasonable belief that such phenomena
of mind as language use, understanding, and reasoning are symbolic in nature, in
much the same sense as mathematical and logical inference are, and that as such
the computation involved can be characterized independently of any specific de-
vice, whether parallel-distributed or not, that implements it. The connectionist
approach is by nature reductionist (in the best sense of a much abused term)
in that it attempts to generalize from low-level mechanisms to higher-order phe-
nomena. The symbolic approach is phenomenological (again in a positive sense)
in that it tries to work in the opposite direction, from a high-level description to
the implicit underlying mechanism. These approaches are clearly compatible,
and can coexist. As in any area of scientific research, both approaches are nec-
essary, and the interesting question to ask is to which particular problems each
is best suited, and where they meet up and can be unified.

In our present state of knowledge in this rapidly evolving field, the answers
to these questions are far from clear. Neural Computational mechanisms have
proved their worth in the field of pattern recognition and classification, where it
is clear that they can extract structure latent in inputs such as images of faces,

2



hand-written letters, and speech, and embody that structure in recognizers that
would be impossible to specify by hand, or that are orders of magnitude more ef-
ficient than rule-based mechanisms, even when these are statistically optimized.
On the other hand, except where they have been used to explicitly simulate the
structure of a symbolic parser and associated devices such as the push-down au-
tomaton (PDA), these same devices have proved much less clearly successful
in demonstrating the kind of recursive productivity (discussed below under the
heading of “systematicity”) that rule-based symbolic systems are good at, or in
supporting semantic interpretation and inference.

In contrast, rule-based discrete symbolic systems express productivity or
systematicity, semantic interpretation, and processes of inference immediately.
However, it has proved very difficult to build rule-based linguistic or compu-
tational linguistic systems with coverage on the scale characteristic of human
linguistic and reasoning abilities, and in recent years such systems have increas-
ingly relied upon machine learning and statistical optimization techniques, of a
kind quite closely related in mathematical terms to neural computational tech-
niques. It seems likely that there is everything to be gained from combining
these approaches.

In order to compare the approaches, it is helpful to recall that symbolist the-
ories distinguish a number of distinct components to language processors. One
fairly generally applicable architecture distinguishes: i) agrammar, character-
ized by syntactic and semantic rules of certain classes and a related characteristic
automaton; ii) a nondeterministicalgorithmcharacterized by properties such as
the order in which rules are applied to the string, whether bottom-up or top-
down, the order in which the words of the string are examined, whether first-
to-last or otherwise, and by certain memory resources, such as those used in
building structure and the charts or tables used in parsers based on dynamic pro-
gramming, and iii) anoracle or decision criterion for rendering the algorithm
deterministic and deciding which rule(s) to apply in cases where there is more
than one possibility.

In any given theoretical presentation or implementation, these modules may
be combined, but in rule-based theories they can usually be distinguished in
functional terms. The fact that they are in that sense distinct modules does not of
course imply that the corresponding computations must be carried out in series,
in chronologically separate phases: for example it is quite possible to construct
systems in which the oracle can call on the results of semantic interpretation and
contextual reference in mid-sentence, while syntactic analysis is still under way.
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It is important to be clear on this last point, because the fact that phenom-
ena like “garden path” effects in parsing can be affected by semantics and even
by extrasentential context is often adduced as evidence in specific support of
PDP models and against symbolic ones. However, parallel-constraint satisfac-
tion drawing on multiple knowledge sources is commonplace among rule-based
models of sentence processing, and is acknowledged by Fodor (1983, p.78, fn.
p.134-135) to be entirely modular.

It follows by the same token that Connectionism is not intrinsically any less
modular than any other approach. Nevertheless, there has been a considerable
emphasis in the connectionist literature on the idea that the appearance of rule-
like behavior is “emergent” in such systems, and that language processing and
language acquisition can be modeled in monolithic non-modular PDP machines
or algorithms without the explicit involvement of grammars.

In assessing the connectionist claims it is important to ask what it is that
neural computational machinery actually learns, and whether it can in principle
do the jobs that language does for us. In particular, we must ask whether it will
deliver meaning in a form that will in turn support logical inference. In prac-
tice, inference systems of any generality have generally depended on explicitly
representations of structure of some kind.

