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Abstract

Answering open-domain questions through un-001
supervised methods poses challenges for both002
machine-reading (MR) and language model003
(LM) -based approaches. The MR-based ap-004
proach suffers from sparsity issues in extracted005
knowledge graphs (KGs), while the perfor-006
mance of the LM-based approach significantly007
depends on the quality of the retrieved con-008
text for questions. In this paper, we compare009
these approaches and propose a novel method-010
ology that leverages directional predicate entail-011
ment (inference) to address these limitations.012
We use entailment graphs (EGs), with natural013
language predicates as nodes and entailment014
as edges, to enhance parsed KGs by inferring015
unseen assertions, effectively mitigating the016
sparsity problem in the MR-based approach.017
We also show EGs improve context retrieval018
for the LM-based approach. Additionally, we019
present a Boolean QA task, demonstrating that020
EGs exhibit comparable directional inference021
capabilities to large language models (LLMs).022
Our results highlight the importance of infer-023
ence in open-domain QA and the improvements024
brought by leveraging EGs.025

1 Introduction026

Unsupervised open-domain question answering027

(QA), the task of learning knowledge from a large028

collection of documents of diversified topics to an-029

swer questions, has been a long-standing challenge030

in NLP, information retrieval and related fields031

(Moldovan et al., 2000; Brill et al., 2002; Ferrucci032

et al., 2010).033

The traditional machine-reading (MR) approach034

first extracts a knowledge graph (KG) from an open-035

domain corpus and then uses the KG for QA (Har-036

rington and Clark, 2007; Reddy et al., 2014; Khot037

et al., 2017; Meng et al., 2017). This approach038

offers explainability, since the information in KGs039

is directly supported by the text. However, the rel-040

evant assertions need to be exactly stored in the041

extracted KG, which is often not the case because 042

assertions can be stated in many different ways, 043

while usually only a small subset of them are avail- 044

able in the KG. 045

On the other hand, language models have been 046

claimed to be capable of performing a wide range 047

of NLP tasks when used in zero-shot or few- 048

shot prompting mode, including open-domain QA, 049

where they have been argued to act as a latent KG 050

over the pretraining data for querying (Petroni et al., 051

2019; Adolphs et al., 2021; Ali et al., 2021; Onoe 052

et al., 2022; Wang et al., 2020; Radford et al., 2019; 053

Raffel et al., 2019). Advocates of LMs argue that 054

traditional MR approaches relying on KGs built by 055

open relation extraction are prone to errors arising 056

from components like open information extraction 057

and entity linking. In addition to querying LMs 058

directly, it is shown that when relevant context is 059

available and added to the query, the LMs’ perfor- 060

mance increases significantly (Petroni et al., 2020; 061

Kassner and Schütze, 2020; Chen et al., 2022a). 062

However, while LMs have performed impressively 063

in answering questions on the basis of manually se- 064

lected contextual documents, their practical usage 065

is limited since automatic retrieval methods do not 066

always return relevant contextual documents to the 067

query. 068

In this paper, we show that we can leverage direc- 069

tional predicate entailment effectively to alleviate 070

the limitations of both unsupervised approaches to 071

QA. The contributions of this paper are as follows: 072

(1) We present a comparative analysis of the MR- 073

based and LM-based approaches in multiple QA 074

scenarios. For the MR-based approach, we con- 075

struct KGs by parsing a corpus (English Wikipedia 076

in our experiments). For LM-based approach, 077

we follow the previous work in querying the pre- 078

trained LMs. We perform experiments with multi- 079

ple LMs including BERT (Devlin et al., 2019) and 080

GPT-3.5 (Brown et al., 2020). 081

(2) We alleviate the sparsity issues of the MR- 082
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based approach by leveraging directional predicate083

