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ABSTRACT

Analysing music resembles natural language parsing in
requiring the derivation of structure from an unstructured
and highly ambiguous sequence of elements, whether they
are notes or words. Such analysis is fundamental to many
music processing tasks, such as key identification and
score transcription.

The focus of the present paper is on harmonic analy-
sis. We use the three-dimensional tonal harmonic space
developed by [4, 13, 14] to define a theory of tonal har-
monic progression, which plays a role analogous to se-
mantics in language. Our parser applies techniques from
natural language processing (NLP) to the problem of
analysing harmonic progression. It uses a formal gram-
mar of jazz chord sequences of a kind that is widely used
for NLP, together with the statistically based modelling
techniques standardly used in wide-coverage parsing, to
map music onto underlying harmonic progressions in the
tonal space.

Using supervised learning over a small corpus of jazz
chord sequences annotated with harmonic analyses, we
show that grammar-based musical parsing using simple
statistical parsing models is more accurate than a baseline
Markovian model trained on the same corpus.

1. INTRODUCTION

Musical meter, melody and harmonic progressions exhibit
hierarchical structure, similar to the structure found in the
prosody and syntax of language. In linguistics, this is
analysed using tree diagrams to represent recursive divi-
sions of constituents in a passage of text or speech down
to the level of individual words. Research in natural lan-
guage processing has developed an armoury of techniques
to process this structure, many of which may be equally
applied to interpretation of music.

Analysing a sentence’s syntactic structure, or parsing
the sentence, is often a prerequisite to semantic interpreta-
tion. The analysis is typically highly ambiguous, even for
moderately long sentences. The field of statistical parsing
aims to overcome the ambiguity by reference to knowl-
edge of commonly occurring constructions. In music, a
similar sort of structural analysis over a sequence of notes
is fundamental to tasks such as key identification and can
play an important role in others, like song recognition.

These tasks in general depend on both harmonic and met-
rical analyses.

We focus here on harmonic analysis. We use a three-
dimensional tonal harmonic space ([4, 13, 14, 15]). This
representation provides the basis for a theory of tonal har-
monic progression. The framework allows us to analyse
the relationships between the chords underlying a passage
of music and the relationship of the notes to their under-
lying chords. We treat the analysis of the tonal relations
between chords analogously to the logical semantics of
a sentence. By defining a representation of movements
in the tonal space in a form similar to logical representa-
tions of natural language semantics, we are able to apply
techniques from NLP directly to the problem of harmonic
analysis.

We use a formal grammar of jazz chord sequences in
a formalism based closely on one used for NLP. We then
use modelling techniques commonly applied to the task
of statistical parsing of natural language sentences with
such grammars to map music, in the form of chord se-
quences, onto its underlying harmonic progressions in the
tonal space. In the present paper, we omit the details of the
representation of tonal space movements as formalized in
the grammar (the semantics), and the syntactic component
of the grammar. Instead we introduce the structures that
the grammar is designed to analyse and focus on the sta-
tistical parsing techniques and their performance on the
harmonic analysis task.

We use supervised learning over a small corpus of
chord sequences (76 songs, ∼3k chords) of jazz stan-
dards from lead sheets used by performers, annotated by
hand with harmonic analyses that we treat as a gold stan-
dard. We describe some experiments comparing the use
of grammar-based musical parsing aided by simple statis-
tical parsing models from NLP to a baseline Markovian
model that also produces an analysis in the tonal space.
We show that the grammar-based model performs better
than the baseline model at producing a tonal space analy-
sis matching the hand-annotated gold standard.

[18] presented a small, context-free syntactic grammar
of jazz chord sequences designed to capture twelve-bar
blues chord sequences. [19] further developed the blues
grammar, using a syntactic formalism and language of
harmonic analysis that form the basis for those used in
the present work to construct a wider-coverage grammar
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of tonal jazz chord sequences. The present paper uses sta-
tistical models to apply the grammar to an analysis task.
[5] and [16] have proposed a syntactic model of harmonic
structure closely related to that we employ. The exper-
iments we present provide further support for structured
approaches to musical analysis and the use of techniques
adapted from NLP.

2. MUSICAL SYNTAX

The syntax of tonal harmony and that of natural language
can both be analysed using tree structures, and both have
been claimed to feature formally unbounded embedding
of structural elements ([10, 12, 18, 16]).