In investigating these questions, two specific claims are of particular inter-
est. The first is the claim that grammars in the sense that symbolists understand
the term are an emergent phenomenon of the learning of sequential dependen-
cies by recurrent neural networks with “contextual” units. The second is the
claim originating with Niklasson & van Gelder (1994) that structure can be rep-
resented in distributed memory and manipulated systematically (in the sense of
that term that Fodor & Pylyshyn (1988) claimed to intrinsically require sym-
bolic representation), without explicitly representing the pointer structure of the
symbolic representation. Clearly if both of the claims are correct then the neural
computational account has gone a long way towards delivering a distinctively
non-symbolic account of language.

2 Networks and Grammars

2.1 Simple Recurrent Networks

The Simple Recurrent Network (SRN, Elman 1990) approximates the more
costly but exact “backpropagation through time” algorithm of Rumelhart et al.
(1986) for learning sequential dependencies. It does so by using a single set of
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Simply Recurrent Network (SRN)

context units which store the activations of the hidden units at timet�1 as an
input to the hidden units at timet, along with the activations of the normal input
units corresponding to the current item,itemt, as in figure 1. Since the activa-
tions of the hidden units at timet�1 were themselves partly determined by the
activations on the hidden units at timet�2, which were in turn determined by
those at timet�3, and so on, the context units carry ever-diminishing echoes of
ever more distant items in the preceding sequence.

Because there is no clear bound to the extent of the preceding sequence about
which information can be captured in the context units, it is not entirely clear
what is the precise automata-theoretic power of such “graded state machines”.
(see Cleeremans et al. (1995)). However, the signal-to-noise ratio for informa-
tion concerning distant items falls off very rapidly with this mechanism, and it
is fairly clear that in practice SRNs of the kind that can actually be built and
trained end up approximating the class of Finite State Markov Machines that
can be learned using the exact technique to a degree of accuracy that depends on
the maximum number of timesteps required.

Finite state machines are interesting devices, and it is often surprising to see
the extent to which they can approximate the output of devices that are intrinsi-
cally higher on the automata-theoretic hierarchy. It is interesting to ask whether
similar mechanisms play any part in natural language processing.

Such results are possible because some neural network algorithms are
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capable of inducing extremely efficient—and correspondingly opaque—
representations, when compared with standard Hidden Markov Models (HMM).
However, as SRNs are actually used by psychologists and linguists they ap-
pear to approximate something much closer to a familiar standard symbolist
finite-state device, namely then-gram part-of-speech (POS) tagger. (This also
seems to be their role in “hybrid architecture” connectionist parsers which use
networks to implement a push-down stack and structure-building modules in a
more standard parser architecture.)

2.2 Finite-state Part-of-speech Tagging

N-gram POS tagging—that is, the determination of the form-class of ambiguous
lexical items likebearon the basis of sequential probabilities at the word level
can be remarkably successful in reducing the degree of nondeterminism that
practical parsing algorithms must cope with (accuracies over 97% are standard).
Moreover, there is growing evidence that if the standard Brown Corpus POS cat-
egories like VB are replaced with the more informative lexical categories that are
used in lexicalized grammars such as Lexical Functional Grammar (LFG), Tree
Adjoining Grammar (TAG), Head-driven Phrase Structure Grammar (HPSG)
and the various forms of Categorial Grammar (CG), and if different senses of
the same syntactic type are also distinguished as different lexical items, this ef-
fect may do a great deal of the work of parsing itself, leaving only structural or
“attachment” ambiguities to be resolved by parsing proper.

2.3 Why do SRNs and Part-of-Speech Taggers Work?

Finite-state POS taggers and by assumption SRNs work reasonably well on tasks
like category- and sense- disambiguation and prediction of succeeding category
because the implicit Markov processes encode a lot of the redundancy (in the
information-theoretic sense of the term) that is implicit in grammar, interpreta-
tion, and world-knowledge. This means that, like standard Markov processes,
SRNs can be made the basis of quite good predictors of processing difficulty.
For example, the SVO word-order of English and our knowledge of the world
between them determine the fact that the transitive category for the wordar-
restedis more likely to follow the nouncop than the past participial category,
while these preferences are reversed following the wordcrook.

(1) a. The cop arrested by the detective was guilty.
b. The crook arrested by the detective was guilty.
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These likelihoods are reflected in increased reading times for human subjects at
the wordby in (a) as compared with (b), for example.