entailments to infer novel assertions for augment-084

ing the parsed KGs.085

(3) For LM-based approaches, we propose an un-086

supervised method to use predicate entailments for087

more accurate context-document retrieval, showing088

significant improvements in cloze-style QA tasks.089

(4) We propose a novel Boolean QA task to com-090

pare the directional inference capabilities of LMs091

and EGs, presenting evidence that smaller LMs092

(BERT and RoBERTa) are far behind in inferential093

capabilities compared to EGs, while larger LMs094

(GPT-3.5) have similar but complementary capa-095

bilities with EGs. Our analysis suggests a role for096

both EGs and LMs in open-domain QA.097

2 Related Work098

Open-domain QA with Machine Reading. MR-099

based approaches aim to extract knowledge from100

corpora to answer open-domain questions. It is101

common to express knowledge as a collection of102

“facts” in the form of triples (subject, relation, ob-103

ject), where subject and object are entities con-104

nected by the relations. The extracted KGs store105

the collection with entities as nodes and relations106

as edges, which can be used to answer questions.107

Semantic parsing is an efficient open-domain108

information extraction approach for large corpora109

(Etzioni et al., 2011; Reddy et al., 2014). Harring-110

ton and Clark (2007) propose an effective pipeline111

that extracts facts by utilizing a localized update112

algorithm, which transfers sentences into syntax113

structures and generates KGs incrementally. These114

MR-based approaches are explainable for QA be-115

cause every answer is supported by source sen-116

tences in the text. However, KGs built in this way117

are limited to exact match between the question118

form and the triples in the graph. For example, if119

a triple (Amon Bazira, be assassinated in, Kenya)120

is extracted from the sentence "Amon Bazira was121

assassinated in Kenya", the KG would not provide122

an answer to the question "Where did Amon Bazira123

die?" because the training corpus lacks any sen-124

tence constituting an exact match, such as "Amon125

Bazira died in Kenya". As a result, the parsed KG126

exhibits high precision but low recall on the task.127

Using pre-trained LMs as Latent KG. Petroni128

et al. (2019) claim that pre-trained LMs encode129

the knowledge presented in large amounts of texts.130

They query LMs using "fill-in-the-blank" cloze131

statements, such as "Amon Bazira was assassinated132

in [MASK]". They report results on Masked Lan- 133

guage Models (MLMs) such as BERT, which are 134

optimized to predict the next word in a sequence 135

or fill in masked words. They show promising 136

performance on cloze-style QA tasks. Ali et al. 137

(2021) propose a method for fact extraction based 138

on BERT, using the BERT sentence-encoding al- 139

gorithm on a corpus already annotated for named 140

entities. Additionally, Petroni et al. (2020) demon- 141

strate the value of retrieved documents in enhanc- 142

ing BERT’s performance. Lin et al. (2021); He et al. 143

(2021); Perez et al. (2021) show improved perfor- 144

mance for LMs under few-shot settings. More- 145

over, Alivanistos et al. (2022); Fichtel et al. (2021) 146

propose approaches to train prompt-learning mod- 147

els with supervised datasets, using the generated 148

prompts to enhance LM performance on open- 149

domain QA. Larger LM models, as shown in the 150

works of Brown et al. (2020), demonstrate better 151

performance. 152

These results suggest that LMs could work as 153

latent KGs by memorizing vast corpora. However, 154

LLMs are expensive to train, and impractical to up- 155

date for tasks like questions involving recent news 156

events. Smaller neural LMs are faster to retrain, but 157

fail when natural language inference from limited 158

context is required (Petroni et al., 2020). Attempts 159

to fine-tune these LMs with supervision from NLI 160

datasets tend to pick up artifacts and show little 161

evidence of learning directional common-sense in- 162

ferences, such as that, ”be assassinated in" entails 163

”die in" but not the reverse (Li et al., 2022a). In this 164

paper, we query LMs for factual knowledge in a 165

zero-shot setting, but show how the LM-based ap- 166

proach could benefit from the MR-based approach 167

and predicate entailment. 168

Relational Entailment Graphs. Where a KG 169

has entities as nodes and relations as edges, an En- 170

tailment Graph (EG) has relations as nodes and 171

directed edges corresponding to the entailment re- 172

lation. EGs are usually built by first detecting Dis- 173

tributional Inclusion (Dagan et al., 1999; Geffet 174

and Dagan, 2005) among the set of entity tuples 175

involved in pairs of predicates, and then apply- 176

ing global graph learning algorithms (Berant et al., 177

2010, 2011; Hosseini et al., 2018, 2021). In this 178

paper, we propose methods that utilize EGs to en- 179

hance the performance of MR-based and LM-based 180

methods in knowledge completion, leading to sig- 181

nificant improvements in open-domain QA. 182
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3 Method183

In §3.1, we propose an unsupervised MR-based184

method that consists of three key steps: A) con-185

structing a KG by semantic parsing (§3.1.1), B)186

constructing EGs from text (§3.1.2), and C) aug-187

menting the KG with EGs in an unsupervised way188

to infer latent knowledge (§3.1.3). We then further189

augment the KG with LM backoff (§3.1.4). In §3.2,190

we discuss the LM-based approach and propose a191

method to enhance the performance by extracting192

highly-relevant contexts using EGs (§3.2.1).193

3.1 Machine-Reading Approach194

3.1.1 Constructing KG from Corpus195

We propose a pipeline to extract KG from corpora196

with semantic parsing. First, we preprocess the197

Wikipedia corpus in order to improve the perfor-198

mance of semantic analysis tools by reducing the199

ambiguity of the raw text. We employ a coref-200

erence resolution tool (Lee et al., 2018) to handle201

coreferences of texts, and then follow Hosseini et al.202

(2018) and use GraphParser (Reddy et al., 2014) to203

extract triples from the processed text. GraphParser204

utilizes a combinatory categorial grammar (CCG)205

parser (Steedman, 2000) to convert sentences into206

semantic graphs, which are subsequently trans-207

formed into triples. Previous works (Hosseini et al.,208

2018) show the parser based on CCG performs bet-209

ter than Stanford Open IE (Etzioni et al., 2011; An-210

geli et al., 2015) in open-domain relation extraction.211

These extracted triples consist of predicates asso-212

ciated with two arguments. We then assign types213

to entities by linking them to their corresponding214

FreeBase IDs using a Named Entity Linking tool,215

Aidalight (Nguyen et al., 2014). Figure 1 illus-216

trates an example of extracted triples from a raw217

sentence. After the process, the extracted knowl-218

edge is represented in the form of binary predicates219

and associated entities.

Figure 1: The workflow of extracting knowledge from
text.

220

3.1.2 Constructing Entailment Graphs 221

We utilize the EGs extracted from news corpora 222

by Hosseini et al. (2018) as a source of predicate 223

entailments, which is based on the Distributional 224

Inclusion Hypothesis (Dagan et al., 1999; Geffet 225

and Dagan, 2005). The EGs construction algorithm 226

consists of two key steps: local learning and global 227

learning. 228

In the local learning step, we use GraphParser 229

to extract binary relations between a predicate and 230

its arguments from sentences. Subsequently, we 231

compute local distributional similarity scores to 232

learn entailments between predicates with typed 233

arguments. We compute the co-occurrence of pred- 234

icates associated with the same entities of the same 235

types. Such predicates with matching entities of the 236

same types are assumed to concern the same event 237

or episode. In the global learning step, the EGs 238

learn globally consistent similarity scores based on 239

soft constraints that consider both the structures 240

across typed entailment graphs and inside each 241

graph. In our EGs construction process, we com- 242

pute the BInc score (Szpektor and Dagan, 2008) as 243

the directional entailment score between predicates 244

and use it as the input to the global graph learning 245

step.1 246

3.1.3 Augmenting KG with EG 247

To augment the KG, we infer latent facts using the 248

EGs. For every triple (ei, p, ej) in the KG, we 249

add triples (ei, q, ej) for all q in the EG where p 250

entails q. The additional triples result in a larger 251

augmented KG with reduced sparsity. Figure 2 252

illustrates an example of adding latent links to a KG. 253

In this example, the EG indicates that the predicate 254

“be assassinated in” entails “die in” for arguments 255

of types (person, location). Given the fact (Amon 256

Bazira, be assassinated in, Kenya) stored in our 257

KG, we add the latent fact (Amon Bazira, die in, 258

Kenya). A query such as “Where did Amon Bazira 259

die?” now returns the correct answer. 260

If we augment the entire KG extracted from 261

Wikipedia with the EG in an offline manner, the 262

memory requirements for storing the KG becomes 263

prohibitively large. To address this issue, we pro- 264

pose an online approach for KG augmentation for 265

open-domain QA, reducing the storage require- 266

ments of the KG without compromising precision. 267

For each query, we simultaneously use both the 268

1We also experimented with two other EGs (Hosseini et al.,
2021; Chen et al., 2022b) which resulted in consistent results
(Appendix B).
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Figure 2: An example of adding latent knowledge. (a)
The missing relation “die in” is added by using the
entailment “be assassinated in” entails “die in”. (b)
Part of the EG for arguments of types (person, location).