2.1. Cadences

The cadence, built from tension-resolution relationships
between chords, forms the basic unit of harmonic struc-
ture. Large structures, which we will refer to as extended
cadences, are made up of successive tension-resolution
patterns chained together. There are two main varieties
of cadence. An authentic (or perfect) cadence consists of
a tension chord rooted a perfect fifth above its subsequent
resolution. The tension chord is called a dominant chord.
A plagal cadence consists of a tension chord rooted a per-
fect fourth above its resolution. Such a tension chord is a
subdominant chord. In both cases, the resolution chord is
classified as a tonic chord.

The identification of an occurrence of a chord with
its role in one of these structures is referred to as its func-
tion. It partly establishes the chord’s place in the harmonic
structure of the musical passage. A particular chord type,
say a G major triad, may function either as a dominant
or subdominant tension chord, or as a tonic resolution, on
different occurrences within the same piece.

A tension chord may resolve by the expected interval
to another chord which is also cadential and thus creates
a further tension and itself resolves subsequently. Such a
definition is recursive, and extended cadences can accord-
ingly be indefinitely extended. This kind of extension may
be applied to either type of cadence, though it is uncom-
mon with the plagal cadence.

An example is shown in the form of a tree in figure 1.
A cadence Dm7 G7 C has two possible interpretations: it
may contain a recursive dominant relation, as in the fig-
ure, or be a substitute transcription of the perfect cadence
F6 G7 C. When, as in this case, the recursion reaches back
further, however, only the former interpretation explains
for the relation between the seemingly tonally distant ten-
sion chords and their eventual resolution (here the A7 and
its resolution to C).

In some cases, a tension chord may not immediately
reach the resolution it calls for. The unresolved dominant
cadence Dm7 G7, for example, creates an expectation of a
tonic C chord. It may be interrupted by a further cadence,
A7 Dm7 G7, creating the same expectation, whereupon
both cadential expectations/tensions will be resolved by
the same tonic C, as in
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Figure 1. An extended authentic cadence, a typical exam-
ple of (tail) recursion in music. The A7 acts as a dominant
resolving to the Dm7, which in turn resolves by the same
relation to G7, which then resolves to the tonic C.
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Figure 2. Tree representing the embedded structure of
unresolved cadences in Call Me Irresponsible, coordina-
tion of constituents marked by &. The Dm7 chord is left
unresolved until the Gm7 and the A7 until the D7. The en-
tire example is in fact further embedded in the song: the
eventual resolution to the tonic F is not reached until after
another cadence of similar structure.

C (Dm7 G7) (A7 Dm7 G7) C

We term this operation coordination by virtue of its
similarity to right-node raising coordination in natural lan-
guage. For example, in Keats bought and will eat beets,
beets satisfies the expectations of both bought and will eat.

Coordinated cadences may themselves be embedded
in coordinated cadences, as in the example taken from
Call Me Irresponsible shown in figure 2. Once again, a
similar form of embedding occurs in natural language ex-
amples like Keats (certainly eats) but ((may or may not)
cook) beets.

Dominant function chords are often partially, though
never unambiguously, distinguished by the addition of
notes outside the basic triad. In particular, the dominant
seventh, realized by the note two semitones below the oc-
tave, enhances the cadential function of a dominant chord
and heightens expectation of the resolution. However, a
dominant may omit this note and the same note (or rather,
one indistinguishable from it in equal temperament) may
even appear in chords not functioning as dominants.

2.2. The Jazz Sublanguage

The typical size and complexity of the cadence structures
discussed above varies with musical period and genre.
Tonal jazz standards are of particular interest for this form



of analysis for several reasons.
First, they tend to feature large extended cadences, of-

ten with complex embedding. Second, they contain many
well-known contrafacts, harmonic variations of a famil-
iar piece, created using a well-established system of har-
monic substitutions, embellishments and simplifications.

Finally, jazz standards are rarely transcribed as full
scores, but are more analytically notated as a melody
with accompanying chord sequence. Analysing the har-
monic structures underlying chord sequences, rather than
streams of notes, avoids some difficult practical issues
such as voice leading and performance styles, but still
permits discovery of the kind of higher-level structures
we are concerned with. They therefore provide a conve-
nient starting point for our investigation.

