
CLSP WS-02 Final Report: Semi-Supervised Training for
Statistical Parsing

Mark Steedman,∗ Steven Baker,† Jeremiah Crim,+

Stephen Clark,∗ Julia Hockenmaier,∗ Rebecca Hwa,#

Miles Osborne,∗ Paul Ruhlen,+ Anoop Sarkar[
(∗Edinburgh,[Penn,#UMD, +JHU,†Cornell)

April 7, 2003

CLSP WS-02 Final Report: Semi-Supervised Training for
Statistical Parsing

Mark Steedman,∗ Steven Baker,† Jeremiah Crim,+

Stephen Clark,∗ Julia Hockenmaier,∗ Rebecca Hwa,#

Miles Osborne,∗ Paul Ruhlen,+ Anoop Sarkar[

(∗Edinburgh,[Penn,#UMD, +JHU,†Cornell)

April 7, 2003

1 Introduction

This project investigated co-training (Blum and Mitchell 1998) as a method
for bootstrapping wide-coverage parsers initially trained on hand-labeled
data. Hand-labeled data-sets—even the 1M-word Penn Wall Street Journal
Treebank—are never large enough to train parsers effectively, and are expensive
to produce. Automated or semi-automated methods for cheaply generating more
labeled training data are an interesting alternative.

Co-training is a technique originally developed for classifiers, and uses the
output of two or more classifiers, initially trained on hand-labeled data, then
run on (much more plentiful) unlabeled data to provide informative additional
training data for each other. Crucially, the classifiers must have different models
or “views” of the data to provide additional labeled data for training each other.

Applying co-training to parsers raises a number of questions, since parsing
is more than simple classification using a small finite set of labels. However,
Sarkar (2001) showed that co-training could be used to improve performance of
the LTAG parser trained on a subset of the Penn Wall Street Journal Treebank,
with the TAG equivalent of a POS tagger representing the alternate view. The
present project was proposed in order to investigate the conditions under which
such co-training effects for parsers can be reliably obtained, and how they can
be maximized.

Such techniques for semi-automatically increasing the amount of training
data available for training parsers are of considerable interest. Even the 1M
words of the Penn WSJ corpus is arguably not enough to train adequate models,
and for other languages and even other genres of English text, one is going to
have to manage with much less than that.

Among the possible payoffs of reliable methods for co-training parsers are
therefore the following:

1

• Improved performance of existing wide-coverage parsers

• Methods for building very large treebanks larger and less noisy than the
30M word BLLIP corpus of output from Charniak’s 1997 parser, and use-
ful for numerous speech/language applications

• Methods for bootstrapping parsers for novel genres and new languages
from small labeled datasets

1.1 Statistical parsing: the State of the Art

The project was motivated by the following observations. Parsers trained on
the Penn Wall Street Journal Treebank have improved rapidly, and have been
widely and usefully applied. These applications would be even more numerous
and effective if those parsers could be be trained on or ported to other genres
of text in English and other languages. However, annotated corpora of a size
comparable to the Penn Wall Street Journal’s 1M words in anyother genre or
language will always be the exception.

Nor does “self-training”—training the parser on its own output—offer a way
out. Charniak (1997) showed a small improvement from retraining his parser
on 30M words of its own output, probably because the increased size of the
training set gave somewhat better counts for the head dependency model. How-
ever, training on data that merely confirms a parser’s existing view cannot help
in any other way, and one might expect such improvements to be transient and
eventually to deteriorate in the face of otherwise noisy data.

However, it is known that ensemble techniques using information from dif-
ferent models via techniques like voting can improve results over any one view
alone (Henderson and Brill 1999), and the result already mentioned from Sarkar
(2001) suggests that co-training across the different views might be a useful al-
ternative.

1.2 What is Co-training?

Co-Training (Blum and Mitchell 1998) is a weakly supervised method for boot-
strapping a model from a relatively small seed set of labeled examples, aug-
mented by a much larger set of unlabeled examples by exploiting redundancy
among multiple statistical models. Crucially, in contrast to Self-training, it in-
volves training on another model’s output. The basic procedure is as follows:

• A set of models is trained on labeled seed material.

2

l 1

s

v1
l 2

v2

Figure 1: Dasgupta et al. 2002

• The whole set of models is then run on a larger amount of unlabeled data.
Novel labeled examples from any model that are deemed reliable under
some measure are used as additional labeled data for retraining the other
models.

• The previous step is iterated with the retrained models run on more unla-
beled data.

Co-training can be thought of theoretically as seeking to optimize an objec-
tive function that measures the degree of agreement between the predictions for
the unlabeled data based on the two views (Blum and Mitchell 1998; Collins and
Singer 1999). Dasgupta et al. 2002 define the conditional probability relation-
ships in figure 1.2, wherevi is a view, li is a label, ands is a sentence. By the
Data Processing Inequality,I(v1;s) ≥ I(v1;v2), if views v1 andv2 agree a lot,
they tell us a lot about the observations. Nigam and Ghani (2000) analyze the
independence assumption. Dasgupta et al. provide a PAC-style justification.

We noted above that the theory of co-training has been developed in appli-
cation to classifiers, and that its application to parsers raises a number of ques-
tions to be discussed as the paper proceeds. In particular, optimizing the objec-
tive function can only be approximated using heuristics to guess which novel
analyses are reliable for training other parsers, using measures likeIntersection
(choose those of the topn other’s output that are in your bottomn) andDifference
(choose those of the other’s outputs for which their score is higher than yours by
some margin). Factors such as the two parsers’ confidence in their respective
analyses suggest a possible basis for these heuristics, among other possibilities
that are investigated below.

3

1.3 Project Details

The project looked at various co-training pairs across three distinct groups of
parsers, namely:

1. Treebank CFG parsers (Collins 1999, 2001);

2. The Lexicalized Tree-Adjoining Grammar (LTAG) parser (Sarkar (2001));

3. Combinatory Categorial Grammar (CCG) parsers and “supertaggers”
(Clark 2002; Hockenmaier and Steedman 2002b:

(A supertagger is the equivalent of a part of speech (POS) tagger for CCG or
TAG grammars, but models a set of lexical types (larger by an order of magni-
tude) that the more expressive grammars assume.)

One of the problems in co-training existing parsers is that their output for-
mats are different and not necessarily intertranslatable: for example, CCG has a
much larger vocabulary of nonterminal symbols than TAG, and both CCG and
TAG include information equivalent to traces, while Collins and Charniak do
not. We therefore only investigated certain combinations of parsers, rather than
all those theoretically possible. In particular the project investigated the follow-
ing pairs:

1. Co-training with supertaggers and parsers for the same grammar type
(CCG)

2. Co-training with different parsers (CFG and LTAG)

3. Co-training Re-Rankers for a single parser (Collins 2000)

We will report these three groups of experiments separately, drawing some
common conclusions later. All of the experiments use some or all of the hand-
annotated data of the Penn Treebank as the initial labeled set. In most cases this
is the 1M-word Wall Street Journal section. The exception is the experiments on
“porting” a trained parser to a new genre using unlabeled data in the new genre:
in this case we trained on (some or all) of the 440K-word Brown Corpus section
of the treebank and ported to the WSJ material, rather than vice versa. This was
in order to be able to compare the effectiveness of porting co-training against the
effects of same-genre co-training experiments using the (larger and more reli-
able) WSJ sections. In the case of parsers trained on the entire WSJ section, we

4

used unlabeled data from the 500M-word North American News Text corpus.
However, for smaller experiments using only a subset of the WSJ corpus as la-
beled data, we used the sentences (but not the trees) of the remainder of sections
2-22 as our unlabeled data: this was again for reasons of calibration, and in or-
der to compare the effects of co-training with those of training on human-labeled
data. All testing was done on the held-out section 0 of the WSJ treebank.

1.4 Progress Before the Workshop

In preparation for the workshop, a considerable amount of prior work was nec-
essary. Once the project was accepted and the personnel agreed (we asked to
split the standard stipends and expenses over five postdoctoral level researchers
rather than three in order to encompass a sufficient diversity of parsing exper-
tise), and having established a mailing list and a collaborative web-page, we
began to work as a team by email and via a series of four meetings interactive in
the period May-July 2002. Because of the transatlantic nature of the group, only
the first of these (in Baltimore) and the last (at the ACL conference in Philadel-
phia just before the workshop) were physical. The intervening two meetings (at
which most of the work was done) were via videoconferencing. These meet-
ings were extremely successful, and we recommend the technique to similarly
geographically extended groups in future workshops. We found that the slight
reduction in communicative immediacy was more than compensated for by the
reduction in jetlag and general wear and tear on the participants.

These meetings were the driving force behind the following preparatory ex-
ercises:

1. Designing and implementing a common framework and basic architecture
for all co-training experiments, including unlabeled data cache manage-
ment, and accepting parser output from all frameworks.

2. Cleaning, tokenizing, and tagging the 500M words of News corpus un-
labeled data, removing large quantities of SGML cruft and transduction
artefacts.

3. Matching all parsers including imported ones to the datasets, including
News and Brown corpora.

4. Variously tweaking and rewriting all parsers for retraining, re-ranking, rec-
ognizing each others outputs etc.

5

5. Parsing substantial amounts of unlabeled data in preparation for large
cache self-training and co-training benchmarks for all parsers.

6. One iteration of parsing of Brown corpus in preparation for porting exper-
iment for most parsers.

7. Pilot experiments showing co-training effects for two versions of the
Collins 1999 parser trained on artificially constructed subsets of WSJ data,
one excluding all sentences with prepositional phrases and one excluding
those with coordination, to induce different views.

1.5 Progress During the Workshop

Our goals for the workshop itself were the following:

1. To identify criteria for parser output selection that exclude noise and max-
imize co-training effects;

2. To explore the way co-training effects depend on the size of labeled seed
set;

3. To explore effectiveness of co-training for porting parsers to new genres
by training on Brown Corpus, co-training on unlabeled WSJ and using
held-out PT-WSJ labeled secn. 00 for testing.

4. Explore effectiveness of co-training on parsers trained on all of PT-WSJ
2-21, co-trained on unlabeled WSJ and tested on labeled secn. 00

The experiments we describe in the sections that follow will demonstrate the
following results.

1. The experiments show that co-training enhances performance for parsers
and taggers trained on small (500-10,000 sentences) amounts of labeled
data—that is, for labeled datasets of the kind of size that can realistically
be expected to be obtainable at short notice for novel languages and novel
genres of text.

2. The experiments also show that co-training can be used for porting parsers
trained on one genre to parse on another without any new human-labeled
data at all.

6

3. The experiments also show that even tiny amounts of human-labeled data
for the target genre enhance porting via co-training.

4. Distinguishing reliable and informative newly labeled data from less reli-
able and informative output is crucial. The research developed a number
of novel methods for parse selection.

5. The experiments also yield some preliminary results on ways to deliver
similar improvements for parsers trained on large (Penn WSJ Treebank)
labeled datasets and expressive grammars such as TAG and CCG.