KG and EGs. If a query (entity, q, [target entity])269

does not yield any results in the KG, it returns “not270

found” even if the target entity could be inferred.271

To resolve that, we query the EG to get candidate272

predicates p that entail q. The predicates are sorted273

based on their entailment scores into a list P = [p1,274

p2, ... , pn], where each pi (1 ≤ i ≤ n) entails q. We275

start from the beginning of the list and iteratively276

query the KG with (entity, pi, [target entity]). We277

return the first matched target entity, or “not found”278

if there is no match.279

For instance, if a query such as (Amon Bazira,280

die in, [MASK]) does not yield any matching facts281

in our KG, we search the EG. In the EG, “suicide282

in” and “be assassinated in” entail “die in”. We283

sort “suicide in” and “be assassinated in” based284

on their entailment scores. First, we replace “die285

in” with “suicide in”, generating a modified query286

(Amon Bazira, suicide in, [MASK]). If this query287

still does not return any facts, we query the KG with288

(Amon Bazira, be assassinated in, [MASK]), which289

returns an answer “Kenya”. This method utilizes290

the EG as a plug-in without explicitly adding large291

numbers of triples to the KG.292

3.1.4 Backoff augmented KGs with LMs293

While the symbolic KGs suffer from sparsity, even294

when augmented with EGs, LMs return the pre-295

diction of a masked token for every question in296

open-domain QA. To further analyze how we can297

alleviate the sparsity issues, we evaluate the per-298

formance of completing the augmented KG using 299

LMs in QA. For each query, if the augmented KG 300

fails to provide predictions, we utilize the predic- 301

tions generated by pre-trained LMs to answer it. 302

Both the augmentation method with EGs and the 303

backoff approach with LMs are set up in an unsu- 304

pervised way to ensure a fair comparison. 305

3.2 LM-based Approach 306

In open-domain QA, we utilize pre-trained LMs 307

as latent KGs to provide answers. We explore two 308

conditions when analyzing the prompts of LMs: 309

non-contextual and contextual settings. 310

Non-Contextual Settings. In this setting, we 311

utilize the original questions as inputs without any 312

additional information. In generative LMs, we di- 313

rectly query the question and consider the returned 314

tokens as the answer. For MLMs, the questions are 315

transformed into “fill-in-blank" statements, where 316

the target tokens are masked and regarded as the 317

answer to be predicted. 318

Contextual Settings. To analyze the impacts of 319

contexts, we use unsupervised methods to retrieve 320

documents from open-domain corpora. These doc- 321

uments are considered relevant to the questions. 322

For each query, we extract the first paragraph of 323

the most relevant document as the context and con- 324

catenate it with the query to generate a new input 325

for LMs. 326

3.2.1 Retrieving Context with EGs 327

To measure the enhancements introduced by EGs, 328

we adopt the DrQA (Chen et al., 2017) retriever to 329

extract context from open-domain corpora. This 330

approach enables us to replicate the experimen- 331

tal setup of Petroni et al. (2020), guaranteeing a 332

fair and comparable evaluation. This widely-used 333

and efficient unsupervised retriever relies on term 334

frequency-inverse document frequency (TF-IDF) 335

calculations. However, the limitation of DrQA re- 336

triever is lacking inferential capabilities, which re- 337

sults in the omission of relevant documents. For 338

example, when faced with a question like “Who 339

played against Arsenal?”, the retriever, lacking 340

inferential reasoning, may ignore a relevant docu- 341

ment stating “Manchester City beat Arsenal 3-0 to 342

book a place in the Premier League final.”. 343

To enhance the inferential capabilities of the re- 344

triever, we add EGs into the retrieval process. For 345

each question, we extract new predicates from EGs 346

to generate new questions involving the same en- 347

tity arguments. According to Distributional Inclu- 348
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sion Hypothesis, if the generated question entails349

the original question, the answers to the generated350

question can be used to answer the original ques-351

tion. For example, if the original question is “Who352

played against Arsenal?”, we can generate a new353

question “Who beat Arsenal?” when the predi-354

cate “beat” entails “play against”. The retrieved355

document “Manchester City beat Arsenal 3-0 to356

book a place in the Premier League final.” contains357

information that can answer the original question.358

To rank the retrieved documents, we define a new359

scoring function that combines entailment scores:360

Score(di) = (1− α) ∗ f(qori, di)361

+ α ∗
k∑

j=1

f(qj , di) ∗ E(qj , qori)362

Where qori represents the original question, and363

qj denotes the jth generated question, ordered by364

entailment scores. The function f(qj , di) calcu-365

lates the retriever’s score, evaluating the relevance366

between qj and the ith document. E(qj , qori) es-367

timates the probability of qj entailing qori using368

the entailment score from the EG. In our experi-369

ments, we set α = 0.5 and generate three questions370

(k = 3). By leveraging this scoring function, we371

concatenate the first paragraph of the most relevant372

document with the original question as input.373

4 Experiment 1: Cloze-style QA374

Cloze-style QA aims at answering queries struc-375

tured as “fill-in-the-blank” cloze statements, which376

is easy to be evaluated on different LMs without377

requirements of fine-tuning, especially for MLMs,378

like BERT-based models. This task has been widely379

used to measure the capabilities of LMs in memo-380

rizing knowledge from the pretraining corpus for381

open-domain QA. To add both pre-trained Masked382

LMs and Generative Pre-trained LMs into our anal-383

ysis of LM-based approaches, we choose this QA384

task to compare the MR-based and LM-based ap-385

proaches, and their variants, described in Section386

3.387

4.1 Dataset388

4.1.1 Training and Development Data389

We use the English Wikipedia and NewsSpike390

(Zhang and Weld, 2013) corpora as the training391

dataset to generate the KG and EGs, respectively.392

We use YAGO3-10 (Rebele et al., 2016) in our393

experiments as the development set.394

Corpus Relation Statistics
Facts Rel

Google-RE

Place-of-Birth 2937 1
Date-of-Birth 1852 1

Place-of-Death 796 1
Total 5527 3

T-REx Total 31051 41

Table 1: Statistics for the test data

Wikipedia: To include all Wikipedia entities in 395

the training set, we use the whole Wikipedia corpus 396

to extract the KG. The Wikipedia corpus contains 397

5.4M documents. We extract about 158M binary 398

relations using the semantic parser of (Reddy et al., 399

2014), GraphParser. 400

NewsSpike: We use the multiple-source 401

NewsSpike corpus to train the EGs. NewsSpike 402

was deliberately built to include different articles 403

from different sources describing identical news 404

events. The corpus contains 550K articles (20M 405

sentences). We extracted 29M binary relations us- 406

ing the same semantic parser, GraphParser 2 . We 407

train the EG on the NewsSpike corpus indepen- 408

dently and use it as a plug-in to augment open- 409

domain KGs for QA. 410

YAGO3-10: YAGO3-10 is a large semantic 411

knowledge base, derived from Wikipedia, Word- 412

Net, WikiData, GeoNames, and other data sources. 413

There are 123K entities and 37 relations in the 414

YAGO3-10. We choose YAGO3-10 as the develop- 415

ment set because it is derived from multi-sources, 416

containing low overlaps between our test sets. 417

4.1.2 Test Set 418

The LAMA probe (Petroni et al., 2019) dataset 419

requires the models to answer cloze-style ques- 420

tions about relational facts. Our evaluation focuses 421

on the Google-RE and T-REx subsets of LAMA, 422

which is aimed at measuring factual knowledge. 423

For each relation, the LAMA probe provides a man- 424

ual prompt for querying as well as the Wikipedia 425

snippet evidence aligned with questions. 426

Google-RE: The Google-RE corpus is manually 427

extracted from Wikipedia and contains 5.5K facts. 428

It covers five relations, where three of them are 429

used in the LAMA probe. The query prompts are 430

pre-defined manually, e.g. “Steve Jobs was born 431

in [Y]” for relation “Place-of-Birth”. Each fact in 432

Google-RE dataset is associated with a manually 433

2The constructed EGs contain all relations of the test set.
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Dataset Single Model EG-Augmented KG EG-Augmented KG with LM backoff
Rel IE KG BERT GPT-3.5 KG+EG KG+EG+BERT KG+EG+GPT
PoB 13.8 19.9 16.1 30.3 27.7 30.7 37.0

