
HMM-Based Voice Separation of MIDI

Performance

Andrew McLeod
University of Edinburgh

Mark Steedman
University of Edinburgh

Abstract

Voice separation is an important component of Music Information Re-
trieval (MIR). In this paper, we present an HMM which can be used to sep-
arate music performance data in the form of MIDI into monophonic voices.
It works on two basic principles: that consecutive notes within a single
voice will tend to occur on similar pitches, and that there are short (if
any) temporal gaps between them. We also present an incremental algo-
rithm which can perform inference on the model efficiently. We show that
our approach achieves a significant improvement over existing approaches,
when run on a corpus of 78 compositions by J. S. Bach, each of which has
been separated into the gold standard voices suggested by the original
score. We also show that it can be used to perform voice separation on
live MIDI data without an appreciable loss in accuracy. The code for the
model described here is available at https://github.com/apmcleod/voice-
splitting.

Keywords: voice, perception, music analysis, software

1 Introduction

Voice separation consists of the allocation of the notes of a given piece of music
into melodic streams; however, it can be difficult to define precisely what consti-
tutes a musical voice. (See Cambouropoulos (2008) for a full discussion on the
different possible definitions). Cognitively, a voice simply refers to any set of
notes which a listener may hear as a coherent melody, no matter whether that
stream is monophonic (consisting of only non-overlapping notes) or polyphonic
(containing any number of simultaneous notes). From a computational stand-
point, however, it can be useful to restrict the definition of a voice to strictly
monophonic streams of notes, especially when performing voice separation as a
preprocessing step for other MIR tasks.

For example, existing work on rhythmic structure detection (van der Weij,
2012), pattern detection (J. Hsu, Liu, & Chen, 2001; de León & Inesta, 2007),
query-by-tapping (Peters, Cukierman, Anthony, & Schwartz, 2006; Hanna &
Robine, 2009), and query-by-humming (Birmingham, Dannenberg, & Pardo,
2006; Ryynanen & Klapuri, 2008) all require monophonic MIDI data as input.

1

Furthermore, even among MIR techniques which can be run on polyphonic
data, many still perform better when run on monophonic input. For example,
Bruderer, McKinney, and Kohlrausch (2012) showed that song segmentation
is consistently more accurate when run on monophonic input. Additionally,
voice separation could be useful as the first step towards a full symbolic-to-
score music model, and it was shown by Berg-Kirkpatrick, Andreas, and Klein
(2014) that the use of such a model improves the accuracy of music transcription
significantly.

However, acquiring appropriate monophonic MIDI data is not always trivial,
especially when looking to evaluate a solution on real world data. There are
some computer generated MIDI data online already separated into monophonic
voices, some of which we have used to evaluate our model, but these are usually
quantized and not from real performances. Therefore, the applicability of such
evaluations to real world performance is not entirely clear.

In this work, we introduce a model which is able to separate polyphonic
MIDI data, including real world and live MIDI performance data, into strictly
monophonic voices which can be used by MIR methods such as those listed
above. Like other voice separation algorithms, it can be run as a preprocessing
step to those existing methods, or as a standalone voice separation model on the
MIDI data itself. Our model allows for some limited overlap between consecutive
notes within a single monophonic voice, and we show that using this feature, its
accuracy remains high when separating live MIDI data into voices.

In Section 2, we will look briefly at some existing solutions to the voice
separation problem, especially those which separate MIDI data into strictly
monophonic voices, with particular attention to principles on which we have
based our model. The model itself, along with an algorithm which can be used
to perform inference on our model efficiently, is described in depth in Section 3,
while Section 4 contains an evaluation of the model’s performance. Finally, we
draw some conclusions and propose future work in Section 5.

2 Related Work

Huron (2001) and Tymoczko (2008) investigate voice leading rules—rules which
govern how voices evolve over time within a single piece—from a cognitive per-
spective, and offer valuable insights into possible voice separation rules, many
of which we have applied to our model. Huron’s Common Tone Rule, Chordal
Tone Rule, and Avoid Leaps Rule all suggest that large melodic intervals be-
tween consecutive notes within a single voice should be avoided, a property
which Tymoczko calls efficient voice leading. Likewise, Huron’s Part-Crossing
Rule and Part Overlap Rule suggest that two separate voices should not cross
in pitch, even if one voice has fallen silent, a concept referred to by Tymoczko
as voice crossings. A third principle suggested by Huron is that of temporal
continuity—the idea that the stream of notes should be relatively continuous
within a single voice, and not have too many gaps of silence. Temperley (2008)
applied many of these concepts to constructing a successful probabilistic model

2

of melodic perception, a task closely related to voice separation.
There are already existing algorithms which perform voice separation, many

of which are based on some of Huron and Tymoczyko’s principles, though not
all of them were designed to be used for the same purpose as our model. Kirlin
and Utgoff (2005), for example, designed a system for voice separation; however,
it uses features related to a song’s time signature and tempo which requires it to
be run on computer generated rather than live MIDI data. Karydis, Nanopou-
los, Papadopoulos, Cambouropoulos, and Manolopoulos (2007) describe a more
cognitively motivated voice separation model which attempts to separate MIDI
data into polyphonic voices, something we avoid, as noted above. The approach
first suggested by Kilian and Hoos (2002) and later expanded upon in a paper
by Kilian (2004) has a large number of parameters which must be adjusted by
the user at run time to produce the desired separation results, and therefore
seems to be most useful as an aid to manual transcription of MIDI.