1.6 Progress Since the Workshop

Since the end of the workshop, the group has continued to collaborate, with the
following outcomes to date:

1. The results have been written up in a number of conference submis-
sions, of which five have already been accepted, including Steedman et al.
2003a,b, which report the core results of the workshop itself (See Ap-
pendix B, Publications Arising from the Workshop Project).

2. In subsequent work, Clark et al. (2003) looked at directly maximising
agreement between two POS taggers. This could not be done for our
parsers, as noted above, but was investigated using parser output rerank-
ing (section 5 below). Baldridge and Osborne (2003) show that similar
techniques provide a basis for an active learning system for HPSG parse
selection. Callison-Burch and Osborne (2003) apply the techniques for
co-training developed in the workshop to the task of statistical machine
translation. At the time of writing, two further papers are in preparation:
the first (Sarkar et al. 2003) investigates corrected co-training for parsers.
The second (Osborne et al. 2003) considers the relationship between EM
and co-training of statistical parsers.

3. As a result of preliminary results using a perceptron to directly implement
optimization of the objective function for parse-re-ranking under item 4
above, a successful proposal for support from the workshop for a contin-
uation project was made by Miles Osborne and Jay Crim. The latter will
be visiting Edinburgh this summer to continue work on parse re-ranking.

7

4. A successful proposal for a CLSP Summer Worshop project for 2003 has
been made by Anoop Sarkar as part of a group including Dan Gildea.

1.7 Structure of the Report

The next section discusses the basic co-training architecture and data manage-
ment issues, and the important issue of parse selection. We then present three
series of experiments. In section 3, the first set of experiments examines the
effect of using output from the LTAG parser to co-train Collins’ treebank CFG,
and the effect of using Collins’ output to co-train the LTAG parser. In section 4,
a second set of experiments looks for co-training effects across the CCG parser
and the CCG-Supertagger, and includes an investigation of parser output selec-
tion using the the sentences of the treebank as unlabeled material and using the
parseval measure as an “Oracle” to select parses for co-training under various
criteria. In section 5, a third set of experiments examines the use of co-training
to train various re-rankers for a re-ranking parser based on Collins 2001. A
concluding section brings these results together and summarizes.

2 Co-training for statistical parsing

Co-training and their close variants have traditionally been applied to classifica-
tion tasks such as word sense disambiguation (Yarowsky (1995)), named entity
identification (Collins (1999)), and web page classification (Blum and Mitchell
(1998)). In this work, we propose a framework for co-training between multi-
ple parsers, in which the labeled output produced by each parser is the result
of combining many local classification decisions. Because parsing is a complex
and computationally expensive process in and of itself, a major challenge is to
adapt co-training for parsing such that the co-training process remains computa-
tionally tractable. In this section, we first describe the architecture of our frame-
work; then we discuss the theoretical and practical considerations in adapting
co-training for statistical parsing; to meet the challenges of the parser training
task, we propose novel methods for selecting newly labeled examples (i.e., parse
trees produced by the learner parsers); finally, we present two oracle experi-
ments to test the feasibility of our ideas. The results suggest that finding a good
selection method may be important for parsers to co-train effectively.

8

Training
Data A

Learner A

Learner B

Data B
Training

Cache

Pool

Unlabeled

Selector

Figure 2: Diagram of our co-training framework.

2.1 Architecture

The architecture of our system is illustrated in Figure 2. It consists of twodif-
ferent1 parsers and a central control that interfaces between the two parsers and
the data, called theCache Manager. At each co-training iteration, the Cache
Manager randomly draws a small set of sentences from a large pool of unla-
beled sentences and stores them in thecache. Both parsers then attempt to parse
every sentence in the cache2. Next, the Cache Manager selects a subset of the
newly labeled sentences3 according to some objective function and adds them to

1We shall discuss the notion of difference further in section 2.2.
2In our system, the parsers are n-best statistical parsers that output multiple parse trees (and

assign a probability value to each tree) for each sentence.
3The label that a parser assigns to a sentence is the parse tree with the highest probability.

This notion of label is somewhat different from other classification tasks because a parse tree is
made up of multiple sub-components. It would be interesting to consider a finer-grained notion
of examples rather than entire sentences, though this is outside the scope of the work reported

9

A andB are two different parsers.
The Cache Manager (CM) is the central control that

interfaces with both parsers.
U is a large pool of unlabeled sentences.
U ′ is a small cache holding a subset ofU .
Li is the set of labeled training examples for parseri.
Hi is the current hypothesis of parseri.
Initialize:

LA = LB← L.
HA← Train(LA)
HB← Train(LB)

Loop
CM moves unlabeled sentences fromU to U ′.
A andB parses the sentences inU ′ and assigns reliability scores

to them according to some scoring functionf .
CM selects data to add toLA andLB according to

some selection methodS.
HA← Train(LA)
HB← Train(LB)

Figure 3: The pseudo-code for the co-training learning algorithm

the training sets of the parsers. The pseudocode for the co-training process is
sketched out in Figure 3.

The general control flow of our system is similar to the algorithm described
by Blum and Mitchell; however, there are some differences in our treatment of
the training data. First, the cache is flushed at each iteration. Instead of only
replacing just those sentences moved from the cache, the entire cache is refilled
with new sentences. This ensures that the distribution of sentences in the cache
is representative of the entire pool. Also, this reduces the possibility of forcing
the Cache Manager to choose training examples from an entire set of unreliably
labeled sentences. Second, we do not require the two parsers to have the same
training sets. This allows us to explore several selection schemes in addition to

here.

10

the one proposed by Blum and Mitchell. (We shall discuss selection methods in
more detail in section 2.3).

2.2 Theoretical and Practical Considerations

Central to the co-training algorithm is the idea that the two learners must be
sufficiently different from each other such that even though each is capable of
learning the task by itself, they can help each other to learn faster in tandem.
Each learner is said to have a differentviewof the learning task, and co-training
is the process in which the learners try to optimize for agreements on labeling
the unlabeled data.

How different must the views be to satisfy the “sufficiently different” cri-
terion? Theoretical work by Blum and Mitchell (1998) and Dasgupta et al.
(2002) proves that co-training works when the views areconditionally inde-
pendentgiven the label. For example, suppose we have two learners that try
to differentiate basketballs from baseballs; Learner A does so by the color of
the object, and Learner B by size. The two views of the learners are condition-
ally independent because if Learner A knows the classification of the object,
information about the size of the object is irrelevant (and similarly, information
about the color of the object is irrelevant for Learner B once the classification is
known). Recent work by Abney (2002) suggests that view independence may be
too strong and proposes a more relaxed assumption of rule independence. Ab-
ney has also sketched an algorithm for finding classifiers that agree on unlabeled
data. In essense, the algorithm performs a greedy search: for every potential
update to the learners, the algorithm evaluates how well the two learners would
agree on some set of unlabeled data after the update; then the update with the
best score would be actually carried out.

To apply the theory of co-training to parsing, we need to ensure that the
two parsers are sufficiently different, that each parser is capable of learning the
parsing task alone, and that we can explicitly optimize anobjective function
that measures the degree of agreement between the two parsers’ predictions for
the unlabeled sentences. We will discuss the first two criteria in more details
when we present our main experiments using different the parser pairs in later
sections. The last criterion poses a practical difficulty for the parsing task. To
explicitly maximize agreement in the manner proposed by Abney, we would
need to evaluate how well the two parsers would agree (on a set ofN unlabeled
heldout sentences, say) after being retrained on each newly labeled sentence in

11

the cache (of sizeC). In order to pick just one sentence to add to the parsers’
training set, the two parsers would have to be runC×N times. Because this
is computationally expensive, in the next section, we propose some practical
heuristics for determining which labeled examples to add to the training set for
each parser.

2.3 Selection of labeled examples

Our approach is to decompose the problem into two steps. First, each parser
assigns a score for every unlabeled sentence it parsed according to somescoring
function, f , estimating the reliability of the label it assigned to the sentence (i.e.,
the most likely parse). Note that the scoring functions used by the two parsers do
not necessarily need to be the same. In section 2.3.1 we propose some possible
scoring functions. Next, the Cache Manager uses the scores for the sentences
from both parsers to select the newly labeled sentences to add to each parser’s
training set according to someselection method, S. We propose some possible
selection methods in section 2.3.2.
2.3.1 Scoring functions:An ideal scoring function would tell us the true ac-
curacy rates (e.g., combined labeled precision and recall scores4) of the trees that
the parser produced. In practice, we rely on computable scoring functions that
approximates the true accuracy scores, such as measures of uncertainty5. One
possible scoring function is to use the probability of the most likely parse. The
intuition is to trust the parser’s judgment: if it assigned a higher probability value
to the label of one sentence than that of another, then the label for this sentence
is deemed more reliable. The function is denoted as:

fprob(w) = Pr(vmax,w) = Maxv∈V Pr(v,w).

wherew is the sentence,vmax is the parse tree with the highest probability out
of the set of all the parses produced by the parser for the sentence,V .

Becausefprob uses the joint probability of the parse tree and the sentence,
it favors shorter sentences6. To directly compare the probabilities between sen-
tences of different lengths, we definefnorm-prob, a scoring function based on

4A commonly used metric is theF-score, which is defined as 1
α
LP+ (1−α)

LR

, whereLR is the

labeled recall score andLP is the labeled precision score, andα determines the weighting of
precision and recall. Typically,α = 0.5, such that2×LR×LP

LR+LP .
5The role of the scoring functions is similar to those used by Hwa (2000) for sample selection.
6This may not be problematic since the parses for longer sentences do tend to be less accurate.

12

conditional probabilities:

fnorm-prob(w) = Pr(vmax|w) =
Pr(vmax,w)

∑v∈V Pr(v,w)

Focusing solely on the most likely parse may not be sufficient to characterize
the parser’s uncertainty. For example, suppose we wish to compare one sentence
for which the parser generated four equally likely parses with another sentence
for which the parser generated one parse with probability of 0.2 and ninety-nine
other parses with probabilities in range of 0.01. Even though the parser’s output
for the second sentence is more certain,fprob would assign a higher score to the
first sentence. We consider another scoring function,fentropy, which takes into
account the probability distribution of all parses by comparing the entropy of the
distribution to that of a uniform distribution.

fentropy(w) =
− ∑

v∈V
Pr(v |w) lg(Pr(v |w))

lg(‖V ‖) .

Spikier distributions have lower entropy, suggesting that the parser is more cer-
tain about its label for that sentence.

One might also consider some coarse-grained metrics such as the number of
parses produced (denoted asfnparse) and the length of the sentence (denoted as
flen) because they are easy to compute.
2.3.2 Selection Methods: During the selection phase, the Cache Manager
picks a subset of the newly labeled sentences from the cache to add to the train-
ing set of both parsers. In this section, we describe several selection methods
that try to find examples withminimal noiseandmaximal training utility. First,
we consider a baseline selection method (denoted asSbase) that picks labeled
examples with then-highest scores. This method is similar to the selection pro-
cess in Blum and Mitchell (1998) in that the training sets for the two parsers are
identical; that is, they contain examples labeled by both parsers.