2.4 Are Grammars Emergent from SRNs?

While claims exist in the literature to the effect that recognizers for stringsets
of kinds that in general require grammars of higher than finite-state power have
been acquired by SRNs (Christiansen & Chater 1994), none of these results sug-
gests that the grammars in question are therefore “emergent” properties of mech-
anisms like SRN, any more than they are of n-gram POS taggers. Although the
context defined by the context units is in a limited sense unbounded, and SRNs
can in theory be used to model long distance agreement dependencies, because
of already-noted properties of the context unit representation, reliability falls off
with distance, and these dependencies cannot be regarded as unbounded in the
technical grammatical sense. They should instead be regarded as a finite-state
cover of the higher-power grammar to some limited maximum string-length.
This means that claims to model human language acquisition using SRNs must
be treated with some caution, although such models raise developmentally in-
teresting questions. (Interestingly, there are conflicting claims by Elman et al.
(1996) and by Rohde & Plaut (1999) as to whether SRN learning depends on
“starting small,” ordering presentation of simple examples before complex ones,
or is rather inherently biased towards acquisition of local dependencies before
long-range dependencies, and therefore independent of the order in which train-
ing examples are presented.)

Even within these limits, error-free sequences of grammatical categories fall
short of semantic interpretability, as can be seen from the fact that the following
sequence hastwo interpretations based on identical Brown corpus categories:

(2) Put the block in the box on the table.

Although SRNs can be regarded as disambiguating lexical items, this other kind
of ambiguity—structural or attachment ambiguity—remains, as in the case of
POS taggers.

For the same reason, it does not seem legitimate to regard “trajectories”
through the high-dimensional space defined by the hidden units as the equivalent
of parses or interpretation (Tabor et al., 1997). Many other defining properties
of interpretations—such as the ability to support the kind of structure-dependent
transformations characteristic of inference—seem to be lacking in trajectories or
category sequences of this kind. To find such properties in neural computational
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Recursive Auto-Associative Memory (RAAM)

representations, we need to look to devices other than SRN.

3 Interpretable Structure and Associative Memory

Much neural computational work has explicitly or implicitly taken on board the
need for explicitly representing the equivalent of trees or pointer structures to
represent syntactic or semantic analyses (see papers in Hinton 1990a) using as-
sociative memories of various kinds.

Such devices are of interest for (at least) two reasons: First, they inherit
some psychologically desirable properties of distributed representations, such as
content-addressability and graceful degradation under noise and damage. Sec-
ond, they offer a way to think about the interface between neurally embedded
map-like sensory-motor inputs and outputs, and symbolic knowledge represen-
tation.

3.1 Recursive Auto-Associative Memory (RAAM)

Recursive Auto-Associative Memory (RAAM, Pollack 1990) is a device that
uses hidden unit activation patterns to store associations between input and out-
put patterns. It is called “auto-associative” because it uses the same patterns as
input and output.

An n-ary recursive structure can be stored bottom-up in the RAAM starting
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with the leaf elements by recursively auto-associating vectors comprising up
to n hidden-unit activation patterns corresponding to either leaves or previously
encoded structures. The activation pattern that results from each auto-association
of the daughters can then be treated as the address of the parent.

Since by including finitely many further units on the input and output layers
we can associate node-label or content information with the nodes, a modifica-
tion sometimes referred to as Labeled RAAM (LRAAM), this device can store
recursive parse structures, thematic representations, or other varieties of logical
form of sentences.

The device should not be confused with a parser: it is trained with fully
articulated structures which it merely efficiently stores. The hidden units can
be regarded as encoding to some approximation the context-free productions
that defined those structures, in a fashion similar to the way Hinton (1990b)
encoded part-whole relations, enabling recognition of pattern instances which
have not been encountered before. In that sense the device has been claimed to be
capable of inducing the corresponding grammar from the trees (Pollack, 1990),
contrary to the claims of Fodor & Pylyshyn (1988) concerning the systematicity
or generalizing capacities of neural networks.

This claim was challenged by Hadley (1994a), who extended Fodor and
Pylyshyn’s critique to distinguish a number of levels of systematicity in the in-
duced classifier, contingent on the relation of the test examples to the training
set. The system of levels of systematicity was further refined by Niklasson & van
Gelder (1994) who among other levels distinguished: Level 3, generalization to
all and only legal seen structures with novel constant/position pairings; Level
4, generalization to all and only legal novel embeddings of seen structures with
seen constant/position pairs; Level 5, generalization to all and only legal novel
embeddings of seen structures with novel constant/position pairings—where “le-
gal” means permitted by the corresponding rule-based system.