While the methods above cannot be applied directly to monophonic voice
separation on live MIDI data, that is not to say that all of the concepts and
techniques used by them are irrelevant to the problem. Kilian (2004), for ex-
ample, uses a Gaussian window function in their evaluation of voice continuity,
something which we use as well in our model.

Chew and Wu (2005) propose a heuristic based solution to the monophonic
voice separation problem. Quantized MIDI data are separated into chrono-
logical sections called “contigs,” each of which represents a time period in a
song during which there is a constant number of co-occurring notes. The notes
within these contigs are then separated into monophonic sequences of notes
called “fragments.” Within a contig, no two fragments may cross in pitch. To
join fragments from consecutive contigs into voices, a global optimization ap-
proach is used which minimizes the total pitch difference between consecutive
notes in each resulting voice.

This approach performs well in general, but it has two weaknesses. First,
since it performs a global optimization, it cannot be run in real time on live
input. This may not seem like a problem when voice separation, a relatively
computationally light task, is the only thing being computed on a song, but
when it is only the first task in a series of other, more complicated MIR tasks,
it could become more important. The second drawback is that it will always
group a contig with n co-occurring notes into exactly n voices; however, there
are cases where this is incorrect. For example, in Figure 1, an excerpt from
Bach’s 15th Invention (BWV 786), the first three notes will be grouped into a
single monophonic contig, and then into a single voice, even though the proper
separation would be to assign the first note to one voice, and group the second
and third notes together in a different voice.

Madsen and Widmer (2006) propose a solution based on pitch proximity
which uses a small lookahead and tests all possible combination of grouping notes
into voices within that lookahead. However, the completeness values they report
in evaluation are substantially lower than the average voice consistency results
reported by Chew and Wu (2005) when run on the same MIDI data. Madsen
and Widmer themselves note that the two metrics are comparable (2006), so

3

Figure 1: The first bar of the 15th Invention by Bach (BWV 786).

the difference between their scores cannot be written off as simply a difference
between the evaluation metrics used.

Jordanous (2008) proposes a probabilistic solution to voice separation based
roughly on Chew and Wu’s method in that the MIDI data is first searched
globally for periods during which the voice structure is more obvious. Then, the
surrounding notes are assigned to voices based on voice transition probabilities
learned from the data. There are, however, two drawbacks to this method.
First, similarly to Chew and Wu’s, the global search cannot be performed in
real-time on live input. Second, though the probabilities are based on pitch
differences within a voice, temporal gaps between consecutive notes within a
voice are disregarded.

Duane and Pardo (2009) proposed a heuristic solution where each note in
an input MIDI file is treated as a node on graph, and edges are added to that
graph grouping the corresponding notes into voices. Constraints are placed
on which edges can be added to the graph so that the resulting voices are
always monophonic. The program decides which edges to add based on a weight
function dependent on each note pair’s pitch and temporal difference. Nodes
are first grouped into segments based on note onset times, and edges are added
between nodes within each segment. Then, the segments themselves are tied
together with edges based on another weighting function.

3 Proposed Solution

Our model, an HMM, is loosely based on Huron and Tymoczko’s principles of
pitch closeness and temporal continuity as described in Section 2 above. The
model itself is presented in Section 3.1, and we present an algorithm which can
be used to perform inference on our model incrementally in Section 3.2. A
worked example of our model being run on some MIDI data is shown in Section
3.3.

Our solution has a few advantages over some of the existing solutions. For
one, it allows for notes within a single voice to overlap slightly, which eliminates

4

the need to perform any preprocessing such as quantization on MIDI input as
some other solutions require. Additionally, our model can be run incrementally
since it does not set the number of voices in a song to some constant value before
beginning separation (many existing algorithms set this to the greatest number
of concurrent notes in the song). The fact that our model does not constrain
voices to non-overlapping notes allows it to be run on MIDI data generated
from live performances, while the incrementality of our algorithm allows it in
principle to be run in real time, for example, on a live stream of MIDI data.

Before getting into any more details, it will be useful to define the relevant
properties of a MIDI note n: number, onset time, and offset time. A note’s
number Num(n) is an integer on the range [0 − 127] representing its pitch in
equally-tempered keyboard semitones, where 72 corresponds to C4. A note’s
onset time On(n) represents the number of microseconds between the beginning
of the song and the onset of the note. Similarly, a note’s offset time Off(n),
represents the number of microseconds between the beginning of the song and
the offset of the note. It is also useful to define the duration of a note as the
difference of its offset and onset times as in Equation (1).