Our study focusses on the analysis of harmonic struc-
ture in chord sequences of jazz standards. This is not to
say that the approach to analysis is not applicable beyond
this domain or even that it depends on analysing chord se-
quences. Our grammar’s lexicon, introduced in brief in
section 4, is specific to the genre, though a lexicon suit-
able for another tonal harmonic genre would have much
in common.

3. A MODEL OF TONALITY

In analysing the roles of pitch in music, it is important to
distinguish between consonance, the sweetness or harsh-
ness of the sound that results from playing two or more
notes at the same time, and harmony, which is the dimen-
sion relevant to the phenomenon that we have already al-
luded to as tension (and the creation of expectation) and
resolution (or its satisfaction). Both of these relations over
pitches are determined by small whole-number ratios, and
are often confounded. However, they arise in quite differ-
ent ways.

3.1. Consonance

The modern understanding of consonance originates with
Helmholtz ([6]), who explained the phenomenon in terms
of the coincidence and proximity of the secondary over-
tones and difference tones that arise when simultaneously
sounded notes excite real non-linear physical resonators,
including the human ear itself, inducing harmonics or sec-
ondary tones. To the extent that an interval’s most pow-
erful secondary tones exactly coincide, it is perceived as
consonant or sweet-sounding. To the extent that any of its
secondaries are separated in frequency by a small enough
difference to beat at a certain rate, it is perceived as disso-
nant, or harsh.

Thus, for the diatonic semitone only very high-
frequency, low-energy overtones coincide, so it is weakly
consonant, while the two fundamentals themselves pro-
duce beats in the usual musical ranges, so it is strongly
dissonant. For the perfect fifth, with a frequency ratio of
3/2, all its most powerful secondaries coincide, so it is
strongly consonant.
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Figure 3. Part of the space of note-names (adapted from
[13, 14])

This theory successfully explains the experience of
consonance and dissonance in chords, and the effects of
chord inversion. We ignore the issue of consonance, un-
like [9, 11], and are interested instead in the somewhat
orthogonal issue of harmony.

3.2. Harmony

The tonal harmonic system also derives from combina-
tions of small integer pitch ratios. However, the harmonic
relation is based solely on the first three prime ratios in the
harmonic series: ratios of 2, 3 and 5 (the octave, perfect
fifth and major third). The tuning based on these intervals
is known as just intonation.

3.2.1. Just Intonation

In just intonation, an interval can be represented as a
frequency ratio defined as the product 2x · 3y · 5z, where
x,y,z are positive or negative integers. It has been ob-
served since [4] that the harmonic relation can therefore
be visualized as an infinitely extending discrete three-
dimensional space with these three prime factors as gen-
erators. Since notes separated by octaves are essen-
tially equivalent for tonal purposes, it is convenient to
project the space onto the 3,5 plane. We adopt this the-
ory in the form in which it was formally developed by
Longuet-Higgins ([13, 14]), shown in figure 3 in its two-
dimensional projection.

[15] observed that all diatonic scales are convex sets
of positions, and defined a Manhattan distance metric over
this space. According to this metric, it will be observed
that the major and minor triads, such as CEG and CE[G,
when plotted in this space are two of the closest possible
clusters of three notes. The triad with added major seventh
is the single tightest cluster of four notes. The triads and
the major seventh chord are stable unambiguous chords
that raise no strong expectations and are of the kind that
typically end a piece. Chords like the diminished chord
and the dominant seventh are more spread out, a differ-
ence vital to the induction of harmonic expectation and its
satisfaction.



3.2.2. Equal Temperament

Over several centuries, an approximation of the tonal har-
monic space was gradually adopted, first by slightly mis-
tuning the fifths to equate all the positions with the same
label in figure 3, and then by further distorting the ma-
jor thirds, to equate enharmonic equivalents (C with B],
D[[, etc.). The 12 tones of the diatonic octave are spaced
evenly, so that all the semitones are (mis)tuned to the same
ratio of 12√2.