3.2 Scope and Limits of Systematicity

Niklassen and van Gelder’s 1994 experiment had the novel feature of represent-
ing both formula-like structures and (via a separate network) operations over
those representations resembling logical equivalence transformations, such as
the rule that replaces formulae of the formP! Q with a corresponding for-
mulae:P_Q, or syntactic transformations, such as the rule that relates sen-
tences of the formcat chase dogto dog chased by cat. Niklassen and van
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Gelder were able to demonstrate level 3 systematicity on this task (although
Hadley (1994b) expresses some reservations about statistical reliability). Re-
markably, these operations worked without explicitly unpicking the representa-
tion, via pointer-dereferencing of the kind standard in symbolic representations
of logical formulae and their transformation using list-processing computer pro-
gramming languages like LISP and Prolog.

This is probably a more appropriate use for RAAM than building parse trees,
since RAAM is slow to train, and inherits poor scaling properties from its use
of backpropagation. Devices such as the Holographic Reduced Representations
(HRR) proposed by Plate (1994) are an interesting alternative. Their properties
for the storage and holistic transformation of such structures has been investi-
gated by Neumann (2001), who reports replication of Niklasson & van Gelder
(1994) using RAAM and an extension to their level 5 systematicity (generaliza-
tion to novel embeddings of seen structures with novel constant/position pair-
ings) for a related system using HRR.

Neumann shows that these networks can learn superimposed collections of
linear transformational rules that depend on the relation of isotopy which holds
between the distribution of their inputs and that of their outputs in the hyperspace
defined by the weights. (This space can be examined using Principal Compo-
nents Analysis (PCA) and other clustering techniques. This representation of
whole disambiguated structures as points in a high dimensional space is unre-
lated to the SRN representation of sequences as trajectories in such a space.)
Among the rules that Neumann shows can be learned in this way is one mapping
P^(P)Q) ontoQ. This rule is related to the rule ofModus Ponens, the corner-
stone of any practical inference system. It therefore seems possible in principle
that structures represented in this way could support inference.

However, some caution is in order in interpreting these results, as Neumann
points out. To build a practical inference engine to exploit this property requires
a number of further steps, including the identification of suitablepairsof formu-
lae of the formP andP!Q from a larger set to form the input to the rule, and
a process ofsearchfor proofs through a potentially exponentially growing space
of sequences of inference steps. It is simply unclear whether such processes can
be helpfully thought of in distinctly neurocomputational terms, or whether this
is the level at which at least part of cognition becomes distinctively symbolic.
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4 Using Classifiers to Learn Grounded Conceptual Categories

One promising use of associative memory models like RAAM and HRR might
be to learn the bounded syntactic/semantic structures that are associated with
lexical items, particularly verbs, which provide the input to lexicalized grammars
and parsers of the kinds referred to earlier.

We might assume that a subset of such structures is available prelinguis-
tically, and result relatively directly from the evolved or learned structure of
connections to the sensorium, short term memory, and the like. At higher lev-
els, such structure may arise from non-linguistic network concept-learning along
lines set out by Hinton (1990b), without mediating symbolic forms.

Part of the interest of this proposal lies in the possibility that the interaction of
such structured sensory-motor manifolds and this novel form of concept learning
might give rise to “grounded” conceptual categories within a standard symbolist
approach. Grammar acquisition would then mainly reduce to the association
of lexical items to concepts, and decisions such as whether the syntactic type
corresponding to thewalkingconcept looks forwards, backwards, or either way,
for its subject in the particular language that the child is faced with, and how
the multiple arguments of transitives, ditransitives, and the like map onto the
underlying universal logical form, as reflected for example in the possibilities for
relexivization. Since directionality can be represented as a value on an input unit,
and since an individual category can be defined as a finite state machine, and its
mapping to universal logical form can be captured as a finite state transduction,
such categories are good candidates for learning with neurally computational
devices.

A similar tendency towards lexical involvement is evident in current sta-
tistical computational linguistic research. Much work in probabilistic parsing
including recent proposals by moves away from autonomous Markovian POS
tagging and prefiltering, and towards a greater integration of probabilities with
grammar—see Manning & Sch¨utze (1999) for a review.