For the rest of the selection methods that we propose, the examples added to
the training set of one parser (referred to as thestudent) are only those labeled
by the other (referred to as theteacher). For these selection methods, the Cache
Manager first treats one parser as the student and the other the teacher, then re-
verses their roles. Analogous to the baseline,Stop-n chooses the examples for
which the teacher assigned then-highest scores. BothSbaseandStop-n focus on
minimizing noise. In order to also maximize training utility, it is important to

13

find examples that are reliably labeled by the teacher but unreliably labeled by
the student. One such selection method isSintersect, which chooses those sen-
tences (using the teacher’s labels) that belong to the intersection of the teacher’s
n-highest scored sentences and the student’sn-lowest scored sentences. Note
thatSintersectdoes not make use of the absolute scores the parsers assigned to
their outputs; the selection is determined by the relative rankings alone. There-
fore, this selection method would not be suitable for situations in which the
student’s label is less reliable than the teacher (i.e., the score is lower) but the
relative ranking is similar to that of the teacher. Moreover,Sintersectfocuses on
the extreme cases in which the teacher’smostreliably labeled sentences are also
the student’sleastreliably labeled sentences. It might be sufficient to only re-
quire the teacher’s label to be more reliable than the students. Following the less
stringent criterion, we propose a method that selects examples based on score
differences, calledSdiff. A sentence would be chosen if the teacher assigned a
higher score to its label than the student by some threshold. Finally, we consider
a method,Sdisagree, that, in addition to score differences, also selects examples
based on the degree of disagreement between the teacher’s label and the student’s
label.

2.4 Oracle experiments

We have conducted two oracle experiments to investigate the feasibility of our
approach. The first experiment studies the effect of different scoring functions.
The second experiment studies the effect of different selection methods.
2.4.1 Scoring functions:In this study, we compare different scoring functions
on their ability to predict the reliability of the labels (i.e., most likely parse trees)
produced by the parser. In other words, we wish to see whether there exists
some correlation between the true accuracy rates and the scores calculated by
the proposed functions. To do so, we have used a trained CFG parser to parse
a set of about 2,000 unseen test sentences. Reliability scores for the parser’s
output are computed according to each scoring functions. We then plot them
against the true parse accuracy of these sentences. Ideally, we would like the
scatter plot to show something that resembles a linear relationship between the
values produced by the scoring functions (x-axis) and the parsing accuracies (y-
axis).

Figure 4 presents a qualitative comparison between the different scoring
functions. None of the proposed scoring function exhibits strong linear rela-

14

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

pa
rs

e
ac

cu
ra

cy

sentence length

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

pa
rs

e
ac

cu
ra

cy

number of competing parses

(a) (b)

0

0.2

0.4

0.6

0.8

1

-250 -200 -150 -100 -50 0

pa
rs

e
ac

cu
ra

cy

negative log probability of the most likely parse

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

pa
rs

e
ac

cu
ra

cy

probability of the most likely parse given the sentence

(c) (d)

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

pa
rs

e
ac

cu
ra

cy

entropy of the parse distribution

(e)

Figure 4: (a)Correlation of the sentence length and the parse accuracy of a
sentence(f score(w)). (b)Correlation of the number of parses generated for a
sentence and its accuracy rate. (c) Correlation of the joint probability of the best
parse and the sentence and its parsing accuracy. (d) Correlation of the condi-
tional probability of the best parse given the sentence and the parsing accuracy.
(e) Correlation plot betweenfentropy(w) and f score(w)

15

tionship to the accuracy rate, but some plots suggest some mild correlations. Of
the five, fprob (Figure 4(c)) andfentropy(Figure 4(e)) seem the most promising.
Sentences with highfprob scores or lowfentropyscores were typically parsed
correctly. Although the converse does not hold (i.e., lowfprob scores and high
fentropyscores do not tell us much about the parse accuracy of the sentences), for
the purpose of co-training, it is more important to be able to confidently identify
the set of sentences whose parses are mostly accurate (e.g., a parsing F-score of
90% or higher) rather than differentiating between the highly inaccurately parsed
sentences and the somewhat inaccurately parsed sentences. Moreover, assuming
that we have no lack of unlabeled sentences, it may not be critical for the function
to identify all accurately parsed sentences. That is, in the precision-recall trade-
off for identifying reliably labeled sentences, we would want to favor precision
over recall.

We have also conducted an experiment comparing the scoring functions as
a part of the co-training framework. The set-up for this co-training experiment
is somewhat non-traditional: we use two versions of the same parser that are
trained on different initial seed data (one contains no prepositional phrase con-
structs, the other contains no conjunction constructs). In Figure 5, we plot the
performances for one parser under different scoring functions. The selection
method used for all cases isStop-n.
2.4.2 Selection method variation:In this study, we investigate the effects of
different selection methods on the co-training process. To remove the complica-
tion of noisy reliability scores affecting the selection methods, we have assumed
that the parsers have access to an oracle that returns the true accuracy rate for
their outputs. Note that the oracle scoring function does not change the parsers’
output; that is, the labeled examples added to the parsers’ training sets still con-
tain errors.

We have conducted the study co-training a CFG parser (Collins (1999)) and
an LTAG parser (Sarkar (2002)). Both parsers are initially trained on 1000 seed
labeled sentences from the WSJ Treebank (Marcus et al. (1993)). At each co-
training iteration, the Cache Manager fills the cache with 500 sentences from a
pool of about 37,000 unlabeled sentences (Section 02-21 of the WSJ Treebank
with the annotation stripped). The four proposed selection methods are com-
pared to the baseline selection method7 and an upper bound of training from

7For bothSbaseandStop-n, the threshold for inclusion is set at an accuracy rate of 90%.
ForSdiff, the difference threshold is set to be 10%. ForSdisagree, the disagreement threshold is

16

77

78

79

80

81

82

83

1000 1500 2000 2500 3000

P
ar

si
ng

 A
cc

ur
ac

y
on

 T
es

t D
at

a
(f

2s
co

re
)

Number of Training Sentences

"ppcc_re"
"ppcc_rp"
"ppcc_rt"

"ppcc_rpt"
81.3

Figure 5: Scoring variation study

80

81

82

83

84

85

86

87

88

89

5000 10000 15000 20000 25000 30000

P
ar

si
ng

 A
cc

ur
ac

y
on

 T
es

t D
at

a
(F

2)

Number of Training Sentences

"cfg_seq_ptb" using 1:5
"w1000_rae_c500" using 2:5
"w1000_roe_c500" using 2:5
"w1000_rie_c500" using 2:5

"w1000_rde_c500" using 2:5
"w1000_rdde_c500" using 2:5

Figure 6: Selection variation oracle study.

set to be 30%. Finally,Sintersectcompares the top 40% of the sentences parsed by the teacher
with the bottom 40% of those by the student.

17

hand-annotated data.
Both parsers have been evaluated; here, we report the results for the CFG

parser, which received higher Parseval scores. Figure 6 plots the parser’s
progress in learning under different selection methods. The x-axis of the graph
shows the number of sentences used in the training set and the y-axis of the graph
shows the trained CFG parser’s accuracy rate on unseen test sentences (Section
00 of the WSJ Treebank). The curves in the graphs show the rate of improvement
for parsers trained using different selection methods. The curves have different
ending points because some selection methods reject more sentences so that they
exhaust the pool of unlabeled data sooner.

Three out of the four proposed selection methods help the CFG parser to
learn faster than the baseline; however, none rivals the hand-annotated upper
bound. With the exception ofSdisagree, the selection methods that try to maxi-
mize training utility have an immediate effect on improving the parser’s perfor-
mance. In terms of the final performance level of the trained parser, however,
it is not clear from this experiment whether they have a clear advantage over
the others. For instance, while a parser trained underSintersectcan achieve a
parsing performance score of 83.5% after adding fewer than 3500 sentences, it
would eventually achieve the same performance level underSbaseafter adding
28000 sentences. It may be the case that the proposed selection methods may
have more of an advantage if the unlabeled pool is larger, or if the cache is re-
plenished with some of the previously rejected sentences. It may also be the case
that 83.5% is the upper limit of the parser’s performance under the co-training
regime (i.e., trained with labeled examples that are not error-free).

2.5 Section summary

In this section, we have described our co-training framework for inducing statis-
tical parsers. In particular, we have have proposed several scoring functions for
predicting the parser’s accuracy rate and selection methods for choosing reliably
labeled training examples. We have conducted oracle experiments to test the
feasibility of these ideas.

In the scoring function oracle experiment, we found that two of the proposed
functions, fprob and fentropy, could reliably identify some sentences with accu-
rate parses; however, the functions are not able to approximate parsing accuracy
rates for arbitrary sentences. Developing better predictors to find reliable parser
output is a part of our on-going research effort.

18

The result of our selection method variation experiment suggests that those
methods that consider both parsers’ accuracy rates (that is, to select examples
for which the teacher-parser is believed to have labeled better than the student-
parser) seem to help the parsers to co-train more effectively. In our oracle study,
the best performing selection method isSintersect; however, because the perfor-
mance of the selection method depends on the reliability of the scores the parsers
assigned to their outputs, this conclusion may not generalize to our approxima-
tion scoring functions. In the next section, we conduct large-scale studies that
will explore this issue further.

3 Co-training between Collins-CFG and LTAG

In order to conduct co-training experiments between statistical parsers, it was
necessary to choose two parsers that generate comparable outputs but are dif-
ferent from each other in their statistical modeling details. In this section of the
report, we consider using the following parser pair:

1. The Collins parser Collins (1999): We used the parser described in Mike
Collins’ PhD thesis which is available for download from the author’s web
page. Some code for (re)training this parser was added prior to the work-
shop to make the co-training experiments possible. We refer to this parser
in our discussions below as theCollins-CFG parser since it uses a formal-
ism closely related to probabilistic context-free grammars (PCFGs).

2. The LTAG parser Sarkar (2001): The second parser used was a parser
based on the lexicalized tree-adjoining grammar (LTAG) formalism. This
statistical parser was written by Anoop Sarkar and was used previously
in parsing the Treebank and in some earlier co-training experiments using
LTAG. We refer to this parser as theLTAG parser.

We chose this pair of parsers because they have comparable performance
but are based on different grammar formalisms. In Section 3.1 we describe the
two parsers in some detail and give both theoretical arguments and empirical
evidence showing that the two parsers are sufficiently different for co-training.
As mentioned earlier, our co-training framework affords a number of parameters
(e.g., the size of the seed data, selection methods). In Section 3.2, we discuss
the parameter choices we have made and the experimental setup for co-training
with the Collins-CFG and LTAG parser pair. A suite of experiments is conducted
using different parameter settings. In Section 3.3, we report the results of these

19

S

VP-H

NPPierre/NNP Vinken/NNP-H

Elsevier/NNP yesterday/NN

joined/VBZ-H NP

NP

Treebank Tree

Figure 7: Treebank tree

experiments. Our findings suggest that co-training between the Collins-CFG and
LTAG parsers is the most helpful when the initial seed data is small.