Dur(n) = Off(n)−On(n) (1)

3.1 Model

Our model is an HMM where each state S represents a list of monophonic
voices Vi. A voice V is a list of notes n1→n ordered by onset time, where
On(ni) < On(ni+1). Within a single state, no two voices may contain the same
note. Furthermore, since we will apply our model to live MIDI performance
data, rather than just computer generated MIDI, we allow for some minimal
overlap between consecutive notes within a voice to account for cases where
the performer may remain on a note while beginning to play the next (a brief
discussion of how often and to what magnitude this occurs in the data is found
in Section 4.1). Specifically, we allow notes ni and ni+1 to overlap if and only if
Equations (2) and (3) are both satisfied. Equation (2) ensures that the duration
of the overlap comprises at most half of the duration of the first note involved,
while Equation (3) ensures that the overlap does not continue for the entirety
of the second note.

Off(ni)−On(ni+1) ≤ Dur(ni)

2
(2)

Off(ni) < Off(ni+1) (3)

Each voice V also has a pitch, calculated by the function given in Equation (4),
where l is a tunable constant. A voice’s pitch is simply a weighted average of
its l most recent notes, where each successive note is weighed more heavily than
the previous note by a factor of two. This allows the voices to gradually change

5

in pitch over time while still enforcing Huron’s Avoid Leaps Rule.

Pitch(V) =

min(l,|V |)∑
i=0

(2i ∗Num(n|V |−i))

min(l,|V |)∑
i=0

2i

(4)

Since the onset and offset times of each note are unbounded, and there are
likewise an unbounded number of notes in a given MIDI file, the state-space
of our model is of infinite size. Thus, instead of using discrete transition and
emission probabilities, we use transition and emission functions.

The emission function for each state is entirely deterministic; each state has
exactly one possible emission with probability 1, although multiple states do
have identical emissions. Each state outputs a set N of MIDI notes, where each
note n within N has an equal onset time. That is, ∀n, n′ ∈ N,On(n) = On(n′).
Specifically, a state S outputs a set N of all MIDI notes n contained in any
voice V ∈ S which satisfy Equation (5). Conceptually, N is the set of the most
recently played notes within the state.

On(n) = Max(On(n′)), ∀n′ ∈ V,∀V ∈ S (5)

Before we define our transition function, we must define precisely what tran-
sitions exist within our model. A state S has a transition to state S′ if and only
if the following two conditions are satisfied: (1) the set of notes contained by
any voice in S′ which are not contained by any voice in S must be exactly the
set of notes determined by the emission function of S′ as defined above; and (2)
removing those notes from the voices of S′, and then removing any voices from
S′ which become empty as a result, must produce exactly the voices of S, and
these voices must appear in exactly the same order.

This transition from S to S′ is represented by TS,N,W , where S is the original
state, N is a list of the notes from the emission function of S′ ordered by
increasing pitch, and W is a list of integers with exactly one element for each
note ni ∈ N , where wi represents the voice V ∈ S to which the corresponding
note ni should be added. No two wi should be equal, and ∀wi, abs(wi) ≤
|S| + Count(wi < 0). Each TS,N,W represents one individual note transition
for each (ni, wi) pair. These note transitions are handled in order of increasing
abs(wi), and the value of wi represents the following: if wi < 0, add ni to a new
voice V inserted at the with index of S; if wi > 0, add ni to the existing voice
Vwi ∈ S.

We can now define the probability of a given transition TS,N,W as simply
the product of the probabilities of each individual note transition within it, as
shown in Equation (6), times an order score which penalizes a note being added
to a voice out of pitch order.

P(TS,N,W) =
∏

0≤i≤|N |

P(S, ni, wi) ∗ order(S, ni, wi) (6)

6

The order function by default returns 1, but that value is divided by two for
each of the following cases that applies:

1. |w| > 1 and Pitch(V|w|−1) > Num(n)

2. 0 < w < |S| and Pitch(Vw+1) < Num(n)

3. −|S| ≤ w < 0 and Pitch(V|w|) < Num(n)

Case 1 is applicable when a note will be added to a voice and the preceding
voice in the state (if one exists) has a greater pitch than the number of the note,
while cases 2 and 3 are mutually exclusive based on the sign of w, but each
applies when a note will be added to a voice and the succeeding voice in the
state (if one exists) has a lower pitch than the number of the note. Together,
the cases of the order function work to minimize voice crossings, though such
crossings are not disallowed completely.

The probability of each individual note transition is the product of its pitch
score and its gap score, or a tunable constant if the note will be added to a new
voice, as shown in Equation (7).

P(S, n,w) =

{
pitch(S, n,w) ∗ gap(S, n,w) w > 0

snew w < 0
(7)

A note transition’s pitch score is used to minimize melodic jumps within a voice,
and is computed using the Gaussian window function as shown in Equations (8)
and (9), where σp is a tunable parameter. A note transition’s gap score is used
to prefer temporal continuity within a voice, and is computed using the max
function shown in Equation (10) on the result of the logarithmic function in
Equation (11), where σg and gmin are both tunable parameters.

pitch(S, n,w) = Gauss(Num(n)− Pitch(Vw), σp) (8)

Gauss(µ, σ) = e−
1
2 (
µ
σ)

2

(9)

gap(S, n,w) = Max (g(S, n,w), gmin) (10)

g(S, n,w) = ln

(
−On(n)−Off(last(Vw))

σg
+ 1

)
+ 1 (11)

Note that the offset time of the note within a voice is not used in any of the
above equations, so any two notes with equal pitch and onset time are treated
as equally likely by our model, regardless of their offset times (given that each
transition will create a valid resulting state). Note also that the transition
probabilities out of a given state do not necessarily sum to 1, but this is not
important, as the values can be normalized with a constant factor.