Part of the interest of this proposal lies in the possibility that such learn-
ing might capture word-order generalizations over the lexical categories. Cer-
tain constraints that have been discussed within Optimality Theory (Prince &
Smolensky 1997), such as the tendency for semantically related categories (such
as tensed transitive verbs) to have the same directionality (such as SVO order)
are “soft,” in the sense that they can have exceptions (such as English auxiliary
verbs). It seems likely that the associative memory -based lexical acquisition de-
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vice sketched above might also be suited to acquiring such soft-constraint-based
lexicons. If so, then the claim that the form of possible human lexicons was
“emergent” from the neural mechanism would have real force.

In this connection it is interesting to note that monolithic PDP-based con-
nectionist models have been quite successful in modeling the acquisition and
processing of systems of morphologically inflected lexical items that mix regu-
lar and irregular forms, such as the English past tense system (first approached
by Rumelhart & McClelland 1986), competing successfully if not conclusively
with rule-and-exception based models (Pinker 1999) in accounting for the course
of acquisition in children, including the “U-shaped curve” in frequency of cor-
rect vs. incorrect use of irregulars, where children initially use forms like “ran”,
then drop them in favor of overregulations like “runned”, before returning to
using “ran”.

5 Implications for Nativist Theories of the Language Faculty

Given the origins of the term “connectionism” in the behaviorist theories of
Thorndike and others as modified by Hebb, it is perhaps not surprising that its
advocates see themselves as in conflict with the nativist position associated with
Noam Chomsky, the opponent of behaviorist theories of language and founder
of modern symbolic approaches to language.

The conflict, which has been most eloquently pursued by Elman et al. (1996)
and in the response by Marcus (2001), is more apparent than real. Chomsky’s
point has always been that attempts to explain the universal form of language
and the course of language acquisition in terms of more general-purpose cogni-
tive faculties or psychological laws havein practicenot been notably effective.
While constantly deriding the inability of currently available theories of learn-
ing, cognitive development, or semantics to make any significant contribution
to linguistic explanation, and advocating the study of innate universal principles
of language in isolation from other aspects of cognition, he has consistently ad-
vanced this position as a matter of methodological expediency. The fact remains
that the only remotely plausible source for the innate component lies in the con-
ceptual structure with which the child comes to language learning, and which
either evolved or was learned for more general cognitive purposes, an observa-
tion which is implicit at least as early as Chomsky (1965) (see section I.5) and is
explicit in Pinker’s early work on modeling acquisition.

Elman et al. 1996 does a very good job of demolishing certain very dubious
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claims for evidence of specifically linguistic genetic components. (In particular,
its review of the unseemly rush to overinterpret the significance of the herita-
ble disorder of the KE family is very telling.) However, if the burden of the
present review is correct, the contribution of neural computational theories to
our understanding of language is unlikely to be to demonstrate the emergence
of grammar from monolithic neural computation. Machines that are emergent
in this sense are intrinsically implausible as psychological models, because they
offer the same kind of obstacles to further evolutionary development that un-
structured programs offer to human developers, as Holland (1998) points out in
different terms. The distinctive contribution of neural computational models is
more likely to lie in explaining how the structure implicit in the sensory man-
ifold and our interactions with the world can be extracted by classifiers based
on algorithms like back-propagation, the restricted Boltzmann machine learn-
ing algorithm, and the like, to provide the grounded conceptual structure upon
which both reasoning about the world and the development of language depend.
The question of how much of this conceptual structure is actively learned by the
individual prelinguistic child, and how much of it has been compiled into herita-
ble hard-wired components during the process of evolution of humans and their
animal ancestors, as well as the question of what further apparatus is needed for
the development of language and whether its origins can also be traced to more
generally useful cognitive abilities, remain open. (One promising but in formal
terms under-investigated source for the latter apparatus that is suggested by both
developmental and neuroanatomical evidence lies in the system for planning ac-
tion in the world.) These will be questions of considerable empirical interest to
both symbolic and neural-computational theorists, to which both will doubtless
continue to make distinctive contributions.
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Glossary

Connectionism: The term appears to originate with the american behavior-
ist Thorndike, who used it to refer to theories based on graded strength of as-
sociation between stimulus and response. It is first used in its modern sense
(somewhat in passing, and with explicitly dissociation from the notion ofS-R
pairs) by Hebb, inThe Organization of Behavior, to refer to the use of mul-
tiplely connected identical neuron-like units with modifiable weights on con-
nections, adjusted on the basis of locally available information by a learning
algorithm (although Hebb’ theory itself was not fully computationally explicit
and his learning algorithm is rarely used in its original form). The term came
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later to be associated with the PDP school of neurocomputational models whose
comparison with symbolic models is the main concern here. More recently, the
term has become less used in computational circles, and is currently more as-
sociated with psychological modeling and philosophical speculation concerning
the nature of mind.