Google-RE DoB 1.9 7.7 1.0 2.0 8.5 9.9 11.3
PoD 7.2 14.6 14.0 24.7 26.0 29.6 29.7

Average 7.6 14.0 10.5 19.0 20.7 23.5 26.0
TREx Average 33.8 29.2 31.5 59.1 35.1 64.7 79.3

Table 2: Main results on cloze-style QA without context. This table shows the F-score on BERT-large, GPT3,
parsed-KG and its augmented versions across the set of evaluation corpora.

selected snippet of text from Wikipedia that sup-434

ports it. These associated snippets are regarded as435

the golden context in our contextual experiments.436

T-REx: The T-REx (Elsahar et al., 2018) knowl-437

edge source is a subset of Wikidata triples. The438

T-REx in LAMA probe has 41 relations with man-439

ual prompts for querying and it subsamples at most440

1000 facts per relation. In contrast to the Google-441

RE knowledge source, which is defined manually,442

the facts in T-REx were associated with an auto-443

matically extracted, and hence possibly irrelevant,444

Wikipedia snippet. Elsahar et al. (2018) report an445

accuracy of 97.8% for the alignment.446

4.2 Baselines447

To compare with the results in LAMA probe, we448

consider the following baselines.449

IE: For the relation-based knowledge sources,450

we consider the pre-trained Information Extraction451

(IE) model of Sorokin and Gurevych (2017). This452

model was trained on a subcorpus of Wikipedia453

annotated with Wikidata relations. It extracts rela-454

tion triples from a given sentence using an LSTM-455

based encoder and an attention mechanism. We add456

this approach to the baselines because it explicitly457

stores triples, unlike the LMs.458

BERT: Petroni et al. (2019) proved the efficacy459

of pre-trained MLMs in cloze-style QA. The aim of460

MLMs is learning to fill the word at the masked po-461

sition. We add BERT-large (Devlin et al., 2019) in462

our baselines, which employs a Transformer archi-463

tecture and trains it on the BookCorpus (Zhu et al.,464

2015) as well as a crawl of English Wikipedia.465

GPT-3.5: Large Language Models (LLMs), like466

GPT series models, have shown impressive capabil-467

ities in QA. To analyze the performance on LLMs,468

we take text-davinci-003 (GPT-3.5) as the baseline469

of evaluation, as it is the largest and best-aligned470

version. Unlike BERT, the GPT-3.5 is generative.471

We manually transfer the LAMA probe cloze-style472

prompts to natural questions for GPT-3.5, like us-473

Models Precision@1 Recall

Single Model
KG 58.8 8.5
BERT 10.5 10.5
GPT-3.5 19.0 19.0

Augmented Models

KG+EG 41.7 17.0
KG+BERT 20.2 20.2
KG+GPT 24.3 24.3
KG+EG+BERT 23.5 23.5
KG+EG+GPT 26.0 26.0

Table 3: We show the Precision@1 and Recall of parsed-
KG, BERT-large, GPT-3.5, EG-augmented KG and the
EG-augmented KG with LM backoff in non-contextual
settings3.

ing “where was Steve Jobs born?" instead of “Steve 474

Jobs was born in [MASK]". All prompts for GPT- 475

3.5 are shown in Appendix H. 476

4.3 Results: Cloze-style QA 477

The performance of parsed-KGs (MR-based ap- 478

proaches) and LM-based approaches in cloze-style 479

QA is evaluated under two settings: non-contextual 480

and contextual. 481

Table 3 demonstrates the precision@1 and re- 482

call of different models under non-contextual set- 483

tings. The parsed KG exhibits impressive precision 484

performance due to its high proportion of exact 485

matches but is limited in recall by its sparsity. Af- 486

ter being augmented with EGs, the recall improves 487

significantly and the precision is much higher than 488

other combinations (e.g. see KG+EG vs KG+GPT, 489

and KG+EG vs KG+BERT). It demonstrates that 490

EGs perform stronger capabilities of inferring la- 491

tent knowledge to alleviate the sparsity of parsed 492

KGs. This experiment shows that the MR-based 493

approaches exhibit significantly higher precision 494

compared to LM-based approaches. Additionally, 495

the augmentation of KGs with EGs effectively ad- 496

dresses the recall limitation, still outperforming 497

LMs and their combinations in precision. 498

3In LAMA probe, there are no negatives so the recall is
same as Precision@1 when LMs return prediction for every
query.
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Dataset BERT-large GPT-3.5 KG+EG

contextNULL
Google-RE 10.5 19.0 20.7

TREx 31.5 59.1 35.1

contextDrQA
Google-RE 40.8 72.1 20.7

TREx 43.1 81.7 35.4

contextDrQA+EG
Google-RE 59.9 84.0 20.7

TREx 54.2 80.6 35.4

contextGolden
Google-RE 78.0 98.4 29.6

TREx 62.6 95.1 38.0

Table 4: The F-score of different models in cloze-style
QA when context documents are provided, with sub-
scripts “Golden", “DrQA", and “DrQA+EG", indicating
the context extraction methods from original snippets,
the DrQA retriever, and the version with EGs, respec-
tively.

To further analyze the impact of introducing EGs499

to various models on F-scores, we present the non-500

contextual results of cloze-style QA across a range501

of corpora in Table 2. Among the single mod-502

els without EGs, GPT-3.5 outperforms other meth-503

ods, and the parsed KG exhibits better performance504

compared to BERT. Furthermore, KG+EG presents505

that augmenting the KGs with EGs leads to an506

improvement in F-scores. Moreover, the incorpora-507

tion of LM backoff yields additional improvements508

in EG-augmented KGs, as shown in the comparison509

between KG+EG+GPT and KG+EG. The combi-510

nation of EG-augmented KGs with the GPT-3.5511

model backoff (KG+EG+GPT) demonstrates the512

highest level of performance in terms of F-scores513

among all combinations. This combination uti-514

lizes the high precision benefits provided by EG-515

augmented KGs while effectively addressing the516

low recall limitations through the use of LLMs.517

Table 4 presents the performance of LMs and518

KG when provided with contexts. LM-based meth-519

ods show significant improvement with context, but520

the impact of context on the KG is limited. This521

finding indicates that contexts have a more sig-522

nificant impact on LMs compared to parsed KGs.523

Furthermore, the experiments show that the con-524

texts retrieved by DrQA+EGs outperform those525

retrieved by the DrQA retriever alone, highlighting526

the importance and complemantary roles of entail-527

ment in retrieving highly relevant contexts for QA.528

EGs introduce entailment between questions and529

documents in the retrieval process, contributing to530

this improved performance.531

In order to compare the performance of different532

EGs trained on different corpora and score func-533

tions, we report the results of different EGs in Ap-534

pendix B. and report the error analysis in Appendix535

Google-RE
Models infrequent frequent

MR-based
KG 15.1 14.7

KG+EG 18.7 19.2

LM-based
BERT 6.7 11.2

GPT-3.5 16.2 20.6

Table 5: The table shows F-scores for subsets of the
Google-RE dataset categorized based on frequency.