7

3.2 Inference

To find the most likely final state given our observed note sets we use a slightly
modified Viterbi algorithm. (See Viterbi (1967) for an overview of the algo-
rithm.) Our observed data are the notes found in a given MIDI file, ordered by
onset time. If multiple notes have equal onset time, they are observed as a set.

We made two modifications to the Viterbi algorithm, each related to reducing
the search space of the algorithm, since the size of the search space increases
exponentially without any constraints. The first modification is applied when
adding a note into a new voice. Specifically, we only check those voice indices w
which have the maximum order score of any valid index. In practice, this ensures
that we only try to insert a new voice in pitch order with the surrounding voices
when those voices have not crossed. (When any surrounding voices have crossed,
we try to insert the new voice at every index bordering those voices). Secondly,
we use beam search with a tunable beam size b. After each iteration of the
algorithm, we save only the b most likely states given the observed data to that
point.

3.3 Example

To help illustrate the workings of the model, we will now go through an example
of the Viterbi algorithm being run on it, given the MIDI data shown in Figure
2 (and assuming some reasonable setting of the parameters). Here, the notes
have been color-coded according to the voice to which each will be assigned
by our model. For a diagram of this example, see Figure 3 where each note
n is represented as [Num(n),On(n)], and voices within a state hypothesis are
grouped using braces. For simplicity, we will use a beam size of 2 in this example.

The initial state, S0, is empty, as no notes have been observed yet. After
seeing N1, there is no decision to be made, as the only valid transition is to add
the observed note into a new voice. Upon observing N2, we again have only one
valid transition to check. We cannot add this new note into the existing voice
because it fails the overlap constraint in Equation (2), and the new voice must
be placed at index 2 of our state due to it being out of pitch order with the
existing V1, because of the optimization mentioned in Section 3.2.

Once we observe N3, however, there are a few possible state transitions to
check. Trivially, we could add the new note into a new voice at index 2 (the
other indices would be out of pitch order again), but assuming that snew has
been set sufficiently low, this transition will not be saved due to our beam size
of 2. The new note could also be added to either of the existing voices. Both
the pitch score from Equation (8) and the gap score from Equation (10) are
slightly greater when adding the new note to V2, so we assign that transition a
higher probability.

Next, we observeN4, and out of each current hypothesis state, besides adding
any new voices, the only valid transition is that which adds the new note into
the voice which does not currently contain the note [71, 78], due to Equation
(2). The difference in probability between the two remaining transitions is about

8

Pitch

Time (ms)0 40 80 120 160 200

70

71

72

73

Figure 2: An example of the notes that might be found in a MIDI file. Here,
each note is color-coded based on the voice to which our HMM would assign it.

a factor of 2, since performing the given transition on the current most likely
hypothesis state introduces a pitch crossing, and therefore has an order score
of 1/2 in Equation (6), due to case 1. Therefore, the two current hypothesis
states each perform the transition and then switch in order, as indicated by the
arrows in the diagram.

Finally, we observe N5, and out of each current hypothesis state, besides
adding any new voices, the only valid transition is that which adds the new
note into the voice which does not currently contain the note [70, 120], due to
Equation (3). So, we perform the valid transition on each hypothesis state, and
the orders will not change due to the transition probabilities being relatively
close to each other.

4 Evaluation

4.1 Corpora

We evaluated our model on six distinct corpora:

1. The 15 two-part inventions by J. S. Bach.1

2. The 15 three-part sinfonias by J. S. Bach.1

3. The 24 fugues from The Well-Tempered Clavier, Book 1 (WTC I) by J.
S. Bach.2

4. The 24 fugues from The Well-Tempered Clavier, Book 2 (WTC II) by J.
S. Bach.2

5. The 28 movements from String Quartets, Op. 1, by J. Haydn.3

1The inventions and the sinfonias were acquired from www.imslp.org.
2The fugues were acquired from www.musedata.org.
3The quartets were acquired from www.kunstderfuge.com

9

S0 S1 S2 S3 S4 S5

N1 N2 N3 N4 N5

[70, 0] [73, 12] [71, 78] [70, 120] [73, 184]

{[70, 0]} {[70, 0]}
{[73, 12]}

{[70, 0]
[71, 78]}
{[73, 12]}

{[70, 0]
[70, 120]}
{[73, 12]
[71, 78]}

{[70, 0]
[70, 120]}
{[73, 12]
[71, 78]
[73, 184]}

{[70, 0]}
{[73, 12]
[71, 78]}

{[70, 0]
[71, 78]}
{[73, 12]
[70, 120]}

{[70, 0]
[71, 78]
[73, 184]}
{[73, 12]
[70, 120]}

Figure 3: An example of our model being run on the MIDI notes from Figure 2
with a beam size of 2. Each observed note set’s border, and each note, is color-
coded based on the voice to which it is finally assigned. The two most likely
state hypotheses at each step are listed in the large rectangles above the state
diagram, with the more likely hypothesis appearing on the bottom row. Each
state hypothesis has an incoming arrow indicating which prior state hypothesis
was used to transition into that state.