3.1 Description of the statistical parsers

While the two parsers are different statistical models, they share a similar input-
output behavior. Both require training data that were annotated in the style of
the Penn Treebank parse trees and augmented with head information. The head
annotation was heuristically determined using standard head percolation rules
(cf. Magerman (1994)). All trees used in our experiments (manually produced
or automatically created) were annotated in this manner.

Figure 7 shows one such (manually produced) Treebank parse tree which is
used for training the statistical parsers. The head information is marked with the
-H marker on the non-terminal. This head information is used to lexicalize the
parse tree, by passing the head word to the parent from a single child with the-H
mark. In this way, each non-terminal is decorated with a single word from the
input. Additional information about arguments vs. adjuncts is also gleaned from
the Treebank tree and used in the parsing models. Lexical information plays a
key part in the success of the probability models in each of the statistical parsers
under consideration. As will become clear later, the methods in which the lexical
information percolates through parse trees are different for the two parsers.

20

S

VP

Elsevier yesterday

joined NP

Ph(S | TOP, VBZ, joined) x

Ph(VP | S, VBZ, joined) x

Pm(NP, Elsevier | VP, VBZ, joined) x
Pm(NP, yesterday | VP, VBZ, joined) x

Pm(STOP | VP, VBZ, joined)

NPPierre

NP

Vinken

Pm(NNP, Pierre | NP, NNP, Vinken) x
Pm(STOP | NP, NNP, Vinken)

Pm(NP, Vinken | S, VBZ, joined) x
Pm(STOP | S, VBZ, joined) x

Pm(STOP | TOP, VBZ, joined) x

Collins-CFG

Figure 8: Collins-CFG derivation of a treebank tree.

3.1.1 Collins-CFG parser:The Collins-CFG parser splits up a parse tree into
a series of lexicalized CFG rules, which are themselves split up into a sequence
of decisions that make up each rule as pairs of lexicalized non-terminals. We
illustrate the model by means of an example. From the Treebank tree shown in
Figure 7, one particular lexicalized CFG rule that can be extracted isVP(joined)
→ joined/VBZ-H NP(Elsevier) NP(yesterday). Since this rule could have an
arbitrary right-hand side it can have an arbitrary number of words leading to
severe sparse data problems. The Collins-CFG model decomposes such a rule
into a series of relations between lexicalized non-terminals as shown in Figure 8.
The model is often referred to asbi-lexicalsince each pair of non-terminals leads
to a bigram relationship between two (possible non-adjacent) words from the
input. These bi-lexical parameters provide the statistical parser the means to
choose the most plausible tree for the input sentence from the alternative parses.
The probability models used are:

• Ph – the head percolation probability model, in which the head daughter
of a parent node is selected. For example, in Figure 8,VP is selected as
the head daughter ofSandSalso inherits the lexical information fromVP.

• Pm – the modifiers on either side of the head daughter are generated using
this probability model. This model relates pairs of words. For example in

21

S

VP

joined/VBZ

NP

Elsevier/NNP

NP

NP

Vinken/NNP

NP
yesterday/NN

NP

VP

Pierre/NNP

NP

t1

t2
t3

t4

t5

Pa(t3, Pierre, NNP | t2, 0, Vinken, NNP) x
Ps(t2, Vinken, NNP | t1, 00, joined, VBZ) x

Ps(t4, Elsevier, NNP | t1, 011, joined, VBZ)

Pa(t5, yesterday, NN | t1, 01, joined, VBZ) xLTAG
Pa(STOP | t1, 01, joined, VBZ) x

Pa(STOP | t2, 0, Vinken, NNP) x

Figure 9: LTAG derivation of a treebank tree

Figure 8, the first modifier to the right of theVP(joined)is NP(Elsevier).
After all the modifiers a special non-terminal calledSTOPis produced to
keep the probabilities well-formed. In the Collins-CFG model, left and
right modifiers are distinguished and have distinct probability models.

Additional information is also used in the Collins-CFG model such as adja-
cency and subcategorization information.
3.1.2 LTAG parser: The LTAG parser also relies on bigrams of lexical infor-
mation in order to determine the most plausible parse tree just as in the Collins-
CFG parser. However, the domain over which these bigrams are established are
different from that of the Collins model. Instead of lexical relationships being
mediated via non-terminals, these relations are established between trees, where
each tree has a word from the input as a leaf. Suchlexicalizedtrees are termed
elementary trees. The final parse tree is created by rewriting non-terminals by
these elementary trees. Non-terminals that are replaced with trees are both on
the frontier of other trees or even non-leaf nodes like internal or root nodes. Fig-
ure 9 shows how the original Treebank tree is decomposed into elementary trees
(treest1 throught5) and indicates how the trees combine to form the original
parse. The probability models used are:

• Ps – each non-terminal at the frontier is re-written by an elementary tree
using thesubstitutionprobability: Ps. For example, in Figure 9 the tree

22

t2 lexicalized by the wordVinkenis substituted into the treet1 at the node
labeled byNP specified by the unique specifier of a node in a tree (the
Gorn address 00). The probability of this substitution is given by:

Ps(t2,Vinken,NNP | t1,00, joined,VBZ)

• Pa – Non-leaf nodes like internal or root nodes can be re-written by an
elementary tree using theadjunctionprobability: Pa. This operation has
a separate model since adjunction in an elementary tree is optional unlike
substitution. For example in Figure 9, the modifier treet5 lexicalized by
yesterdayadjoins into theVPnode (Gorn address 01) of the treet1 lexical-
ized byjoined. The probability of this adjunction is given by:

Pa(t5,yesterday,NN | t1,01, joined,VBZ)

As in the Collins-CFG model, left and right modifiers are distinguished
and have distinct probability models.

3.1.3 Differences between Collins-CFG and LTAG parsing models:As can be
seen by the descriptions of the two models, the domain over which the two mod-
els operate are quite distinct. The LTAG model uses tree fragments of the final
parse tree and combines them together, while the Collins-CFG model operates
on a much smaller domain of individual non-terminals. This provides a mecha-
nism to bootstrap information between these two models when they are applied
to unlabeled data. LTAG can provide a larger domain over which bi-lexical in-
formation is defined due to the arbitrary depth of the elementary trees it uses and
hence can provide novel lexical relationships for the Collins-CFG model, while
Collins-CFG can paste together novel elementary trees for the LTAG model.

A summary of all the distinctions that the two models can use in order to
bootstrap information for each other is provided in Figure 10. This table pro-
vides an argument that we can use the Collins-CFG and the LTAG models as
contrastive views in a co-training experiment for statistical parsing. Note that
this argument is informal, in that we have not proved that the Collins and LTAG
models are truly statistically independent from each other. In fact, it is probably
true that the two models are only partially independent of each other. For non-
trivial situations (where models are developed with knowledge of each other),
this partial dependence will almost certainly always be true.

23

Collins-CFG LTAG
Bi-lexical dependencies Bi-lexical dependencies
are between nonterminals are between elementary trees
Can produce novel elementary Can produce novel bi-lexical
trees for the LTAG dependencies for Collins-CFG
Learning curves show convergenceLearning curves show LTAG
on 1M words labeled data needs relatively more labeled data
When using small amounts of When using small amounts of
seed data, abstains less seed data, abstains more often
often than LTAG than Collins-CFG

Figure 10: Summary of the different views between the Collins-CFG parser and
the LTAG parser

 71.5

 72

 72.5

 73

 73.5

 74

 74.5

 75

 75.5

 76

 76.5

 0 10 20 30 40 50 60 70 80 90 100

F
 S

co
re

Co-training rounds

Self-training results

LTAG self
Collins-CFG self

Figure 11: Comparison of self-training between Collins-CFG and LTAG

24

3.1.4 Experimental comparison of the difference between Collins-CFG and
LTAG: To gain some experimental insight into the differences between the two
statistical parsing models, we have conducted a self-training experiment with
each parser. Self-training is a limited case of co-training, in that a model is only
trained on the labeled examples that it produces (Nigam and Ghani 2000). In
the context of our parsing experiments, this meant that the LTAG parser was re-
trained upon sentences that were parsed by the LTAG parser. The Collins parser
was retrained in a similar manner. Self-training was used in Charniak 1997,
where a modest gain was reported after re-training his parser on 30 million un-
parsed words.

The results are shown in Figure 11. Here, both parsers were initialized with
the first 500 sentences from the standard training split (sections 2 to 21) of the
parsed Wall Street Journal corpus. Subsequent disjoint unlabeled sentences were
also drawn from this split. Evaluation was in terms of an F-score over labeled
constituents. At each self-training round, 30 sentences were processed. As one
would expect from parsing models that are distinct in their behavior with re-
spect to the same input, the results of self-training vary significantly between
the Collins-CFG and the LTAG parser. This empirical behavior lends weight
to the argument that our two parsers are largely independent of each other. It
also shows that at least for the Collins model, some benefit can be had from
self-training. The LTAG parser by contrast, is hurt by self-training.

3.2 Experimental Setup

To determine how well suited the Collins-CFG and LTAG parser pair is for co-
training, we have designed a suite of experiments aimed at achieving the stated
workshop goals. We have varied three parameters. First, we have investigated
the effect of varying the size of the initial seed data. In particular, we have
considered using 500 and 1000 annotated sentences; Section 3.2.1 provides an
experimental justification for our choices. Second, we have compared different
selection methods (usingfprob as the scoring function). Based on the results
of the oracle study we focus onSintersectandSuse-all. We use a cache size of
30 sentences per iteration, andSintersectselects the top 67% of the sentences
labeled by the teacher that are in the bottom 67% of the sentences labeled by the
student. Finally, we have studied the effect that changing corpus domain might
have on co-training performances. More specifically, rather than assuming both
the initial seed data and the unlabeled data were from the same source, we have

25

looked at a scenario in which the unlabeled data are sentences from the Wall
Street Journal corpus, but the initial annotated data are taken from the Brown
corpus. We have also considered the case in which a small amount of sentences
from the domain of the unlabeled data (e.g. 100 sentences) were hand-annotated
and added to the seed data.
3.2.1 Size of the initial seed data:Statistical parsers are usually only evaluated
after having been trained upon all available annotated material. This is only part
of the story. What is also of crucial interest is theconvergence rate. That is,
how much training material is required to achieve a given level of performance.
Knowing this behavior will tell us whether a given parser has already converged
using standard training sets. So, we can tell whether a given parser would benefit
from extra training material. It also tells us when we would likely see the best
improvement (maximum rate of change) for co-training.