A. 536

We also analyze the impact of query frequency 537

on LM-based approaches. We run experiments on 538

two subsets of Google-RE queries: the 5% least fre- 539

quent (infrequent) queries by calculating the men- 540

tioned entities occurrence in the NewsCrawl corpus 541

(Barrault et al., 2019), and the 5% most frequent 542

queries (frequent). As shown in Table 5, LM-based 543

approaches achieve higher F-scores for frequent 544

queries compared to infrequent queries. However, 545

the question frequency appears to have less impact 546

on parsed KG. The results show that LM is limited 547

in effectively answering queries involving infre- 548

quent entities, indicating the challenges faced by 549

LM in handling long-tail scenarios. 550

In conclusion, MR-based approaches reach 551

higher precision but suffer from sparsity, causing 552

low recall in QA. On the other hand, the qual- 553

ity of retrieved contexts is the main limitation of 554

LMs. The contexts extracted by various unsuper- 555

vised approaches exhibit significant improvements 556

in the LM-based methods, but these approaches 557

show different capabilities in contextual extraction. 558

EGs can enhance both approaches by utilizing tex- 559

tual entailment between common-sense in ques- 560

tions and open-domain corpora. EGs augment the 561

parsed KG by inferring latent knowledge through 562

the entailment between common-sense, enhanc- 563

ing the performance of MR-based methods. For 564

LM-based methods, EGs provide ways to retrieve 565

highly-relevant contexts for questions, by inferring 566

common sense from original questions to latent 567

related documents. 568

5 Experiment 2: Boolean QA 569

Besides cloze-style QA, we propose a Boolean QA 570

task to evaluate the inferential capabilities, present- 571

ing a comparison of EGs and LMs in inferring 572

common sense from training text. 573

The LAMA probe is basically an intrinsic dataset 574

for measuring the capabilities of LMs in extracting 575

knowledge for QA, but it has its own limitations 576

for evaluating inferential capability (Rogers et al., 577

7



Figure 3: Constructing Boolean QA data by Google-RE and T-REx. (a) The left part shows we extract positives
from LAMA probe. (b) We generate the negatives by using the hyponyms to replace the predicate.

2020). One key limitation is that the LAMA probe578

is derived from the Wikipedia corpus, which is579

likely to have been included in LMs training data.580

The LMs tend to memorize artefacts that appear581

within the same descriptions in Wikipedia, causing582

little dependency on inference and over-estimation583

of presenting the inference capabilities of LMs in584

QA. In addition, the LAMA probe task fails to eval-585

uate the sensitivity of LMs to the directionality of586

entailment from evidence to the question, which587

is crucial in inferring latent knowledge from KGs.588

To level the playing field, we propose a Boolean589

QA task. This task is to answer yes-no questions590

about the triples appearing in the cloze-style QA591

datasets, Google-RE and T-REx (in §4.1.2). We592

adapt the construction process of McKenna et al.593

(2021) to automatically generate negatives using594

WordNet (Miller, 1998) hyponyms4. The Boolean595

QA measures not only models’ ability of direc-596

tional inference, but also presents the augmentation597

that EGs bring to KG in cloze-style QA.598

5.1 Boolean QA Data599

5.1.1 Extracting Positives600

Each instance in Google-RE and T-REx is formed601

as a triple, like the one shown in Figure 3(a). We602

transform the fact (Amon Bazira, die in, Kenya)603

into a natural boolean question, such as “Did Amon604

Bazira die in Kenya?". Then we use the associated605

Wikipedia snippets from the LAMA probe as the606

evidence. Since these snippets are provided in the607

Google-RE and T-REx data, we know that these608

questions are answerable by the snippets.609

5.1.2 Generating Negatives610

Negative questions are generated from the positive611

questions by identifying a hyponym of the relevant612

predicate using WordNet. Hyponyms usually entail613

that predicate but are not entailed by it. Therefore614

4We will make our constructed dataset publicly available
upon publication.

it is unlikely that the Google-RE evidence snippet 615

supports the hyponym relation5. Such negative 616

questions are difficult for LMs to reject because 617

they are similar to the positive and hence to the text 618

in the evidential snippet. 619

Figure 3(b) demonstrates an example of neg- 620

atives generation. In this example, we identify 621

“starve" as the hyponym of “die" using Word- 622

Net. Then a negative “Did Amon Bazira starve 623

in Kenya?" will be generated from the positive 624

question “Did Amon Bazira die in Kenya?”. The 625

performance in Boolean QA presents the capabili- 626

ties of directional common-sense inferences, which 627

is crucial for inferring latent knowledge from texts. 628

5.2 Evaluation on Boolean QA 629

BERT, RoBERTa (Liu et al., 2019), and GPT-3.5 630

are the baselines for this task. We evaluate the 631

BERT and RoBERTa by computing cosine similar- 632

ity between the predicate vector in the question and 633

the predicate vector in the answer, following the 634

evaluation of McKenna et al. (2021). 635

For GPT-3.5, we convert the token probability 636

from its outputs using the following mapping: 637

score = 0.5 + 0.5 ∗ I[(output = True)] ∗ Soutput 638

−0.5 ∗ I[(output = False)] ∗ Soutput 639

In the equation, I represents the indicator function. 640

score estimates the probability of positive classifi- 641

cation based on the textual model output probabil- 642

ity Soutput, using a linear transformation, which pre- 643

serves the ordering of model confidences. Note that 644

we add an offset 0.5 to ensure that 0 ≤ Soutput ≤ 1. 645

We evaluate EGs by looking for entailment 646

scores between predicates, which are defined on a 647

scale of 0 to 1. For fairness, our EGs are trained on 648

5We manually checked 100 random samples of generated
negatives, and found only 4 cases where a positive answer
would be appropriate.
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Models Dataset
Google-RE T-REx