10

6. The 19 live performances of J. S. Bach inventions (5), fugues (5), and
preludes (9) (from WTC I and WTC II) from the CrestMusePEDB, in-
troduced by Hashida, Matsui, and Katayose (2008).

The first five corpora all consist of computer generated MIDI data, which are
separated into multiple tracks within each MIDI file. Each track corresponds to
an individual fugal voice in the Bach compositions (as suggested by the original
scores). The tracks were used as gold standard voices for these five corpora. In
the case of the sixth corpus, we separated the MIDI data into tracks ourselves
manually, each corresponding to a voice as suggested by the original scores. In
the Haydn quartets, the tracks were separated by instruments, and we used
these as the gold standard, as Duane and Pardo (2009) also did; however, these
gold standard voices may not be entirely correct (as they also noted), since the
melody often switches between instruments, especially between the two violin
parts.

In rare cases, most often on the final note of a piece, a single voice may
contain a chord. This is a problem for our gold standard since we want to
separate the pieces into strictly monophonic voices. In such cases, we manually
removed all but the lowest-pitched note in the chord. This makes musical sense,
since it has been suggested by Dixon (2001) among others that a notes with
lower pitches are more salient than those with higher pitches.

The inventions are the simplest of the compositions, each containing ex-
actly two voices. The sinfonias are slightly more complicated, containing three
voices each, and the fugues are the most complicated of the Bach compositions,
sometimes even containing more than four voices. The quartets each consist of
exactly four parts, but they can be more complicated than the fugues in that
the different parts, especially the two violin parts, are liable to cross in pitch
during a piece. The live performances are difficult in that the data is not clean.
That is, note onsets which, in the score, occur immediately after another note’s
offset, may not occur precisely at that time. This adds some noise into the data
and makes voice separation more difficult.

The extent of this noise is quantified by the histogram in Figure 4. We
measured the gap length between each pair of consecutive notes within every
voice of the live performances, omitting those pairs which are separated by a
rest in the score, resulting in a total of 12868 note pairs. We then normalized
the gap lengths by the duration of the initial note, and separated the resulting
gap length percentages into the buckets shown. Each bucket contains those
percentages within 5% of the bucket label, with the exception of the bucket
labeled “40+”, which contains all gap length percentages greater than 35%.
A negative value indicates an overlap between notes, while a positive value
indicates a gap. It can be seen that, while about 40% of consecutive note pairs
have only a minimal overlap or gap, greater than 10% of them overlap by at least
one quarter of the initial note’s duration, and an additional 10% are separated
by a gap of at least that length. Note that performing the same calculation on
any of the other corpora would result in every note pair having a gap length of
exactly 0.

11

-60 -50 -40 -30 -20 -10 0 10 20 30 40+
0

1,000

2,000

3,000

4,000

5,000

18 82
413

1,192

2,069
1,596

5,161

611
384

168

1,174

Gap Length Percentage

C
o
u

n
t

Figure 4: A histogram of the gap lengths between consecutive notes in the live
performances, omitting those separated by a rest in the score, normalized as a
percentage of the initial note’s duration. Each bucket contains those percentages
within 5% of the bucket label, with the exception of the bucket labeled “40+”,
which contains all gap length percentages greater than 35%. A negative value
indicates an overlap between notes, while a positive value indicates a gap.

12

4.2 Metrics

We use two different evaluation metrics: Average Voice Consistency, as intro-
duced by Chew and Wu (2005); and F-measure, as used by Duane and Pardo
(2009). Specifically, we use Average Voice Consistency to compare against Chew
and Wu’s results, as we were unable to get their implementation. They evalu-
ated on only the first four corpora of our data. We also report F-measure values
for all of our corpora, and use it to compare against Duane and Pardo’s results.
They originally evaluated on the first five corpora we used, but we have their
implementation and will also report their results on our sixth corpus.

Before we can explain Average Voice Consistency, a couple of definitions are
needed. First, let voice(n) be the ground truth voice to which a note n belongs.
Second, let voice(V) be the voice to which the majority of notes n ∈ V belong.
Then the Voice Consistency of a voice VC(V) is given by Equation (12).

VC(V) =
|{n ∈ V : voice(n) = voice(V)}|

|V |
(12)

The Average Voice Consistency of a given voice separation hypothesis state
S is simply an average of the Voice Consistencies of every voice V ∈ S as shown
in Equation (13).

AVC(S) = 100 ∗

∑
V ∈S

VC(V)

|S|
(13)

The F-measure we use is just the standard F-measure, where we treat the
voice separation problem as one of binary classification where between each
pair of notes, our model must decide whether the two notes occur consecutively
within a single voice or not. Then, the F-measure is calculated by Equation
(14).