To this end, we plotted learning curves for both the Collins-CFG and the
LTAG parser (See Figure 12). This was done to find the optimum amount of
seed data for these kinds of parsing models, where co-training would provide
the maximum payoff. The graphs show a rapid growth of accuracy which tails
off as increasing amounts of training data is added. It should be noted that while
the increase in accuracy between 30K and 40K sentences is minimal, to obtain
the best accuracy the entire training data is required. As one can see from the
learning curve, the maximum payoff occurs between 500 and 1000 sentences.
Based on this experiment, we set our small seed data size to be 500 and 1000
sentences on which we start our experiments with the hypothesis that co-training
will help improve accuracy over what is possible simply with this labeled data
set size.

Extrapolating from the curve for the Collins-CFG parser, we see that the up-
per bound on performance is an f-score of 89.3 (on section 0). This performance
would be obtained using about 40 thousand cleanly labeled sentences8. The ad-
dition of more labeled data even if it were labeled by humans would improve
the accuracy of the Collins parser only by a negligible amount. This suggests
that novel bi-lexical counts from additional data effect a corresponding increase
in accuracy for the Collins parser. In contrast, the curve for the LTAG parser
suggests that the addition of more labeled data (for instance, with the use of
bootstrapping methods such as co-training) will improve LTAG parsing results.

8Note that a re-ranked version of this parser, without extra training material, does better than
this already.

26

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Training sentences

F
−m

ea
su

re

Collins Parser learning curve:
Penn Treebank sec.2−21 in order

 f = a(1−bx
c

)
 a = 0.892732
 b = 0.574215

 c = 0.20543

Predicted
performance

=0.88586

Best observed = 0.886645

Upper bound = 89.3% Projected to Treebank of size 80K sentences = 88.9% 400K = 89.2%

(a)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

Training sentences

F
−

m
ea

su
re

LTAG parser learning curve: fscores for sentences <= 40 words

 f = a(1−bx
c

)
 a = 0.915678
 b = 0.31822

 c = 0.104404
first 6 pts. ignored

Predicted
performance

=0.886902

Best observed = 0.887

Upper bound = 91.6% Projected to Treebank of size 80K sentences = 89.3% 400K = 90.4%

(b)

Figure 12: Learning curves. Accuracy plotted against the amount of training
data used. (a) Collins-CFG parser. (b) LTAG parser.

27

3.3 Results and Discussions

We now present the experimental results of co-training using the Collins-CFG
and LTAG parser pair. Before we examine how different parameters affect co-
training, we present a baseline performance comparison between co-training and
self-training. Figure 12 shows the performance curves for the Collins parser and
the LTAG parser. Evaluation is in terms of an F-score with respect to section
0 of the treebank. In this baseline study, we used 500 sentences from the WSJ
corpus as the initial seed data (same domain as the unlabeled data pool). The
selection method used isSuse-all

9. The graph shows that co-training results in
higher performance than self-training. The graph also shows that co-training
performance levels-out around 80 rounds, and then starts to degrade. The likely
reason for this dip is noise in the co-training-supplied parse trees. Pierce and
Cardie (2001) noted a similar behavior when they co-trained shallow parsers.
3.3.1 Varying initial seed data size:One of the workshop goals is to see
whether co-training could boost performance when faced with small seed data
sets. Figure 13 plots the performance curves of the Collins-CFG parser when
co-training from initial seed data set sizes of 500 and 1000 sentences. Note that
different selection methods were used for the two curves (we chose the best per-
forming selection method for each seed data setting). It is interesting that the
choice of selection method depends upon the seed size. We shall return to this
point in Section 3.3.2 when we discuss the variation on selection method. The
key observation from this experiment is that the benefit of co-training seems
more dramatic when the amount of seed material is small. Our hypothesis is that
when there is a paucity of initial seed data, coverage is a major obstacle that co-
training’s redundant views can address. As the amount of seed data increases,
coverage becomes less of an issue, and the co-training advantage is diminished.
Recall that another one of the workshop goals was to improve the state-of-art in
statistical parsing using co-training. Based on our seed data variation experiment
and the convergence curves presented earlier, we conjecture that the parsers have
almost converged already. As such, extra training material are unlikely to yield
a significant improvement for these parsers. The state-of-the-art in statistical
parsing may improve if we use more sophisticated models that have not already
converged (with respect to available treebank material). Within the co-training
setting, one such approach is through re-ranking models. Another observation

9Note that graphs show performance after every round of co-training. This means that at the
origin we have already carried out a single round.

28

 74.5

 75

 75.5

 76

 76.5

 77

 77.5

 78

 78.5

 79

 79.5

 80

 0 10 20 30 40 50 60 70 80 90 100

F
 S

co
re

Co-training rounds

The effect of seed size

"wsj-1k"
"wsj-500"

Figure 13: Performance comparison of different initial seed data sizes for the
Collins-CFG parser.

29

is that although co-training boosts the performance of the parser using the 500
seed sentences from 75.3% to 78.4%, it does not achieve the level of perfor-
mance of a parser trained on 1000 seed sentences. Some possible explanations
include: the newly labeled sentences are not reliable (i.e., they contain too many
errors); the sentences deemed reliable are not informative training examples; or
a combination of both factors.
3.3.2 Comparison of parse selection methods:As we have argued earlier, the
question of how one should select examples in practical co-training settings is
important. That is, for computational reasons, we cannot afford to directly opti-
mize agreement between views. Instead, we must approximate view agreement
through example selection. Here, we present thein vivocounterpart to the oracle
study. This study compares two selection methods:Suse-all, which indiscrimi-
nantly selects all newly labeled sentences, andSintersect, which selects sentences
that the teacher-parser labeled with high scores (probability of the parse in this
experiment) and the student-parser labeled with low scores.

The curves in Figure 14 show co-training results for both the Collins-CFG
parser and the LTAG parser under different selection methods. Both parsers
are initially trained on 500 seed sentences. The key observation from the pair
of graphs is that whileSuse-all results in better performance for the Collins-
CFG parser,Sintersectresults in better performance for the LTAG parser. On
the other hand, recall from the previous experiment that for the Collins-CFG
parser,Sintersectresults in better performance when it is initially trained with
1000 seed data. One possible reason for these differences may be due to the
trade-off between competing factors of increasing coverage and reducing noise.
In the Collins-CFG case, increasing coverage is the more important factor when
the seed data is very small. When starting from a larger seed data set that al-
ready has a good coverage, training on reliably labeled data is more important.
Another possible reason is the inherent differences in the parsing models. Be-
cause the LTAG parser builds parse trees out of elementary trees, which provide
larger structural context than CFG rules, the parse tree it generates may help the
Collins-CFG parser to improve coverage even if it (the parse tree) contains many
errors. On the other hand, reliability seems to be a more important factor for the
LTAG parser. Noisy parse trees generated by the Collins parser may create too
many poor elementary trees for the LTAG parser.
3.3.3 Cross corpus domain experiments: training on the Brown corpus and
testing on WSJ: This experiment examines whether we can use co-training to
boost performance when the unlabeled data are taken from a different source

30

 75

 75.5

 76

 76.5

 77

 77.5

 78

 78.5

 0 20 40 60 80 100 120

fs
co

re

Iterations

throw all (500)
all+intersection (500)

intersection (500)

(a)

 87

 87.5

 88

 88.5

 89

 89.5

 0 20 40 60 80 100 120

fs
co

re

Iterations

throw all (500)
all+intersection (500)

intersection (500)

(b)

Figure 14: Comparison between theuse-alland theintersectionselection meth-
ods. (a) The performance of the Collins-CFG parser. (b) The performance of the
LTAG parser.

31

than the initial seed data. We have used 1000 annotated sentences from the
Brown treebank (non-newswire material) as the seed data. The two parsers then
co-train off of the Wall Street Journal (newswire material). In Figure 15, the
lower curve shows performance for the Collins-CFG parser (evaluated, as ever,
on section 0) using the intersection selection method. The difference in corpus
domain does not hinder co-training. The parser performance is boosted from
76.6% to 78.3%. Note that most of the improvement is within the first 5 itera-
tions. This suggests that the parsing model may be adapting to the vocabulary of
the new domain.

We have also conducted an experiment in which the initial seed data is sup-
plemented with a tiny amount of annotated data (say 100 sentences) in the do-
main of the unlabeled data. The upper curve in Figure 15 shows the outcome
of this experiment. Not surprisingly, the 100 additional labeled WSJ sentences
improved the initial performance of the parser to 78.7%. While the amount of
improvement in performance is less dramatic than the previous case, co-training
provides an additional boost to the parsing performance, to 80%. Another ob-
servation of interest is that the parser improves gradually. This suggests that the
parsers are learning novel constructs as well as vocabularies.

3.4 Summary for co-training between Collins-CFG and LTAG

In this section, we have explored co-training between two statistical parsers that
are based on different grammar formalisms. We have conducted a suite of ex-
periments varying the amount of initial seed data, the selection methods, and the
corpus domain of the seed data. Our experimental results suggest that co-training
between these two parsers can generally boost parsing performances. We find
that the improvement is more dramatic under impoverished conditions such as
when the amount of seed data is small or when the seed data is taken from a
different corpus. We also find that different selection methods may work better
under different conditions, depending on the parsing model and the amount of
seed data as well as the scoring function.

4 Co-training a CCG Parser and Supertagger

This section describes co-training experiments using parsers from another gram-
mar formalism, namely Combinatory Categorial Grammar (CCG, Steedman
2000). CCG is a lexicalized formalism, in which words and constituents are as-
sociated withcategorieswhich express their subcategorization behavior, and in

32

 75

 75.5

 76

 76.5

 77

 77.5

 78

 78.5

 79

 0 10 20 30 40 50 60 70 80 90 100

F
 S

co
re

Co-training rounds

Cross-genre co-training

"brown-1k-tiny"
"brown-1k"

Figure 15: Cross-genre experiments using 1000 sentences seed labeled data from
the Brown corpus and co-training and testing on sentences from the Wall Street
Journal (evaluation shown for the Collins-CFG parser)

which a small number ofcombinatory rules are used to combine constituents.
For example, one of the categories for the verblikes specifies that one noun
phrase (NP) is required to the right of the verb, and one to the left, resulting in a
declarative sentence (S[dcl]) (as inJohn likes sweets):

likes := (S[dcl]\NP)/NP

Another category forlikesspecifies that a to-infinitival clause is required to the
right of the verb (as inJohn likes to eat sweets):

likes := (S[dcl]\NP)/(S[to]\NP)

The following derivation shows how categories combine. This derivation
uses only two combinatory rules: forward application (>) and backward appli-
cation (<).

33

John likes to eat sweets

NP (S[dcl]\NP)/(S[to]\NP) (S[to]\NP)/(S[b]\NP) (S[b]\NP)/NP NP
>

S[b]\NP
>

S[to]\NP
>

S[dcl]\NP
<

S[dcl]

Further combinatory rules (composition, type-raising and substitution) are
described in Steedman 2000, which provides a complete introduction to CCG.