Grounding (of conceptual representations): A mental concept (or its compu-
tational equivalent) is grounded if it is defined at the lowest level in terms of
sensory-motor inputs from, and outputs to, the physical world. Since it is likely
that the nature of natural concepts is distinctively shaped by the fact that they are
grounded, unlike the knowledge representation in a standard database or expert
system, a major attraction of neural computation is that it supports such ground-
ing directly, for example by direct embedding of inputs and outputs in the neural
sensory-motor arrays.

Isotopy: Two figures are isotopic if one can be transformed into the either
solely by processes of stretching and compression along the dimensions of the
figure. For example, a figure drawn on a sheet of rubber is isotopic to all figures
that can be obtained by pulling and poking but not cutting it.

Systematicity: The property of being able to process all and only examples
of a given, usually infinite, class of inputs correctly, subject only to limitations
of time, memory and the like, also sometimes referred to as “productivity” or
“generativity”. Since humans exhibit systematicity with respect to a number
of domains, and in particular to the sentences of their native language, a major
attraction of symbolic systems like generative grammars is that they immediately
exhibit systematicity with respect to the stringset or language that they define.

Nativism: The hypothesis that a process of cognitive development requires the
mediation of an innately provided mechanism. The frequently cited result due
to Gold, who showed that not even the class of finite-state languages can be
learned from the mere exposure to positive instances of strings, is often derided
as irrelevant in the face of the fact that statistical approximations for many inter-
esting classes can provably be learned on this basis. Nevertheless, the problem
of actually carrying out such induction scales very badly. In fact it is certain that
learning systems as complex as natural grammars involves an innate component.
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The only question is what the nature of that component is (to which the answer
will almost certainly turn out to be “the semantics,” or rather the conceptual rep-
resentation that underpins it), and how specialized to language as distinct from
the rest of cognition it is (to which the answer will almost certainly turn out to
be “not very”).

Emergence: The property of getting something for nothing from a represen-
tation. The form of a crystal or a snowflake is emergent from thermodynamics
and the form of the molecules that make them up, in the sense that the low level
description of the system does not represent properties like “octahedral’ or “six-
fold symmetric”. The latter are descriptions of a quite different kind, involving
interactions with the world at a different scale. Emergence is a property crucial
to the evolution of complex organisms and behaviors, in the sense that variation
proceeds by variation at the molecular level, but natural selection operates at the
level of interactions with the world. However, such a combination of variation
and selection defines a search problem that can be analyzed in terms familiar
from automated game-playing. If all variation proceeds by random change at
the level of individual base-pairs on the DNA molecule, whether by mutation
or recombination, then the more complex the organism becomes, the more vari-
ants have to be examined to find viable (let alone improved) alternatives. To use
another analogy, this puts evolution in the position of a programmer having to
improve larger and larger programs written in machine code. Such tasks rapidly
overwhelm game-players, programmers, and reproductive organisms alike. The
way out for the programmer is to write structured programs, including modu-
lar subroutines with simple interactions. Typical real programs—at least, the
ones we can develop further—involve many layers of structure of this kind. It
is very likely that the genetic code works this way too. Once an emergent prop-
erty —say, a cilium or whisker—has proved to have survival value, the way to
make further development possible is to represent the cilium as a module of the
genetic program. That way, variants involving two cilia, or many, can be tried
without expanding the search space beyond practical limits. There are many in-
dications that this is how the genetic code works, from the observation that the
sheer amount of DNA required to specify the most complex animals is not that
much greater than that required for the simplest (or at least oldest), to the fact
thathoxgenes appear to directly represent the linear order of body segments by
position on the genome. When we look at language, we are looking at the end
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product of many evolutionary developments of this kind. To expect language it-
self to be a unitary emergent property of low-level general-purpose assemblages
of neurons is to assume that it is quite unlike any other product of evolution—a
standpoint that amounts to the most naive form of linguistic nativism.
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