F-measure = 2
precision ∗ recall

precision + recall
(14)

4.3 Training

To train our model, we used a grid search. For each of the parameters, we
manually set a minimum and a maximum value, both inclusive. For some, we
also set a minimum step size, limiting the number of values to check even if the
grid size we picked was very small. See Table 1 for these values for each of our
model’s parameters. For all training, our beam size is restricted to 10. This is
done to speed up training time, though during testing we use a beam size of 25.

We use different training set splits for each of our test sets to avoid overfit-
ting. When evaluating on the inventions, we trained on the sinfonias and the
fugues from both books one and two. When evaluating on the sinfonias, we
trained on the inventions and the fugues from both books one and two. When
evaluating on the fugues from books one and two, we trained on the inventions

13

Parameter Min Max Min Step
l 1 12 1
snew 1× 10−11 1× 10−7 0
σp 3 9 0.5
gmin 1× 10−6 0.1 0
σg 10000 1000000 0

Table 1: The minimum, maximum (both inclusive), and minimum step settings
used for each parameter during our grid search.

Corpus l snew σp gmin σg
Inventions 6 1× 10−9 4 8× 10−4 127000
Inventions∗ 9 3× 10−8 6 9× 10−5 127000
Sinfonias 5 4× 10−8 4 9× 10−5 127000
Sinfonias∗ 9 2× 10−8 6 6× 10−5 127000
WTC I & II 11 5× 10−10 4 7× 10−5 224000
WTC I & II∗ 9 1× 10−9 5.5 8× 10−5 224000
Haydn 1 9 1× 10−10 4 9× 10−5 321000
Haydn 2 8 2× 10−11 5 8× 10−5 321000
Haydn 3 7 2× 10−8 7.5 0.01 20000
Haydn 4 7 1× 10−9 4 8× 10−5 321000
Haydn 5 9 1× 10−9 4 7× 10−5 321000
Haydn 6 7 1× 10−11 4 8× 10−5 321000
Live Inventions 7 1× 10−9 4 0.01 515000
Live WTC 6 3× 10−8 6 0.01 806000

Table 2: The parameter settings used when evaluating our model on our dif-
ferent test sets. A * denotes where we have trained to optimize Average Voice
Consistency rather than F-measure.

and the sinfonias. When evaluating on the Haydn quartets, we used leave-one-
out cross validation between the six different quartets within the corpus. That
is, for each of the six quartets, we trained on the other five when evaluating on
the sixth. When evaluating on the live corpus from the CrestMusePEDB, we
trained on the computer generated inventions, sinfonias, and fugues from both
book one and two. The parameter settings used when evaluating each set of
MIDI data are shown in Table 2.

4.4 Results

First, we will present our Average Voice Consistency results on Bach’s inven-
tions, sinfonias, and fugues from WTC I & II, and compare them to those
reported by Chew and Wu (2005). They evaluated on the same pieces, though
they handled chords by not separating the last few notes of each of their MIDI

14

MIDI Data Chew and Wu (2005) This Work
Inventions 99.29 99.30
Sinfonias 93.35 94.30
WTC I & II 84.39 88.23
Overall 88.98 91.53

Table 3: A comparison of Average Voice Consistencies between our work and
those reported by Chew and Wu (2005).

performances. Still, the results are comparable, and they are shown in Table
3. It is important to note that the scores found in this table are averaged over
all pieces in each category. That is, a value of 99.29 on the Inventions means
that the mean Average Voice Consistency over all 15 Inventions was 99.29. The
overall score is likewise an average over all of the pieces.

Our model sees a significant improvement over Chew and Wu’s results, espe-
cially in the fugues. Both our improvement there and our overall improvement
are statistically significant at the 0.05 level. We don’t see much improvement
on the inventions or the sinfonias, most likely due to those pieces being simpler
than the fugues. With only two or three parts, there are fewer mistakes to be
made, and therefore, there is much less room for improvement.

Here, we will look more closely at one simple case where our model outper-
forms Chew and Wu’s, specifically the 15th invention (BWV 786), which was
mentioned in Section 2 above. The first bar’s MIDI notation is reproduced here
in Figure 5. The white notes are all part of one voice, and the black notes are
all part of a second voice. Both our model and Chew and Wu’s program get
this correct. However, while Chew and Wu’s program incorrectly groups the
gray note with the white notes, our model is able to correctly group it with the
black notes. This is entirely due to Chew and Wu’s constraint that portions of
a song with the same number of simultaneous notes (in this case one), must be
grouped into exactly that many voices.

Next, we will present our model’s F-measure results, and compare them
against those which we got by running Duane and Pardo’s (2009) program (the
highest scoring of those mentioned in Section 2) on our data. We see definite
improvement over their results among the Bach piano pieces, significantly for the
sinfonias and the fugues, as shown in Table 4. On the Haydn quartets, however,
our model performs slightly (though not significantly) worse than theirs, though
we believe this to be due to the problem with the gold standard as mentioned
in Section 4.1 above. On the live Bach performances, we again see significant
improvement, this time on both the inventions and the WTC performances.