This system of equal temperament has the advantage
that all keys and modes can be played on the same instru-
ment without retuning. In the tonal space, the result is a
distortion of the pitches so that the infinite space is pro-
jected onto a finite space of just 12 points, looping in both
dimensions. Each point is (potentially infinitely) tonally
ambiguous as to which point in the infinite justly intoned
space of figure 3 it denotes. Thus, equal temperament
makes the interpretation of tonal relations ambiguous. Its
advantage, however, is that it allows the hearer to resolve
this tonal ambiguity.

It is important to realize that ambiguous equally tem-
pered music is unconsciously interpreted in terms of the
full tonal space of harmonic distinctions, just as a theoret-
ically infinitely ambiguous two-dimensional photograph
is interpreted as a three-dimensional scene. We perform
this disambiguation explicitly in our analyses by mapping
equal-temperament chord sequences onto paths through
the justly intoned tonal space.

3.3. Domain for Analysis

In our grammar for jazz chord sequences, we take the full
two-dimensional tonal space as the semantic domain of
harmonic analysis. A harmonic interpretation of a piece
is the path through the tonal space traced by the roots of
the chords.

If we establish that there is a dominant-tonic rela-
tionship between two chords, we know that the underly-
ing interval between the roots is a perfect fifth, a single
step to the left in the space. Likewise, a subdominant-
tonic relationship dictates a perfect fourth, a rightward
step. Where no tension-resolution relationship exists, as
between a tonic and the first chord of a cadence that fol-
lows it, we assume a movement to the most closely tonally
related instance of the chord root.

Figure 4 shows an example of a harmonic interpreta-
tion of an extended cadence as a tonal space path. The
perfect fifth relationship between each dominant seventh
chord and its resolution is reflected in the path. There
is no tension-resolution relationship between the first two
chords (a tonic and the start of the cadence), so the path
proceeds to the closest instance of the A. Consequently,
the path ends at a different C to the origin, not distin-
guished by equal temperament from the starting point.

By identifying the syntactic structure of the harmony,
that is the recursive structure of tension-resolution rela-
tionships between pairs of chords, we can produce the
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Figure 4. A tonal space path for the extended cadence: C
A7 D7 Gm7 C.

path through the space that it dictates for the chord roots
of the progression.

4. A GRAMMAR FOR JAZZ

Combinatory Categorial Grammar (CCG) is a lexicalized
grammar formalism. A CCG lexicon contains categories
that are assigned to the words of a sentence which specify
constraints on the structures in which the word’s seman-
tics may combine with that of surrounding words. Once
a category has been chosen for each word, a small set
of combinators may be used to produce a semantics for
the whole sentence from that of the individual words. An
adaptation of CCG to the parsing of harmony was intro-
duced by [19]. We use here a further development of that
formalism and introduce a statistical parsing model and
an implementation that were missing there.

We have hand-crafted a lexicon containing categories
suitable for assigning harmonic interpretations to chords.
Our musical CCG grammar contains several combinators,
similar to those used for parsing natural language. Each
item in the lexicon is a schema that generalizes over chord
roots. When it is assigned to a chord, it assumes the
chord’s root and thenceforth applies its constraints rela-
tive to that root.

For example, a schema Dom is used to interpret a
chord as having a dominant function, including recursive
dominant sevenths, as described above. It constrains its
subsequent resolution to be rooted a perfect fifth below it.
Its semantics represents a leftward step in the tonal space.

Another schema Ton interprets a chord as a tonic
chord and may serve as the resolution to a Dom category.
Further categories are included to handle subdominant
chords, substitutions (such as the tritone substitution),
passing chords, and so on.

Figure 5 shows a full CCG derivation of the cadence
from Call Me Irresponsible, the structure of whose har-
monic semantics was shown in figure 2, this time with a
final tonic resolution appended. (In fact, this resolution is
not reached until after another, similar cadence structure.)
We do not describe the grammar’s lexicon and combina-
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Figure 5. CCG derivation of part of Call Me Irresponsible. The top line is the input chord sequence. Beneath, a single
category is assigned to each chord. Subsequent lines combine categories as licensed by the grammar’s combinators. Not
shown here, each category has an associated logical form representing tonal space points or movements.

tors any further here, but include this derivation merely to
give a flavour of how an interpretation is produced from
lexical categories.

The lexicon is deliberately specific to the genre we
wish to analyse. Another lexicon could be constructed
with which to interpret the harmonic relations of another
tonal harmonic genre and would have a number of cat-
egories in common. A lexicon for European baroque
music, for example, would not use all of the substitu-
tion categories included in the jazz lexicon and would re-
quire some additional categories to reflect different con-
ventional expressions of the perfect cadence.