BERT 64.0 47.2
RoBERTa 61.9 49.5
GPT-3.5 87.6 68.1

EG 85.3 67.7
EG+BERT 85.3 71.2

EG+GPT-3.5 88.5 75.0

Table 6: The F-score in Boolean QA task

the NewsSpike corpus, which is independent of the649

evaluation datasets, Google-RE and T-REx. If the650

predicate in answers is absent from EGs, the model651

returns the answer as false.652

5.3 Results: Boolean QA653

To compare the capabilities of directional inference,654

we report the F-score of Boolean QA in Table 6.655

The results demonstrate that the EGs and GPT-3.5656

perform at a similar level, and they significantly657

outperform BERT and RoBERTa. We combine658

the score of EG and LMs with a linear function659

and show improvement in Boolean QA. The experi-660

ments suggest that EGs exhibit stronger capabilities661

of directional common-sense inference than BERT662

and achieve a similar level to LLMs, like GPT-3.5,663

with less training resources and more efficient com-664

putation (shown in Appendix E).665

Furthermore, the results also prove EGs can iden-666

tify the directional inference between questions and667

documents, presenting evidence to explain why668

EGs can augment the pre-parsed KG and retrieve669

high-quality contexts for LMs. The successful aug-670

mentation explains the enhancement of the parsed671

KG using EGs in cloze-style QA.672

6 Conclusion673

In this paper, we have conducted a comprehensive674

analysis of the limitations of Machine-Reading and675

LM-based approaches in QA. We propose a novel676

method that utilizes entailment graphs to infer di-677

rectional relations, addressing the sparsity issue678

and low relevance of retrieved contexts. Addition-679

ally, we have introduced an open-domain Boolean680

QA task to evaluate the capabilities of directional681

inference. In Boolean QA, the entailment graphs682

present stronger capabilities in directional infer-683

ence than BERT and RoBERTa, achieving compara-684

ble performance to GPT-3.5. These results demon-685

strate the effectiveness of the entailment graphs in686

enhancing performance under both unsupervised687

approaches, by making common-sense inference 688

available to open-domain QA. 689

7 Limitations 690

We analyze the performance of MR-based and LM- 691

based approaches in QA, and we propose to utilize 692

the directional inference capabilities of EGs to en- 693

hance both approaches, showing improvement in 694

QA. A limitation in this work is that it focuses on 695

open-domain cloze-style QA only in English. We 696

have not evaluated our methods on multi-lingual 697

QA tasks, although Li et al. (2022b) have built a 698

large entailment graph for Chinese, which could 699

be applied. The parser, entity typing method used 700

in the entailment graphs, the Boolean QA dataset 701

which is constructed using WordNet, and the LMs, 702

are only language-dependent components. In addi- 703

tion, the parsed KG is extracted from the whole En- 704

glish Wikipedia corpus. Although we can construct 705

the KG incrementally, the program still requires 706

large amounts of memory to run on large corpora. 707

We were not able to construct KGs on more amount 708

of text with our computational resources. 709
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A Error Analysis of MR-based976

Approaches977

We manually analyze 150 samples for the Machine-978

Reading approach. About 23% of them are caused979

by GraphParser and are cases where it returns980

wrong relations from text. Most of them are caused981

by non-standard sentences in Wikipedia documents.982

For example, “Norman MacLeod (c. 1731 – 1796)983

was a British army officer, merchant, and official of984

the British Indian Department.”, the parser cannot985

extract the fact (Norman MacLeod, bear in, 1731)986

from the sentence because it cannot analyze “(c.987

1731 – 1796)”. It also leads to bad performance in988

the relation “birth-date”.989

20% of the errors in the KG are due to entity990

linking returning wrong entities or types, caused by991

ambiguity in Google-RE and T-REx. For example,992

a sentence in Googe-RE is “Jason then continued993

to Sparta, where he died and was buried” and the994

fact in Google-RE is (Jason, death-place, Sparta).995

But in evaluation, “Jason” is linked to “Jason Hu”,996

who is a modern politician.997

About 44% are caused by the mismatch between998

training and test corpora. For example, the relation999

“is connected to” describes the connections between1000

airports, but we cannot get the knowledge from the1001

training corpus, Wikipedia.1002

The rest of the errors (13%) are because of1003

other reasons including entailment graphs errors,1004

that are mainly caused by the ambiguity of some1005

high-frequency predicates. For example, predicate1006

“bear in” entails predicate “be from”. These predi-1007

cates, like “be from”, are common in sentences. If1008

the relation of the query contains these predicates,1009

the KG will return wrong answers easily. When we1010

use the predicate “be from” for querying the KG,1011

it will return false results because the predicate has1012

too many meanings. e.g., in the sentence “Shane1013

Doan is from Arizona” may mean “Shane comes1014

from Arizona”, not the birth-place. In our exper-1015

iment, some entailment graphs errors are caused1016

by spurious correlations. For example, there are1017

many documents in Wikipedia like “Steve Jobs was1018

born on February 24, 1955, in California, ..., Jobs1019

died at his Palo Alto, California home around 31020

p.m.”. From these sentences, we may extract facts1021

like (Steve Jobs, bear in, California) and (Steve1022

Jobs, die in, California). These predicates link the1023

same entities. It is likely to incorrectly give the1024

entailment relationship between the two predicates.1025

B Different Entailment Graphs on 1026

cloze-style QA 1027

EGs play a crucial role in capturing the relation- 1028

ships between typed predicates, utilizing a score 1029

function to measure the probability of one pred- 1030

icate entailing another. Some works introduced 1031

various models for generating EGs with improved 1032

quality in NLI datasets. Hosseini et al. (2021) pro- 1033

posed the Contextualized and Non-Contextualized 1034

Embeddings (CNCE) model, which leverages con- 1035

textual link prediction to calculate a novel relation 1036

entailment score. Similarly, Chen et al. (2022b) 1037

introduced the Entailment Graph with Textual En- 1038

tailment and Transitivity (EGT2) method, demon- 1039

strating promising performance on Recognizing 1040

Textual Entailment (RTE) tasks. 1041

To evaluate the performance of state-of-the- 1042

art (SOTA) entailment graphs in cloze-style QA, 1043

we compare their performance in augmenting 1044

parsed KGs. We specifically investigate the im- 1045

pact of different training sets by training the entail- 1046

ment graphs on three distinct corpora: Wikipedia, 1047

NewsSpike, and NewsCrawl (Barrault et al., 2019). 1048

We present the summarized results of the different 1049

entailment graphs in Table 7. 1050

P@1 R F
BERT-large 10.5 - 10.5
RoBERTa 4.8 - 4.8

Transformer-XL 1.6 - 1.6
GPT-3.5 19.0 - 19.0

KG 58.8 8.5 14.0
KG+EGwiki_binc 43.8 12.3 17.4
KG+EGns_binc 41.7 15.0 20.7
KG+EGns_cnce 40.7 16.2 21.0
KG+EGns_egt2 56.6 9.6 18.7
KG+EGnc_binc 42.6 14.6 19.6
KG+EGnc_cnce 44.9 15.1 20.7

Table 7: Results of different entailment graphs on
Google-RE in cloze-style QA. This table presents the
mean average precision at one (P@1), recall, and F-
score of Google-RE. The result shows the average per
number of relations in Google-RE. In this table, the
subscripts wiki, ns and nc means the entailment graphs
are trained on Wikipedia, NewsSpike and NewsCrawl
(Barrault et al., 2019). Subscripts binc means EGs con-
structed using the approach of Hosseini et al. (2018).
Subscripts cnce and egt2 means the entailment graphs
are trained on CNCE and EGT2.