Diving more deeply into the results, it appears that most of our improvement
of Duane and Pardo’s work has come because our model more aggressively joins
notes together into voices. That is, most of the errors that their program has
which ours corrects are false negatives on their part. This occurs most often
when a voice contains a rest, and is therefore absent from a piece for a beat or

15

+ + + +1.1 1.2 1.3 1.4
45

50

55

60

65

70

Pitch

Beat

Figure 5: Invention 15 (BWV 786) in MIDI notation. The white notes all belong
to one voice, and the black notes another. The gray note is the one which would
be incorrectly grouped with the white notes by Chew and Wu’s program, though
our model groups it correctly with the black notes.

MIDI Data Duane and Pardo (2009) This Work
Inventions 0.98 0.99
Sinfonias 0.91 0.97
WTC I 0.92 0.97
WTC II 0.91 0.96
WTC I & II 0.91 0.97
Haydn 0.80 0.79
Live Inventions 0.91 0.97
Live WTC 0.82 0.91

Table 4: A comparison of the F-measures achieved by our model and those
achieved by the program described by Duane and Pardo (2009).

16

+ + + +18.3 18.4 19.1 19.2
50

55

60

65

70

75

80

Pitch

Beat

Figure 6: A MIDI representation of a portion of bars 18 and 19 from the 1st
fugue in the Well-Tempered Clavier (BWV 846). Each color represents a dif-
ferent voice. The two bold notes are those which Duane and Pardo’s program
does not join into a single voice, though our model does.

+ + + +8.1 8.2 8.3 8.4
45

50

55

60

65

70

75

80

Pitch

Beat

Figure 7: A MIDI representation of the beginning of bar 8 from the 41st fugue
in the Well-Tempered Clavier (BWV 886). Each color represents a different
voice, and the arrows represent mistakes made by our model.

more. For example, in bars 18 and 19 of the first fugue from the Well-Tempered
Clavier (BWV 846), one of the voices rests for two beats. This is shown in
Figure 6, where the bold notes are those which our model correctly joins, but
Duane and Pardo’s program fails to.

An example where our model separates voices incorrectly is in the 8th bar
of the fugue from the 41st fugue in the Well-Tempered Clavier (BWV 886). A
MIDI representation of that bar, in which the correct voices have been color-
coded, is shown in Figure 7. The difficulty here is that the highest voice (white)
ends at the exact same time that the lowest voice (black) begins. Rather than
starting a new voice, our model incorrectly shifts each existing voice down one
as shown by the arrows in the figure.

One thing which might help our model in separating the voices properly in
cases such as this is looking for repeated patterns in the music. In the piece

17

+ + + +73.1 73.2 73.3 73.4
60

65

70

Pitch

Beat

Figure 8: A MIDI representation of the middle two voices, color-coded, during
the 73rd bar of the fourth fugue in the Well-Tempered Clavier (BWV 849).
Here, our model does not detect that the two voices have crossed even though
this should be clear based on the rhythms of each of the voices. (The white
notes are thicker here only so the crossing is easier to see.)

from this example, each time a new voice enters, it plays the same pattern of
notes for two bars. A model which is able to detect such patterns would be able
to recognize that pattern occurring in the lowest voice and infer that those notes
likely belong to a new voice. Additionally, the second-to-lowest voice (dark gray)
is still playing the tail end of that pattern, and thus should probably continue
the pattern as the dark gray notes in the figure do.

Another example of when our model errs is when two voices cross. Such cases
are difficult in general, given that the tendency of voices is not to cross; however,
sometimes, there are enough rhythmic or harmonic clues that a model should be
able to detect that the voices are crossing. For example, in the 73rd bar of the
fourth fugue in the Well-Tempered Clavier (BWV 849), the two middle voices
cross. (The two voices in question are reproduced, color-coded, in Figure 8).
The white voice contains only half notes, while the black voice contains only 8th
notes. A model which is able to take such rhythmic information into account
should be able to detect the correct voice separation in this case.

5 Conclusion

In this paper, we have presented a new model for separating polyphonic MIDI
data into a set of monophonic voices, and argued that this sort of model can
play a central role in other MIR tasks. We have shown that our model achieves
a significant improvement over an existing solutions on a corpus of Inventions,
Sinfonias, and Fugues by J.S. Bach, and shown that it still achieves good results
when run on live performance data.

One advantage of our model is that it can be evaluated incrementally, and
can therefore be run in real time,before the entire piece is available. In addition,
it is more flexible than existing approaches in not defining the number of voices
solely as the number of concurrent notes in a given song. Rather, it takes into
account other factors which may align more closely with that song’s true voice
separation.

18

A shortcoming of the model is that it is easily confused by long range de-
pendencies. For example, if there is a long rest in one or more voices, our model
sometimes has trouble deciding where to assign the notes which follow the rest.
It was shown by Granroth-Wilding and Steedman (2014), that long range har-
monic dependencies do exist in music, and can be parsed successfully. One
thing which might solve this and other mistakes which our model makes would
again be to incorporate some knowledge of rhythmic, melodic, and harmonic
patterns into it, as mentioned in relation to Figures 7 and 8 above. This could
be accomplished either by rule, in the style of Steedman (1977), or by using a
pattern detection algorithm, such as the one proposed by J.-L. Hsu, Liu, and
Chen (2001), recalculating our model’s transition probabilities by increasing the
probabilities of those transitions which would continue some pattern.