5. STATISTICAL PARSING MODELS

Just as with natural language parsing, the lexical ambigu-
ity of interpretation of chord sequences prohibits exhaus-
tive parsing to deliver every syntactically well-formed in-
terpretation of a sequence. Moreover, we require some
means by which to identify the most plausible interpreta-
tions among a huge number of interpretations permitted
by the grammar.

It is usual in parsing natural language to use statisti-
cal models based on a corpus of hand-annotated sentences
to rank the permissible interpretations of the input and of
parts of it. Such techniques can be used to reduce the
search space during parsing and speed up parsing by ig-
noring seemingly improbable interpretations early in the
process. [2, 8, 20] have applied statistical parsing tech-
niques from NLP to chord sequence parsing and other
tasks for folksong domains. This paper shows that such
methods can be extended to the present class of musical
grammars.

5.1. Jazz Corpus

We acquired the statistics used by our models from a small
corpus of jazz chord sequences. We chose the sequences
from available lead sheets, excluding certain sequences

that could not be analysed using our grammar, due to lim-
itations of the lexicon (e.g. rare substitutions not covered).

We annotated the chord sequences by hand, assign-
ing to every chord a category from the lexicon of the jazz
grammar. Since CCG is a lexicalized grammar formalism,
the assignment of categories to chords contains a large
amount of information constraining the parse. We also
added annotations of the points where coordination oc-
curs, providing sufficient information to define a unique
tonal space analysis of every sequence.

The corpus consists of 76 annotated sequences, to-
talling roughly 3000 chords. It contains no held-out test
set: all models are tested using cross-validation (see sec-
tion 6.2). We plan to make the corpus publicly available
in the future.

5.2. Adaptive Supertagging

Supertagging is a technique, related to part of speech
(POS) tagging, useful as a first step in parsing with lex-
icalized grammars like CCG ([17]). Probabilistic se-
quence models, using statistics about short windows of
sequences, are employed to choose CCG categories from
the lexicon for each word. In music, as in natural lan-
guage, the choice of a category representing a plausible
interpretation of a chord depends on the analysis of poten-
tially distant parts of the sequence (long-distance depen-
dencies). In practice, short-distance statistics can often
reliably rule out at least the most improbable interpreta-
tions.

A bad choice of categories could make it impossible to
parse the sequence. The adaptive supertagging algorithm
([3]) allows categories considered less probable by the su-
pertagger to be used in such cases. First, the supertagger
assigns to each word (or chord) a small set of what its
model dictates are the most probable categories and the
parser attempts to find a full parse with these categories.
If it fails, the supertagger supplies some more, slightly
less probable categories and the parser tries again. This is
repeated until the parser succeeds or we give up (for ex-



ample, after a set number of iterations). If multiple full
parses are found in one iteration, the single most probable
one is chosen.

Many types of probabilistic sequence model can be
used as a supertagging model. We use a hidden Markov
model (HMM) with states representing categories. The
state emissions of the model are not the chords them-
selves, but a pair of the chord type and the interval be-
tween this chord’s and the previous chord’s roots. This
has the effect of making the model account only for rela-
tive pitch. We trained the model by maximum likelihood
estimation over the annotated categories from the corpus
described above.

We performed some initial experiments with higher-
order Markov models (n-gram models) which suggested
that they do not perform any better than the HMM we use
here when trained on this small corpus. We expect that the
model would benefit from the use of higher-order statistics
given a larger training set.

5.3. Parsing Models

[7] adapted the generative probabilistic parsing models of
probabilistic context-free grammars (PCFG) to CCG. Us-
ing a corpus of gold-standard parsed sentences, probabil-
ities are estimated for expansions at internal nodes in the
derivation tree. These probabilities are used to estimate a
probability for every subtree produced during the deriva-
tion.

In our experiments, we use a model like that of [7] to
parse chord sequences, which we refer to as PCCG. Dur-
ing parsing, the model is used to assign a probability to
internal nodes in the derivation: that is, every combina-
tion of categories by a combinator. A beam is applied to
internal nodes: all but the most probable derivations, ac-
cording to the parsing model’s probabilities, are removed.