We notice that the entailment graphs trained on 1051

NewsSpike (EGns_binc) outperform the entailment 1052

graphs trained on Wikipedia (EGns_wiki). Dif- 1053
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KG KG + EGwiki_binc KG + EGns_binc KG + EGnc_binc

local global local global local global
P@1 58.8 43.2 43.8 42.0 41.7 41.7 42.6

R 8.5 12.3 12.3 13.7 15.0 14.3 14.6
F 14.0 16.9 17.4 18.0 20.7 19.1 19.6

Table 8: knowledge graph combined with different en-
tailment graphs. global means the entailment graph is
based on global BInc score, local means the entaiment
graph with local BInc score.

Corpus BERT-large GPT-3.5 KGcorpus KGdocument KGcorpus+EG KGdocument+EG
Google-RE 10.5 19.0 14.0 12.9 20.7 20.3

T-REx 31.5 59.1 29.2 27.8 35.1 33.9

Table 9: The F-scores of different KGs. KGcorpus and
KGdocument means the KG is constructed using the
whole Wikipedia corpus or retrieved documents.

ferent from the Wikipedia corpus, the articles in1054

NewsSpike mainly describe the same news events1055

by multiple authors. Hence, the predicates in1056

NewsSpike have stronger relevance, which reduces1057

sparsity issues. We analyze the performance of1058

EGs trained by different approaches, EGns_binc,1059

EGns_cnce and EGns_egt2. We notice the edges in1060

EGns_egt2 is less than the EGns_cnce and EGns_binc.1061

Although the EGns_egt2 shows impressive perfor-1062

mance on RTE tasks, it is limited in sparsity, re-1063

sulting in bad performance on the QA task. The1064

experiments suggest that the main limitation of1065

augmented KG is the sparsity of EGs in cloze-style1066

QA.1067

In order to analyze the effects of global learning,1068

we show the entailment graphs on local and global1069

scores in cloze-style QA in Table 8. The entailment1070

graph based on global scores performs better than1071

entailment graphs just trained on local scores.1072

C Different Approaches of Open-domain1073

KG Construction1074

We propose two approaches to construct the open-1075

domain KG in the MR-based method: using the1076

whole Wikipedia corpus (corpus-based) or using1077

retrieved documents (document-based) to extract1078

knowledge. We analyze the performance of dif-1079

ferent KG and show the results in Table 9. The1080

document-based KGs require less memory with1081

sacrificing a little performance.1082

D Analyzing the Impact of Prompts1083

Petroni et al. (2019) propose the MLM could work1084

as a latent knowledge base for zero-shot cloze-1085

style QA with manual prompts during querying.1086

Relation PromptsLAMA Promptre−written

Google-RE 10.5 5.4
T-REx 32.3 16.3

Table 10: Precision of BERT-large querying by different
prompts.

We notice some prompts in the LAMA probe are 1087

the high-frequency sentences chosen from the test 1088

set, Wikipedia. For example, the relation “Date- 1089

of-Birth” are labeled with the prompt “[S] (born 1090

[O])” for querying. This expression is common in 1091

Wikipedia but is not a natural sentence. 1092

To analyze the effects of prompts on MLMs, we 1093

evaluate BERT-large on the cloze-style QA with 1094

automatic re-written prompts, like replacing the 1095

LAMA probe’s prompt “[S] (born [O])” with a nat- 1096

ural sentence “[S] was born on [O]”. The precision 1097

of BERT-large is shown on Tabel 10. From the 1098

table, if we change the pre-defined manual prompts 1099

in the LAMA probe, the precision will decrease 1100

significantly. It indicates the LMs attempt to mem- 1101

orize the expression of training data for answering 1102

questions, instead of inferring knowledge. High- 1103

frequency pre-defined query prompts will improve 1104

the performance of LMs but will be limited for 1105

practical applications. 1106

E Computational Costs 1107

The KG construction process (MR-based approach) 1108

involves two steps: text preprocessing and knowl- 1109

edge extraction. In offline construction, the entire 1110

Wikipedia corpus is processed, which requires ap- 1111

proximately 6 days when utilizing 20 CPU threads 1112

(Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz). 1113

However, by leveraging GPUs (GeForce RTX 2080 1114

Ti) for coreference resolution during the prepro- 1115

cessing step, the processing time can be reduced to 1116

36 hours with the use of 4 GPUs. The knowledge 1117

extraction step takes approximately 24 hours. Com- 1118

pared to the computational resources required for 1119

training GPT-3.5 or BERT-large, the MR-based ap- 1120

proach necessitates fewer resources. Furthermore, 1121

the parsed KG can be constructed incrementally 1122

by adding more documents, and it does not need 1123

to load the whole model in KG construction. In 1124

online construction, we can dynamically parse the 1125

KG based on the retrieved documents. 1126

In our experiments, the training of EGs on the 1127

NewsSpike corpus uses 220G of CPU resources 1128

over a period of 6 days. Notably, this resource re- 1129

quirement is significantly lower compared to the 1130
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training of LLMs such as GPT3.5. When it comes1131

to inference, GPT-3.5 necessitates online execution,1132

whereas the augmented KG can be utilized on a1133

local machine. We also experimented with other1134

LLMs like LLaMA-65B (Touvron et al., 2023),1135

which exhibited a response generation time of ap-1136

proximately 1.5 minutes using 4 x A100 (80G)1137

GPUs.1138

F Samples of Predicates in Entailment1139

Graph1140

When querying with the relations from Google-1141

RE, “Place-of-Birth”, “Date-of-Birth”, “Place-1142

of-Death”, we show the samples ranked by the1143

entailment score in EG. The top five predicates in1144

the entailment graphs are shown in Table 11.1145

Predicate Relation Top 5 predicates in EG

bear.in person-location

grow.up.in
be.in

native.of
live.in
carry

bear.in person-time

name.in
address.in

have.in
be.in

live.in

die.in person-location

die.at.home.in
die.at

dead.found.in
suicide.in

kill.in

Table 11: Top 5 predicates in entailment graphs

G Additional Implementation Details1146

In KG construction, we do not perform any hyper-1147

parameter tuning when generating KG. We fol-1148

lowed the configs of Hosseini et al. (2018) in train-1149

ing entailment graphs, which sets the minimum1150

number of predicates (for each argument-pair), and1151

the minimum number of argument-pairs (for each1152

predicate) to 3. In the evaluation of Boolean QA,1153

we utilize a linear function to combine EG with1154

BERT and GPT-3.5. For the EG+BERT combina-1155

tion, we assign a weight of 0.94 to the EG and 0.061156

to BERT. In the EG+GPT-3.5 combinations, the1157

weight assigned to the EG is 0.42.1158

H Cloze-style Prompts to Natural 1159

Question 1160

Questions in LAMA probe are manually formu- 1161

latd as "fill-in-the-blank" cloze statements. The 1162

prompts in LAMA probe are designed for MLM, 1163

like BERT. We manually change the cloze-style 1164

prompts to natural questions for the generative 1165

model such as GPT-3.5, as shwon in Table 12. 1166

I Generating Prompts for Query 1167

Automatically 1168

Unlike queries in Google-RE and T-REx using 1169

manual-labeld cloze-style prompts, we automat- 1170

ically generate a query for each triple in YAGO3- 1171

10 by concatenating the relation names and enti- 1172

ties. For example, when querying the triple (Kobe 1173

Bryant, playsFor, Los Angeles Lakers), it will be 1174

generated as the sentence “Kobe Bryant plays for 1175

[MASK]” for LMs. 1176
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Dataset Relation Names Cloze-Style Prompts from LAMA probe Generated Natural Questions

Google-RE
place of birth [X] was born in [Y] . Where was [X] born?
place of death [X] died in [Y] . Where did [X] die?
date of birth [X] (born [Y]). When was [X] born?