We have previously developed two wide-coverage statistical parsers for CCG
(Clark et al. 2002; Hockenmaier and Steedman 2002b). Following work in
LTAG (Bangalore and Joshi 1994), we have also developed a supertagger for
CCG (Clark 2002), which is a program that assigns lexical categories to words,
but does not provide derivations. The parsers and the supertagger are trained
on CCGbank (Hockenmaier and Steedman 2002a), a corpus of CCG derivations
obtained from the Penn Treebank. As in Sarkar (2001), in our co-training experi-
ments on CCG, the two views were provided by one of the parsers (Hockenmaier
and Steedman 2002b) and by the supertagger.

4.1 Co-training within CCG

The co-training experiments described so far have used parsers from differ-
ent formalisms (CFG and LTAG), exploiting the differences between CFG and
LTAG to provide the view independence so important for successful co-training.
We considered using the CCG parser together with a CFG or LTAG parser. How-
ever, the CCG parser requires CCG derivations as training data, and much of the
information required to convert a phrase-structure tree into a CCG derivation,
especially trace information, is not present in the output of the other parsers.
(See Hockenmaier and Steedman 2002a for the procedure which converts Penn
Treebank style phrase-structure trees into CCG derivations.) Hence we decided
to apply co-trainingwithin CCG, following Sarkar 2001.

Sarkar also uses co-training within one grammar formalism (LTAG) to boot-
strap a parser. One view is provided by the parser itself, and the other is pro-
vided by an LTAG supertagger which assigns elementary trees (or “supertags”)
to words Bangalore and Joshi (1994). The supertagger is able to provide an alter-
native view of an LTAG parse tree because it models thesequenceof supertags
in the tree, rather than the way in which the supertags are combined.

34

S[dcl]

NP

N

There

S[dcl]\NP

S[dcl]\NP

(S[dcl]\ NP)/NP

is

NP

NP/N

no

N

asbestos

(S\NP)\(S\NP)

((S\ NP)\ (S\ NP))/NP

in

NP

NP/N

our

N

products

Figure 16: A CCG parse tree with the lexical category sequence in bold

Supertagging can also be applied to CCG and the sequence of lexical cate-
gories in a CCG derivation tree can be used to provide a possible view of the
tree. Figure 16 shows a (normal-form) CCG derivation tree (with the lexical
categories shown in bold). Since lexical categories contain a significant amount
of syntactic information (much more than POS-tags), the sequence of categories
provides a lot of information about the tree. However, since a supertagger only
returns a sequence of lexical categories, the derivation tree itself is still underde-
termined. In particular, if there are a number of non-equivalent derivations for
the same lexical category sequence the supertagger cannot distinguish between
the two. This situation can arise when a modifier (such as a preposition) has
multiple possible attachment sites.

The supertagger that we presented originally in Clark 2002 was unsuitable
for the co-training experiments because it uses maximum entropy models, and
the training algorithm used (generalized iterative scaling) was too slow for re-
training on each iteration of the co-training loop. Instead we used an off-the-
shelf HMM POS-tagger, namely the TnT tagger (Brants 2000), which performs
slightly worse than the maximum entropy supertagger (see Clark 2002), but
trains very quickly. TnT can be run in a mode that returns conditional proba-
bilities of tags, and the probabilities for each tag can be multiplied together to
give a score for the complete sequence.

The other view of the derivation tree is provided by the parser of Hocken-
maier and Steedman 2002b, using the generative probability model employed by
the parser. We believed the two views to be complementary because the parser
and supertagger are modeling different dependencies in the tree. For example,

35

the supertagger would model a dependency between the lexical categories foras-
bestosandin (in the tree in Figure 16), but there is no such dependency between
these two categories in the parsing model.

Figure 17 gives the algorithm for how the co-training was performed. The su-
pertagger view is denotedS+P because we needed each view to return complete
derivation trees, whereas the supertagger only provides a sequence of categories.
Thus for this view we ran the parser in “n-best” mode, returning a number of
derivation trees for each sentence, and chose a single tree for each sentence on
the basis of the probability of the lexical category sequence (obtained by multi-
plying the individual category probabilities provided by the TnT tagger). In the
event of a tie, the probability given by the generative probability model of the
parser was used to decide. Them-best trees returned by theS+P view were cho-
sen on the basis of the probability of the lexical category sequence, whereas the
m-best trees returned by theP view were chosen on the basis of the probability
of the derivation. In order that the two views did not prefer short trees, both the
generative derivation probability and the lexical category sequence probability
were normalized by sentence length.

Before presenting the results of the experiments, we show the learning curve
for the parser in Figure 18. Here we measure the performance of the parser in
terms of the F-score of the constituent-based Parseval measures precision and
recall. Since the nonterminal set of CCG is very large and derivation trees are
binary branching, these scores are not comparable with Parseval scores for Penn
Treebank parsers. We have discussed elsewhere (Clark et al. 2002) alternative
evaluation metrics for CCG that are based on word-word dependencies, not con-
stituents.

The next section gives co-training results when a small amount of WSJ Penn
Treebank material is used as seed data (1,000 and 10,000 sentences). Section 4.3
gives results for a porting experiment where the seed data is from the Brown sec-
tion of the Penn Treebank and the unlabled and test data are from the WSJ sec-
tion. In each case we present three plots: the F-score for the parser, the accuracy
of the supertagger, and the accuracy of the parser as a supertagger; that is, how
good the parser is at assigning lexical categoies to words. For each experiment
the cache size was set at 300 sentences. For the 1,000 seed data experiment, 90
parses were selected at each iteration, and for the other experiments 39 parses
were selected at each iteration. These parameters were set on the basis of oracle
experiments. The parsing results are based on the first 500 sentences of Section
0, and the supertagger results are based on the complete Section 0.

36

U is a large pool of unlabeled data.
U ′ is a small cache holding a subset ofU .
Ls is the set of labeled training examples for the supertagger,S.
Lp is the set of labeled training examples for the parser,P.
Hs is the current hypothesis of the supertagger.
Hp is the current hypothesis of the parser.

Initialize:
Ls = Lp← L.
Hs← Train(Ls)
Hp← Train(Lp)

Loop
Movek unlabeled sentences fromU to U ′.
S+P andP each label the data inU ′.
mhighest scoring trees according toP are added toLs.
mhighest scoring trees according toSare added toLp.
Hs← Train(Ls)
Hp← Train(Lp)

Figure 17: Pseudo-code for the CCG co-training algorithm

4.2 Using small amounts of WSJ data as the seed

Figure 19 shows how the performance of the parser changes (by F-score) as
the co-training proceeds. The x-axis gives the total number of additional sen-
tences added to the 1,000 sentences of seed data. The additional curve shows
how the performance changes if the parser is re-trained on its own output (self-
training). The performance does improve slightly initially, but then degrades,
and co-training performs no better than self-training in this case.

Figure 20 shows how the accuracy of the TnT-supertagger changes as the co-
training proceeds. (Note that accuracy here measures the percentage of words
which are assigned the correct lexical category.) Here we do see a significant
inprovement, from around 81% when trained on the seed data to around 85.5%
when 12,000 new parses have been added. Note that the accuracy of the TnT-

37

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Training sentences

F
−

m
ea

su
re

CCG parser learning curve: sequential subsets of Penn Treebank

 f = a(1−bx
c

)
 a = 0.842109
 b = 0.874194
 c = 0.302984

Predicted
performance

=0.812077

Best observed = 0.8118

Upper bound = 84.2% Projected to Treebank of size 80K sentences = 82.8% 400K = 84.1%

Figure 18: Learning curve for the CCG parser

supertagger is around 89% when trained on the complete CCGbank.10

Figure 21 shows how the accuracy of the parseras a supertaggerchanges.
Here we do see an improvement, even though the parser as a parser showed
no improvement. We also see that co-training performs better than self-training
in this case. Interestingly, the parser as a supertagger performs better than the
supertagger itself, presumably because the grammar used by the parser provides
additional constraints that are not available to the supertagger.

The results for the experiments using 10,000 sentences as seed data show a
similar pattern. The performance of the parser shows no significant improve-
ment, but both the supertagger, and the parser as a supertagger, show an im-
provement. (Figures 22, 23, and 24)

10The figure given in Clark 2002 is slightly lower because that figure ignored punctuation.

38

75.2

75.4

75.6

75.8

76

76.2

76.4

76.6

0 2000 4000 6000 8000 10000 12000

P
ar

se
va

l F
-s

co
re

Number of Training Sentences

Parseval performance of parser -- 1K seed

co-training
self-training

Figure 19: F-score of the parser with 1,000 WSJ sentences as seed data

80.5

81

81.5

82

82.5

83

83.5

84

84.5

85

85.5

86

0 2000 4000 6000 8000 10000 12000

supertagger accuracy

Figure 20: Accuracy of the supertagger with 1,000 WSJ sentences as seed data

39

87.4

87.5

87.6

87.7

87.8

87.9

88

88.1

88.2

88.3

88.4

0 2000 4000 6000 8000 10000 12000

S
up

er
ta

gg
in

g
ac

cu
ra

cy

Number of Training Sentences

Performance of parser as supertagger -- 1K seed

co-training
self-training

Figure 21: Accuracy of the parser as a supertagger with 1,000 WSJ sentences as
seed data

4.3 Porting to another genre: using the Brown corpus as seed

The porting experiment uses the 24,000 sentences from the Brown section of
the Penn Treebank as seed data, and then uses the raw sentences from the WSJ
section as unlabeled data. Testing is again on Section 0. Here we not only see
the supertagger (Figure 26), and the parser as a supertagger (Figure 27), showing
an improvement, as before. This time the parser also improves (Figure 25) . Our
hypothesis is that the parser improves in this case because the unlabeled data is
providing useful information about the new genre which is not available in the
seed data.

4.4 Improving the performance of the supertagger trained on the complete
Penn Treebank

We investigated whether parses from the Hockenmaier parser could be used to
improve the performance of the TnT-supertagger trained on the complete Penn
Treebank. The Hockenmaier parser was used to parse a large volume of data
from the North American News Text Corpus. By the end of the Workshop around

40

80.8

80.9

81

81.1

81.2

81.3

81.4

81.5

81.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

parser F-score - 10k seed

Figure 22: F-score of the parser with 10,000 WSJ sentences as seed data

30 millions words had been parsed. Since the parsing is expensive, it was not
possible to do co-training with this much text, but we were able to investigate
how the performance of the supertagger changed when various subsets of the
parsed material were added to the labeled data.

Figure 28 shows how the accuracy changes as parses are added to the data,
where the order in which the parses are added is determined by a number of
measures: generative probability, generative probability normalized by sentence
length, parse-tree entropy, and parse-tree entropy normalized by sentence length.
(See Section 2 for the definition of tree entropy.)