A second model uses the supertagger with the adaptive
supertagging algorithm described above to narrow down
the choice of lexical categories available to the parser. The
parser then proceeds just as in PCCG. We call this model
ST+PCCG.

Using both models, we allow the parser a fixed amount
of time to parse a particular sequence before giving up,
chosen such that most parses complete within the time.

5.4. Baseline Model

In an attempt to quantify the contribution made by re-
stricting interpretations to those that are syntactically well
formed under the jazz grammar, we have constructed a
model which assigns tonal space interpretations without
using the grammar. We use an HMM very similar to that
described above as a supertagger model, which directly
assigns a tonal space point to each chord, instead of as-
signing categories to chords and parsing to derive a tonal
space path. The representation of the chord sequence is
identical to the supertagger’s.

We can define a naive, deterministic procedure to con-
struct a tonal space interpretation for a chord sequence as
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Figure 6. Tonal space analysis for the coordinated ca-
dence G7 E7 A7 Dm7 G7 C. The initial G7 (square) is
followed by a jump not to the closest point that equal tem-
perament maps to E (dashed), but a more distant one. This
must be so because the resolution of this G7 and that at the
end of the second cadence are constrained to be the same.

follows: for each chord, choose from the infinite set of
points mapped by equal temperament to the chord’s root
the point that is closest to the previous point on the path.
The states of the model are constructed to represent devi-
ations from this naive path.

There are two reasons why such deviations from the
naive path are required for valid analyses. First, there
may be a substitution (like the tritone substitution), so that
the surface chord’s root is not the root of the chord in the
analysis. Second, the correct disambiguation of the equal-
temperament note may not be the point closest to the pre-
vious point, as happens at points of coordination (as in the
example in figure 6).

The naive procedure identifies the correct tonal space
point in most cases and deviations are usually small. The
HMM’s state labels are of the form (xsub,ysub,xblock,yblock).
The pair (xsub,ysub) identifies the relationship between
the equal-temperament projection of the chord root in the
analysis and that notated, thus modelling chord substi-
tution. (0,0) is most common; the tritone substitution
would result in (2,1). (xblock,yblock) accounts for cases
where the tonal relation between this and the last root is
not closest, measured by Manhattan distance. It repre-
sents the distance from this initial estimate to the root in
terms of a number of horizontal and vertical cycles of the
equal temperament 4× 3 space. The states of the HMM
only include those tonal relations observed in the training
data.

The model is trained in the same way as the supertag-
ger, only this time the training data is chord sequences
paired with their annotated tonal space paths. We refer to
this model as HMMPATH.

Unlike the supertagger, this model’s results are not
filtered by the parser for grammaticality. PCCG and
ST+PCCG will completely fail to assign a path in cases
where a full parse cannot be found. This may be because
the beam removes all derivations that permit a grammat-
ical interpretation of the full sequence, or, in the case of
ST+PCCG, because the supertagger fails to suggest a set
of lexical categories from which a full interpretation can
be derived. HMMPATH will assign some path to any se-



quence, since it is not limited to returning grammatical
interpretations.

5.5. Adaptive Supertagging with Backoff

PCCG and ST+PCCG will both fail to produce an inter-
pretation for some sequences. This means that, however
high quality the returned paths are, the overall score is in-
evitably pulled down by the failure to interpret the chords
of the omitted sequences.

A fourth model combines the coverage of HMMPATH
with the precision of the grammatical models in an ag-
gressive form of backoff. First, if a result can be ob-
tained from ST+PCCG it is used. Otherwise, HMMPATH
is applied instead. We refer to this combined model as
ST+PCCG+HMMPATH.

6. EXPERIMENTS

6.1. Evaluation

We evaluate all models on the basis of the tonal space
path they produce with highest probability. For evalua-
tion, paths are transformed from a list of tonal space coor-
dinates to a list of vectors between adjacent points. This
has the effect that if a path makes an incorrect jump, it is
penalized only for that mistake and not for all subsequent
points. Each point also has an associated chord function,
which is included in the evaluation.

We align the list of vectors optimally with that of the
gold-standard tonal space path from the annotated corpus
using the Levenshtein algorithm, with points where the
vector is correct but the function wrong, or vice versa,
incurring a cost of 0.5.