T-REx

place of birth [X] was born in [Y] . Where was [X] born?
place of death [X] died in [Y] . Where did [X] die?

subclass of [X] is a subclass of [Y] . [X] is a subclass of what?
official language The official language of [X] is [Y] . What is the official language of [X]?

position played on team / speciality [X] plays in [Y] position . What position does [X] play?
original network [X] was originally aired on [Y] . Where was [X] originally aired?

shares border with [X] shares border with [Y] . [X] shares border with whom?
named after [X] is named after [Y] . What is [X] named after?

original language of film or TV show The original language of [X] is [Y] . What is the original language of [X]?
member of [X] is a member of [Y] . [X] is a member of what?

field of work [X] works in the field of [Y] . What field does [X] work in?
occupation [X] is a [Y] by profession . [X] is a what by profession?

has part [X] consists of [Y] . What does [X] consist of?
diplomatic relation [X] maintains diplomatic relations with [Y] . Which conutry does [X] maintain diplomatic relations with?

manufacturer [X] is produced by [Y] . Who produced [X]?
country of citizenship [X] is [Y] citizen . What is the country of [X]?

language of work or name [X] was written in [Y] . Which language was [X] written in?
continent [X] is located in [Y] . Where is [X] located in?
developer [X] is developed by [Y] . Who developed [X]?
capital of [X] is the capital of [Y] . [X] is the capital of what?

located in the administrative territorial entity [X] is located in [Y] . Where is [X] located in?
languages spoken, written or signed [X] used to communicate in [Y] . Which language did [X] use to communicate in?

employer [X] works for [Y] . Who does [X] work for?
genre [X] plays [Y] music . What music does [X] play?

country [X] is located in [Y] . Where is [X] located in?
position held [X] has the position of [Y] . What position does [X] have?
record label [X] is represented by music label [Y] . [X] is represented by what music label?

location [X] is located in [Y] . Where is [X] located in?
work location [X] used to work in [Y] . Where did [X] work?

religion [X] is affiliated with the [Y] religion . [X] is affiliated with the what religion?
instrument [X] plays [Y] . What does [X] play?
owned by [X] is owned by [Y] . Who owns [X]?

native language The native language of [X] is [Y] . What is the the native language of [X]?
twinned administrative body [X] and [Y] are twin cities . Which city and [X] are twin cities?

applies to jurisdiction [X] is a legal term in [Y] . [X] is a legal term in what?
instance of [X] is a [Y] . [X] is a what ?

country of origin [X] was created in [Y] . Where was [X] was created?
headquarters location The headquarter of [X] is in [Y] . Where is the headquarter of [X]?

capital The capital of [X] is [Y] . Where is the capital of [X]?
location of formation [X] was founded in [Y] . Where was [X] founded?

part of [X] is part of [Y] . [X] is part of what?

Table 12: For generative LMs, we generate the natural questions from the cloze-style prompts in LAMA probe. The
table shows the mapping between manual prompts and generated questions.
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Rels in YAGO Generated prompts
Examples

Query Answer
isLocatedIn [X] is loctaed in [Y] The Safety of Objects is located in [MASK] United Kingdom

diedIn [X] died in [Y] Jean Genet died in [MASK] Paris
wasBornIn [X] was born in [Y] Peter Creamer was born in [MASK] Hartlepool
hasGender [X] has gender [Y] Robert Bly has gender [MASK] male
playsFor [X] plays for [Y] Edgardo Abdala plays for [MASK] Huachipato
actedIn [X] acted in [Y] Charles Durning acted in [MASK] Tootsie

happenedIn [X] happened in [Y] Operation Anaconda happened in [MASK] Afghanistan
isAffiliatedTo [X] is affiliated to [Y] Toni Kuivasto is affiliated to [MASK] Helsingin Jalkapalloklubi

directed [X] directed [Y] Charles Walters directed [MASK] Lili
isPoliticianOf [X] is politician of [Y] Mario Monti is politician of [MASK] Italy
isCitizenOf [X] is citizen of [Y] Nusrat Bhutto is citizen of [MASK] Iran
dealsWith [X] deals with [Y] Togo deals with [MASK] France

hasOfficialLanguage [X] has official language [Y] Guntur has official language [MASK] Urdu
edited [X] edited [Y] V. T. Vijayan edited [MASK] Saamy

hasCapital [X] has capital[Y] Jharkhand has capital [MASK] Ranchi
hasNeighbor [X] has neighbor [Y] Poland has neighbor [MASK] Lithuania

created [X] created [Y] Ilaiyaraaja created [MASK] Manassinakkare
livesIn [X] lives in [Y] Bradley Walsh lives in [MASK] Essex

wroteMusicFor [X] wrote music for [Y] Johnson (composer) wrote music for [MASK] Thazhvaram
isMarriedTo [X] is married to [Y] Livia is married to [MASK] Augustus

isConnectedTo [X] is connected to [Y] Manas International Airport is connected to [MASK] Kyrgyzstan
participatedIn [X] participated in [Y] United States Army participated in [MASK] Marinduque

hasChild [X] has child [Y] William Hague has child [MASK] Ron Davies
isInterestedIn [X] is interested in [Y] Muhammad Taqi Usmani is interested in [MASK] Tafsir
hasWebsite [X] has website [Y] Rural Municipality of Frontier No. 19 has website [MASK] www.mds.gov.sk.ca/app
isLeaderOf [X] is leader of [Y] Xi Jinping is leader of [MASK] China

hasWonPrize [X] has won prize [Y] Philip Hall has won prize [MASK] De Morgan Medal
influences [X] influences [Y] James M. Buchanan influences [MASK] Elinor Ostrom

isKnownFor [X] is known for [Y] Friedrich Engels is known for [MASK] Marxism
owns [X] owns [Y] The Walt Disney Company owns [MASK] Walt Disney World

worksAt [X] works at [Y] Nicholas Kemmer works at [MASK] University of Edinburgh
graduatedFrom [X] graduated from [Y] Ann Richards graduated from [MASK] Baylor University

exports [X] exports [Y] Paraguay exports [MASK] electricity
hasCurrency [X] has currency [Y] Portugal has currency [MASK] Euro sign

hasMusicalRole [X] has musical role [Y] Danny Goffey has musical role [MASK] piano
hasAcademicAdvisor [X] has academic advisor [Y] Robert Lee Moore has academic advisor [MASK] Oswald Veblen

imports [X] imports [Y] Puerto Rico imports [MASK] fish

Table 13: The queries generated from YAGO3-10
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