It was hoped that by adding the highest scoring parses first we would be able
to use only the high quality parses in the 30 millions words of parsed material. In
fact, the plot shows that the scores were unable to distinguish between the good
and bad parses since the accuracy continues to increase as the parses with the
lowest scores are added to the data. For two of the scores (probability and nor-
malized probability), accuracy even degrades initially when the highest scoring
parses are added to the labeled data. However, the large number of parses being
added eventually outweighs the noise and the accuracy significantly improves

41

87.05

87.1

87.15

87.2

87.25

87.3

87.35

87.4

87.45

87.5

87.55

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

supertagger accuracy

Figure 23: Accuracy of the supertagger with 10,000 WSJ sentences as seed data

42

91.8

91.85

91.9

91.95

92

92.05

92.1

92.15

92.2

0 20 40 60 80 100 120 140

S
up

er
ta

gg
in

g
ac

cu
ra

cy

Number of iterations

Performance of parser as supertagger -- Brown seed

"parser_withSuperTagger_10K_Tagging"

Figure 24: Accuracy of the parser as a supertagger with 10,000 WSJ sentences
as seed data

after adding the 30 million words of parsed material.

5 Conclusion

We have investigated co-training of a parser and a supertagger for CCG. We
were able to significantly improve the performance of the supertagger under all
experimental conditions, and we have also shown that the performance of the
parser as a supertagger can be improved through co-training. However, we have
not been able to improve the overall performance of the parser by co-training,
except in the porting experiment.

If we view CCG parsing as consisting of an initial step of lexical category
assignment and of a further step of combining constituents, then what these ex-
periments show is that co-training under the conditions investigated here im-
proves the lexical category assignment of both views. Under our current setup,
the attachment decisions that are necessary in determining the derivation are not
independent, since both views used the same probability model for them. How-
ever, both views differed significantly in the way they assign lexical categories
to words, and this is also where we have been able to consistently demonstrate

43

72

72.2

72.4

72.6

72.8

73

73.2

73.4

73.6

0 1000 2000 3000 4000 5000 6000

parser F-score - Brown seed

Figure 25: F-score of the parser with 24,000 Brown sentences as seed data

an improvement. In order to fully investigate whether co-training can improve
the performance of CCG parsers, a second model of CCG derivations that dif-
fers from that in Hockenmaier and Steedman 2002b is required. Such a second
view (based on a Maximum Entropy model) is under development by Clark at
Edinburgh.

6 Co-training between Parser Re-rankers

The earlier sections have looked at co-training between parsers (and supertag-
gers). Considering the convergence results of the various parsers, we came to the
conclusion that some of the parsers (notably the Collins parser) had already con-
verged (using all of the PTB). This meant that no amount of co-training would
improve it. Given this finding, and the fact that the best single model parsing
results come from re-ranking the output of a permissive generative model, we
looked at co-training between two re-rankers. The general idea is that we only
use one parser, which is fixed. However, that parser emits multiple parses for
each sentence. These multiple parses are ordered by parser probability. The
job of the re-ranker is then to reorder these rankings, with the hope that a better

44

81

81.5

82

82.5

83

83.5

84

84.5

0 1000 2000 3000 4000 5000 6000

supertagger accuracy

Figure 26: Accuracy of the supertagger with 24,000 Brown sentences as seed
data

45

87.66

87.68

87.7

87.72

87.74

87.76

87.78

87.8

87.82

87.84

0 5 10 15 20 25 30 35 40

S
up

er
ta

gg
in

g
ac

cu
ra

cy

Number of iterations

Performance of parser as supertagger -- Brown seed

co-training

Figure 27: Accuracy of the parser as a supertagger with 24,000 Brown sentences
as seed data

parse that was ranked too low down in the list could be promoted to the top of
the list. This reordering is possible because the original parser (which is usually
generative) usually only considers relatively localized aspects of the tree in its
modeling. So, preference decisions which require non-local context cannot be
considered. A re-ranker has access to the entire parse, and so can reconsider the
rank of a parse, based upon all the evidence. Quite apart from better modeling,
from a co-training perspective, re-ranking is attractive since it can be signifi-
cantly faster than parsing. Also, because the same parser is used, it means that
there are no problems when comparing parses with each other. Finally, because
re-rankers usually consider a parse as a vector of features, it becomes possible to
think about subconstituent co-training. On the negative side, because the same
parser is re-ranked, it is possible that our views are less independent than they
might be. Also, the general paradigm–according to which a permissive gen-
erative model creates n-best parses, and a discriminative re-ranker changes the
ordering—does not guarantee that the true positive is within the n-best set.

For our approach, we used the Collins parser as the base model. The two re-
rankers were a linear perceptron and a log-linear (maximum entropy) approach.

46

88.6

88.8

89

89.2

89.4

89.6

89.8

90

0 5 10 15 20 25 30 35

generative_prob
generative_prob_norm

tree_entropy
tree_entropy_norm

Figure 28: Accuracy of the supertagger with 40,000 WSJ sentences as seed data

Both re-rankers used the same set of features (described later). We also briefly
looked at the voted perceptron, winnow and naive Bayes. Due to time con-
straints, we did not explore these other re-ranking methods for co-training. For
parse selection, we found that the voted perceptron and winnow did not outper-
form the ordinary perceptron.

6.1 Linear perceptron

Following Collins and Duffy, leth(x) correspond to a feature vector representing
the parsex. Each sentence in the training set,si, has a correct parseti. Each
sentence also has a list of parsesxi,1 . . .xi,n. Let this set of parses be the ordering
of parses, as produced by the initial parser. Within the set of parses, there will be
one or more parses that are ‘closest’ toti. Here, closeness is the F-score between
the parse and the target parse. Note that this differs from Collins and Duffy in
that they assume that the closeness (tree similarity) is 1 for the correct parse, and
zero otherwise. Letw be a vector of weights, with one weight per feature. The
predicted score of a parse under the perceptron is the dot product of the weights
of that parse with the set of weightsw (F(x)). A set of parses for some sentence

47

can be ranked usingF(x).
The perceptron algorithm initializes the weightsw to all zeroes. Then, it

repeatedly passes over the training set and updates the weights. If some parsexi

has an f-score ofj, then if the predicted score of a parse is notj, w is updated as
follows:

Compute the error between the predicted f-score and actual f-score,
then subtract this error times the ‘learning rate’ from the weights of
each feature to get the new weights.

For unlabeled parses (parses for which we do not know what the correct parse
ti happens to be), we predicted the rank of a parse as the sum of the weights on
that parse. If a feature hadn’t been seen before, it would have a weight of zero
and so would have no effect. Since the initial rank features are always present,
if nothing else in the parse had ever been seen before, it would be assigned the
weight of the initial rank feature. For a set of sentences with features that had
never been seen before, this would cause the re-ranker to keep the initial ranks
for the parses (as produced by the original parser).

6.2 Log-linear modeling

Our log-linear model was similar to the perceptron. In brief, the probability of a
parsex given a sentencesi is:

P(x | si) =
1

Z(si)
exp(∑

j
λ j f j) (1)

Here,λ j is the weight corresponding to the featuref j . These weights are esti-
mated using a limited memory variable metric method.

For unlabeled parses (parses for which we do not know what the correct parse
ti happens to be), we sorted the parses by the sum of the weights of the active
features (∑ j λ j f j). The actual parses were then assigned f-scores as the average
F-score that a parse, of that given rank, would have in section 0.

The main differences between the two models are that the log-linear model
defines a conditional model (the probability of a parse given a sentence), whereas
the perceptron is unconditional. This means that the log-linear model normalizes
over the parses for a sentence, irrespective of how good they actually are. The
perceptron predicts the actual F-score of a parse, and so better models absolute
parse quality. The log-linear model is capable of predicting phenomena which

48

is not linearly separable (it does not make independence assumptions about the
features). The perceptron, in contrast, assumes that the data is linearly separable.

6.3 Features

Both models used the same set of features. These were as follows:

• Ngram-like objects. The parse (with non-terminals decorated with per-
colated lexical items) was walked in a canonical manner producing a se-
quence of lexicalized non-terminals. LetNi be the theith non-terminal,
and li be the lexicalized item associated with that non-terminal. This se-
quence was then decomposed into the following ngram-like subsequences:

– Two contiguous non-terminalsNi andNi+1.

– Ni andlI .

– Ni, li , Ni+1, li+1, Ni+2 andli+2.

– Ni, li , Ni+1, Ni+2, Ni+3, Ni+4, Ni+5 andNi+6.

• If Ni andNi+1 were the same category, then we used a feature that counted
the number of such pairings. This feature was designed to model co-
ordination.

• If Ni+1 was a PP category, then we used the featureNi, li+1 andli+2. This
feature was an attempt to model some PP attachment decisions.

• We also used a feature which captured some of the modeling information
provided by the base parser. Each parse had a rank (as produced by the
base CFG parser). We used a rank feature which encoded the rank of the
parse. This rank feature introduces distributional information from the
base parser into our model.

• Finally, we also used features which corresponded to linguistically plau-
sible units. We used features which counted the number of times a given
local unlexicalized tree, of depth one, was seen in a parse.

The motivation for this set of features was speed: we wanted to use features
which were cheap to extract from parse trees. Clearly other feature sets are
possible.

49

We found it useful to increase (‘sharpen’) the F-score of the best parse in
each sentence in the (seed) training set. This helps differentiate the best parse
from the other parses.

Performance using this set of features is state-of-the-art. When using all
PTB material, and re-ranking the output of the Collins parser (essentially the
same conditions as Collins 00), we achieved an F-score of 89.0 on section 0 and
89.7 using a log-linear model. On section 0, the perceptron achieved an F-score
of 89.0. There were 2.4 million features in the model.

6.4 Co-training approach

The previous experiments on co-training parsers selected newly labeled items
without any search. Here, we selected new training examples on the basis of
explicitly forcing agreement between the two views.

The basic idea was to divide the newly parsed sentences into blocks of sen-
tences and then re-rank each sentence in each block using both views. This
produces two sets of blocks of re-ranked parses. Next, for each view, in turn,
we took a block of re-reranked parses produced by theother re-ranker and re-
trained upon that block (in addition to all previously seen re-ranked sentences).
We then used the retrained view to re-rank all parses in all blocks, and measured
the rank correlation between these rankings and the rankings produced by the
other re-ranker. This process was repeated for each block in turn. The block
that produced the closest correlation between the rankings of both views was
added to the training pool of the re-ranker in question. As can be seen, examples
are selected with a view towards (greedily) forcing agreement between the two
views.

6.5 Results

We trained the Collins parser on the first 1000 sentences of the PTB and then
parsed the remaining training section of the treebank. We processed the newly
parsed material into caches of 2500 sentences. Each cache was divided into
5 equal sized blocks. Re-ranking similarity was in terms of Spearman’s rank
correlation.

On section 0, prior to re-ranking, the performance of the Collins parser was
an F-score of 82.3. The log-linear model’s initial performance (when initialized
with 1000 sentences) was an F-score of 82. The linear perceptron (initialized in
the same manner) produced an F-score of 82.4.