We report precision, recall and f-score of the aligned
paths. Precision is defined as the proportion of points re-
turned by the model that correctly align with the gold stan-
dard. Recall is the proportion of points in the gold stan-
dard that are correctly retrieved by the model. Again, we
give a score of 0.5 to points with either the vector or func-
tion correct but not both. F-score is the harmonic mean of
precision and recall.

P = Aligned/(Aligned+ Inserted)

R = Aligned/(Aligned+Deleted)

F = 2PR/(P+R)

6.2. Model Comparison

All models were trained on the jazz corpus described
above, containing 76 fully annotated sequences. Since
we cannot afford to hold out a test set, we used 10-fold
cross-validation. Each experiment was run 10 times, with
9
10 of the data used to train the model and the remaining 1

10
used to evaluate that model. Thus, all data is used for eval-
uation, but no model is tested on data that it was trained
on. We report the results combined from all partitions.

The evaluation of the tonal space path is performed in
every case only on the path returned by the model with
highest probability.

7. RESULTS

The results of the four experiments are reported in table 1.
Although PCCG has the full set of lexical categories

available to it, its results are all lower than ST+PCCG.
This is because we needed to apply a more aggressive
beam during parsing in order to handle the wider choice of
interpretations at the lexical level. It seems, then, that the
supertagger is a necessity for practical parsing and is do-
ing a good job of cutting down the parser’s search space.

ST+PCCG produces high-precision results, because,
unlike HMMPATH, it can only produce results that are per-
mitted by the grammar and fails when it can find no such
result. As we would expect, the addition of the backoff re-
duces the model’s precision, but improves its recall. Since
ST+PCCG rarely fails to produce a result on this dataset,
the backoff has little impact on the overall result. How-
ever, ST+PCCG+HMMPATH is robust in that it is guar-
anteed always to produce some result.

As described in section 5.1, we included in our cor-
pus only sequences to which it is possible to assign a
valid harmonic interpretation using our grammar. The re-
sults we report here for the models that use the grammar
are therefore higher than we would expect if applying the
technique to chord sequences sighted in the wild. In this
case, we would expect the benefit of the backoff to be-
come clearer, since the PCCG model would more often
fail to find an analysis.

We draw two key conclusions from the results. First,
they show that HMMPATH is a reasonable model to back
off to when no grammatical result can be found. Second,
they show that the use of a grammar to constrain the paths
predicted by an HMM supertagger substantially improves
over the purely short-distance information captured by a
pure HMM-based model.

8. CONCLUSION

We have described a parser that uses a formal grammar of
a kind employed in NLP, and statistically based modelling
techniques of a kind standardly used in wide-coverage
natural language parsers, to map music onto their har-
monic interpretation, represented as harmonic progres-
sions in the two-dimensional tonal space. The jazz har-
mony corpus we used to train our models is small, but
experience with CCG parsing for NLP shows that these
techniques will scale to larger datasets ([1, 3]).

The parsing model is built using supervised learn-
ing over a small corpus of jazz chord sequences hand-
annotated with harmonic analyses. We found that our
grammar-based musical parser, using a simple statisti-
cal parsing model, more accurately reproduced the gold-
standard interpretations than a baseline Markovian model.



Model Precision (%) Recall (%) F-score (%) Coverage (%)
HMMPATH 81.1 87.7 84.3 100
PCCG 78.1 83.1 80.6 94.7
ST+PCCG 86.0 90.8 88.3 98.7
ST+PCCG+HMMPATH 85.7 92.0 88.7 100

Table 1. Evaluation of each model’s prediction of tonal space paths using 10-fold cross-validation on the jazz corpus.

This may be taken as further evidence suggesting that mu-
sic and language have a common origin in a uniquely hu-
man system of interpersonal communication.

We have described models to analyse sequences of
chords expressed in a textual form. A certain amount
of analysis has already gone into the process of produc-
ing these chord symbols: a human has divided the mu-
sic into time segments of constant harmony, selected the
most prominent notes, and narrowed down the range of
possible chord roots somewhat. We intend to continue
this work by constructing a model that incorporates these
tasks into the analysis process, accepting note-level input
(in MIDI form, for example) and suggesting possible in-
terpretations in the way the supertagger component of our
parsing model does.
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