We plan to update our model to use learned transition probability distribu-
tions rather than our somewhat naive Gaussian window and log score functions.
We were unable to learn transition probabilities because of our small data set
and large state space, but with a larger corpus of data, we will be able to apply
machine learning to more closely approximate the true probability distributions
of transitions with different pitch and gap differences, which could significantly
improve our model’s performance.

References

Berg-Kirkpatrick, T., Andreas, J., & Klein, D. (2014). Unsupervised Tran-
scription of Piano Music. In Advances in neural information processing
systems (pp. 1538–1546). NIPS.

Birmingham, W., Dannenberg, R., & Pardo, B. (2006). Query by humming with
the vocalsearch system. Communications of the ACM , 49 (8), 49–52.

Bruderer, M., McKinney, M., & Kohlrausch, A. (2012). Perceptual evaluation
of musicological cues for automatic song segmentation. Psychomusicology:
Music, Mind and Brain, 22 (1), 3.

Cambouropoulos, E. (2008, September). Voice And Stream: Perceptual And
Computational Modeling Of Voice Separation. Music Perception, 26 (1),
75–94.

Chew, E., & Wu, X. (2005). Separating voices in polyphonic music: A con-
tig mapping approach. In U. Wiil (Ed.), Computer music modeling and
retrieval (Vol. 3310, pp. 1–20). Berlin, Heidelberg: Springer.

de León, P., & Inesta, J. (2007). Pattern recognition approach for music style
identification using shallow statistical descriptors. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
37 (2), 248–257.

Dixon, S. (2001, March). Automatic Extraction of Tempo and Beat From
Expressive Performances. Journal of New Music Research, 30 (1), 39–58.

Duane, B., & Pardo, B. (2009). Streaming from MIDI using constraint satisfac-
tion optimization and sequence alignment. Proceedings of the International
Computer Music Conference, 1–8.

19

Granroth-Wilding, M., & Steedman, M. (2014, June). A Robust Parser-
Interpreter for Jazz Chord Sequences. Journal of New Music Research,
43 (4), 355–374.

Hanna, P., & Robine, M. (2009). Query by tapping system based on alignment
algorithm. In Acoustics, speech and signal processing, 2009. icassp 2009.
ieee international conference on (pp. 1881–1884).

Hashida, M., Matsui, T., & Katayose, H. (2008). A New Music Database De-
scribing Deviation Information of Performance Expressions. International
Conference of Music Information Retrieval (ISMIR), 489–494.

Hsu, J., Liu, C., & Chen, A. (2001). Discovering nontrivial repeating patterns
in music data. Multimedia, IEEE Transactions on, 3 (3), 311–325.

Hsu, J.-L., Liu, C.-C., & Chen, A. L. P. (2001). Discovering Nontrivial Repeat-
ing Patterns in Music Data. , 3 (3), 311–325.

Huron, D. (2001, September). Tone and voice: A derivation of the rules of
voice-leading from perceptual principles. Music Perception, 19 (1), 1–64.

Jordanous, A. (2008, aug). Voice separation in polyphonic music: A data-driven
approach. In International computer music conference 2008. ICMC.

Karydis, I., Nanopoulos, A., Papadopoulos, A., Cambouropoulos, E., &
Manolopoulos, Y. (2007). Horizontal and vertical integration/segregation
in auditory streaming: a voice separation algorithm for symbolic musical
data. In Proceedings 4th sound and music computing conference (smc2007)
(pp. 299–306). SMCC.

Kilian, J. (2004). Inferring Score Level Musical Information From Low-Level
Musical Data (Unpublished doctoral dissertation). TU Darmstadt.

Kilian, J., & Hoos, H. (2002). Voice separation-a local optimization approach.
In Ismir.

Kirlin, P., & Utgoff, P. (2005). VOISE: Learning to Segregate Voices in Explicit
and Implicit Polyphony. Proceedings of the Sixth International Conference
on Music Information Retrieval .

Madsen, S. T., & Widmer, G. (2006). Separating voices in MIDI. ISMIR,
57–60.

Peters, G., Cukierman, D., Anthony, C., & Schwartz, M. (2006). Online music
search by tapping. In Ambient intelligence in everyday life (pp. 178–197).
Springer.

Ryynanen, M., & Klapuri, A. (2008). Query by humming of midi and audio
using locality sensitive hashing. In Acoustics, speech and signal processing,
2008. icassp 2008. ieee international conference on (pp. 2249–2252).

Steedman, M. (1977, jan). The Perception of Musical Rhythm and Metre.
Perception, 6 (5), 555–69.

Temperley, D. (2008, February). A Probabilistic Model of Melody Perception.
Cognitive Science, 32 (2), 418–444.

Tymoczko, D. (2008, March). Scale Theory, Serial Theory and Voice Leading.
Music Analysis, 27 (1), 1–49.

van der Weij, B. (2012). Subdivision-Based Parsing of Expressively Performed
Rhythms (Unpublished master’s thesis). University of Edinburgh.

20

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. Information Theory, IEEE Transactions
on, 13 (2), 260–269.

21