50

If the log-linear model was re-trained using the best parses for 10,000 newly
parsed sentences, it would achieve an F-score of 83.6. For the perceptron, this
score would be 82.8.

After co-training (using how 10,000 sentences in total), the log-linear model
slightly improved to an Fscore of 82.4. The perceptron did not improve.

7 General Discussion and Conclusions

The experiments described above have demonstrated the following results.
The experiments show that co-training can enhance performance for parsers

and taggers trained on small (500-10,000 sentences) amounts of labeled data—
that is, for labeled datasets of the kind of size that can realistically be expected
to be obtainable at short notice for novel languages and novel genres of text.

The experiments also show that co-training can be used for porting parsers
trained on one genre to parse on another without any new human-labeled data at
all. They show in addition that even tiny amounts of human-labeled data for the
target genre enhance co-training for porting purposes.

In achieving effective co-training, distinguishing reliable and informative
newly labeled data from less reliable and informative output is crucial. Among
the most important results of the research are a number of novel methods for
parse selection.

The experiments have also yielded some preliminary results on ways to de-
liver similar improvements for parsers trained on large (Penn WSJ Treebank)
labeled datasets and expressive grammars such as TAG and CCG.

These results and some subsequent work by the team are reported in Clark
et al. 2003; Baldridge and Osborne 2003; Callison-Burch and Osborne 2003;
Osborne et al. 2003; Sarkar et al. 2003; Steedman et al. 2003a,b (see Appendix
B: Publications Arising From the Workshop Project). Within the scope of this
six-week project, we were not able to show that co-training, given sufficient time
and unlimited unlabeled data, can approach the levels of performance attainable
with larger amounts of human-labeled data, much less improve upon the state of
the art performance of parsers trained on the largest human-labeled datasets. The
full scope and limits of parser improvement that can be attained via co-training
are a subject for further research.

This is the largest experimental study to date on the use of unlabeled data
for improving parser performance. The core result showing that the co-training
technique can apply to parsers as well as the classifiers it was originally devel-

51

oped for has wide implications for natural language processing systems.
In the short term, the study shows that in situations where there is an acute

shortage of labeled data—because of the novelty of the language or genre in-
volved and the sheer slowness and expense of obtaining human-labeled data—
then co-training can be used to enhance performance for a number of types and
levels of parser.

In the longer term, as better and less overgenerating parsers are developed,
and as our understanding of co-training parsers develops, particularly in terms
of better selection methods and levels of co-training below that of whole sen-
tences, the potential payoffs are considerable. Among these are: improved per-
formance for state-of-the-art wide coverage parsers trained on human annotated
data; methods for building very large treebanks for training in speech and text-
processing applications; improved ease of porting trained parsers to new genres
and domains.

52

References

Abney, S. (2002). Bootstrapping. InProceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 360–367, Philadelphia, PA.

Baldridge, J. and Osborne, M. (2003). Active learning for hpsg parse selection. In
Daelemans, W. and Osborne, M., editors,Computational Natural Language Learning
(CoNLL-03), Edmonton, Canada. to appear.

Bangalore, S. and Joshi, A. (1994). Disambiguation of super parts of speech (or su-
pertags): Almost parsing. InProceedings of the 15th COLING Conference, pages 154–
160, Kyoto, Japan.

Blum, A. and Mitchell, J. (1998). Combining labeled and unlabeled data with co-
training. InCOLT: Proceedings of the Workshop on Computational Learning Theory.
Morgan Kaufmann.

Brants, T. (2000). TnT - a statistical part-of-speech tagger. InProceedings of the 6th
Conference on Applied Natural Language Processing, Seattle, WA.

Callison-Burch, C. and Osborne, M. (2003). Bootstrapping parallel corpora. InWork-
shop on Building and Using Parallel Texts: Data Driven Machine Translation and Be-
yond, Edmonton, Canada. to appear.

Charniak, E. (1997). Statistical parsing with a context-free grammar and word statis-
tics. In Proceedings of the 14th National Conference of the American Association for
Artificial Intelligence, Providence, RI., July, pages 598–603.

Clark, S. (2002). A supertagger for combinatory categorial grammar. InProceedings of
the TAG+ Workshop, pages 19–24, Venice.

Clark, S., Curran, J., and Osborne, M. (2003). Bootstrapping pos-taggers using unla-
belled data. In Daelemans, W. and Osborne, M., editors,Computational Natural Lan-
guage Learning (CoNLL-03), Edmonton, Canada. to appear.

Clark, S., Hockenmaier, J., and Steedman, M. (2002). Building deep dependency struc-
tures with a wide-coverage ccg parser. InProceedings of the 40th Meeting of the ACL,
pages 327–334, Philadelphia, PA.

Collins, M. (1999).Head-Driven Statistical Models for Natural Language Parsing. PhD
thesis, University of Pennsylvania.

Collins, M. (2001). Discriminative reranking for natural language parsing. InProceed-
ings of the International Conference on Machine Learning,.

Dasgupta, S., Littman, M. L., and McAllester, D. (2002). Pac generalization bounds for
co-training. In Dietterich, T. G., Becker, S., and Ghahramani, Z., editors,Advances in
Neural Information Processing Systems 14, Cambridge, MA. MIT Press.

53

Henderson, J. C. and Brill, E. (1999). Exploiting diversity for natural language pro-
cessing: Combining parsers. InProceedings of the 1999 Joint SIGDAT Conference on
Joint Sigdat Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora.

Hockenmaier, J. and Steedman, M. (2002a). Acquiring compact lexicalized grammars
from a cleaner treebank. InProceedings of the Third LREC Conference, pages 1974–
1981, Las Palmas, Spain.

Hockenmaier, J. and Steedman, M. (2002b). Generative models for statistical parsing
with Combinatory Categorial Grammar. InProceedings of the 40th Meeting of the ACL,
pages 335–342, Philadelphia, PA.

Hwa, R. (2000). Sample selection for statistical grammar induction. InProceedings
of the 2000 Joint SIGDAT Conference on EMNLP and VLC, pages 45–52, Hong Kong,
China.

Magerman, D. (1994).Natural Language Parsing as Statistical Pattern Recognition.
PhD thesis, Stanford University University.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated
corpus of English: the Penn Treebank.Computational Linguistics, 19(2):313–330.

Nigam, K. and Ghani, R. (2000). Analyzing the effectiveness and applicability of co-
training. In Proc. of Ninth International Conference on Information and Knowledge
(CIKM), pages 86–93.

Osborne, M., Hwa, R., and Sarkar, A. (2003). Grammar Induction using Co-training. In
preparation.

Pierce, D. and Cardie, C. (2001). Limitations of co-training for natural language learn-
ing from large datasets. InProceedings of the Empirical Methods in NLP Conference,
Pittsburgh, PA.

Sarkar, A. (2001). Applying co-training methods to statistical parsing. InProceedings
of NAACL 2001. Pittsburgh, PA, June. Morgan Kaufmann.

Sarkar, A. (2002).Statistical Parsing Algorithms for Lexicalized Tree Adjoining Gram-
mars. PhD thesis, University of Pennsylvania.

Sarkar, A., Hwa, R., Osborne, M., and Steedman, M. (2003). Corrected-co-training for
statistical parsing. InICML Workshop on the Continuum from Labeled to Unlabeled
Data in Machine Learning and Data Mining. In preparation.

Steedman, M. (2000).The Syntactic Process. The MIT Press, Cambridge, MA.

Steedman, M., Hwa, R., Clark, S., Osborne, M., Sarkar, A., Hockenmaier, J., Ruhlen, P.,
Baker, S., and Crim, J. (2003a). Example selection for bootstrapping statistical parsers.
In The Proceedings of the Joint Conference of Human Language Technologies and the
Annual Meeting of the North American Chapter of the ACL.

54

Steedman, M., Osborne, M., Sarkar, A., Clark, S., Hwa, R., Hockenmaier, J., Ruhlen,
P., Baker, S., and Crim, J. (2003b). Bootstrapping statistical parsers from small datasets.
In The Proceedings of the Annual Meeting of the European Chapter of the ACL.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised
methods. InProceedings of the 33rd Annual Meeting of the Association for Compu-
tational Linguistics, pages 189–196, Cambridge, MA.

55

Appendix A: Researchers and Addresses

Name E-Mail Affiliation
Researchers:
Steedman, Mark steedman@informatics.ed.ac.uk University of Edinburgh
Sarkar, Anoop anoop@linc.cis.upenn.edu University of Pennsylvania
Osborne, Miles osborne@cogsci.ed.ac.uk University of Edinburgh
Hwa, Rebecca hwa@umiacs.umd.edu University of Maryland
Clark, Stephen stephenc@cogsci.ed.ac.uk University of Edinburgh
Hockenmaier, Julia julia@cogsci.ed.ac.uk University of Edinburgh
Ruhlen, Paul ruhlen@cs.jhu.edu Johns Hopkins University
Baker, Steven sdb22@cornell.edu Cornell University
Crim, Jeremiah jcrim@jhu.edu Johns Hopkins University
Associates:
John Henderson jhndrsn@mitre.org Mitre Corp.
Chris Callison-Burch callison-burch@ed.ac.uk Stanford/Edinburgh

56

Appendix B: Publications Arising from the Workshop Project

References

Baldridge, J. and Osborne, M. (2003). Active learning for HPSG parse selection. In
Daelemans, W. and Osborne, M., editors,Computational Natural Language Learning
(CoNLL-03), Edmonton, Canada. to appear.

Callison-Burch, C. and Osborne, M. (2003). Bootstrapping parallel corpora. InWork-
shop on Building and Using Parallel Texts: Data Driven Machine Translation and Be-
yond, Edmonton, Canada. to appear.

Clark, S., Curran, J., and Osborne, M. (2003). Bootstrapping POS-taggers using unla-
beled data. In Daelemans, W. and Osborne, M., editors,Computational Natural Lan-
guage Learning (CoNLL-03), Edmonton, Canada. to appear.

Osborne, M., Hwa, R., and Sarkar, A. (2003). Grammar Induction using Co-training. In
preparation.

Sarkar, A., Hwa, R., Osborne, M., and Steedman, M. (2003). Corrected-co-training for
statistical parsing. InICML Workshop on the Continuum from Labeled to Unlabeled
Data in Machine Learning and Data Mining. In preparation.

Steedman, M., Hwa, R., Clark, S., Osborne, M., Sarkar, A., Hockenmaier, J., Ruhlen, P.,
Baker, S., and Crim, J. (2003a). Example selection for bootstrapping statistical parsers.
In The Proceedings of the Joint Conference of Human Language Technologies and the
Annual Meeting of the North American Chapter of the ACL. to appear.

Steedman, M., Osborne, M., Sarkar, A., Clark, S., Hwa, R., Hockenmaier, J., Ruhlen, P.,
Baker, S., and Crim, J. (2003b). Bootstrapping statistical parsers from small datasets. In
The Proceedings of the Annual Meeting of the European Chapter of the ACL. to appear.

57

