#### Intonation, Grammar, and Spoken Language Processing

Mark Steedman: Informatics, U. of Edinburgh

http://www.iccs.informatics.ed.ac.uk/~steedman/papers.html

Toronto, Mar 2002

#### **Content-to-Speech-Generation for Spoken Language Technology**

• Intonation is Not a Toy Problem: Translating Telephones (etc.)

SPEAKER1: "How about on the Monday afternoon?"

**TT1:** *Ginge es am Montag nachmittag?* 

SPEAKER2: "Montag nachmittag habe ich leider keine Zeit."

**TT2:** I unfortunately have no time on Monday afternoon.

• Passed through Standard Text-to-Speech:

#I unfortunately have no time on Monday AFTERNOON H\*LL%

### **Translating Telephones (etc.) (contd.)**

**Quick fix #1:** use Previous Mention Heuristic (Hirschberg) on the source/translation of the previous turn.

- I unfortunately have no TIME on Monday afternoon H\* LL%
- But there may BE no previous literal mention:

"An diesem Tag habe ich leider keine Zeit"

I unfortunately have no time on that day

#I unfortunately have no time on that DAY

H\*LL%

### **Translating Telephones (etc.) (contd.)**

**Quick fix #2:** Preserve the pattern of pitch accents from the German input (Stöber & Wagner).

• But there may be a "topic" pitch accent (Büring) on "diesem Tag":

| An | DIESEM | Tag | habe ich leider | keine | Zeit     |
|----|--------|-----|-----------------|-------|----------|
|    | L*+H   | Η   |                 |       | H+L* LL% |

- The L\*+H H sequence on the (syntactically defined) topic *An diesem Tag* should be realised in English as an L+H\* LH% "theme" tune (or as an unmarked theme with no pitch accent):
  - I unfortunately have no TIME on THAT day H\*L L+H\* LH%

# **Translating Telephones (etc.) (contd.)**

- This amounts to an analysis of **Information Structure** via the grammar. It seems possible that one might do quite well with shallow translation of information structure, at least for English and German.
- Komogata's 1999 Penn Thesis on topic and focus in Japanese suggests that this might generalize.
- But it needs a rather strange kind of grammar.

## The Problem: Intonation seems to be Independent of Syntax ...

(1) Q: I know who proved soundness. But who proved COMPLETENESS?

A: (MARCEL) (proved COMPLETENESS).

H\*L L+H\* LH%

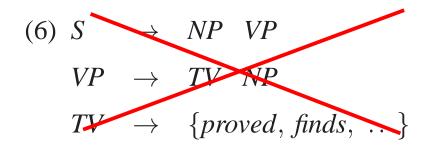
- (2) Q: I know which result Marcel PREDICTED. But which result did Marcel PROVE?
  - A: (Marcel PROVED) (COMPLETENESS).

L+H\* LH% H\* LL%

• —Hence Halliday and Selkirk's introduction of an autonomous level of **Intonation Structure** with attendant **Sense-Unit Condition**.

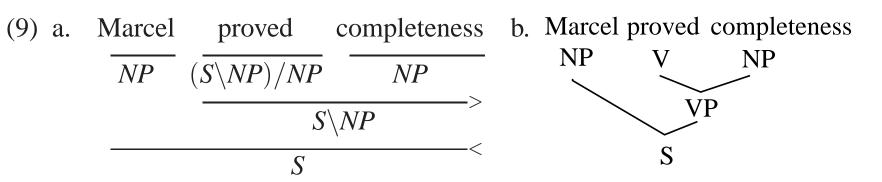
# ...But Intonation is Not All *That* Independent from Syntax

- (3) a. \*(Three mathematicians)(in ten derive a lemma).
  - b. \*(Seymour prefers the nuts)(and bolts approach).
  - —Hence Halliday and Selkirk's introduction of a *Sense Unit Condition* on phrasal constituents of Intonation Structure.


#### **Coordination Induces Similar Fragments**

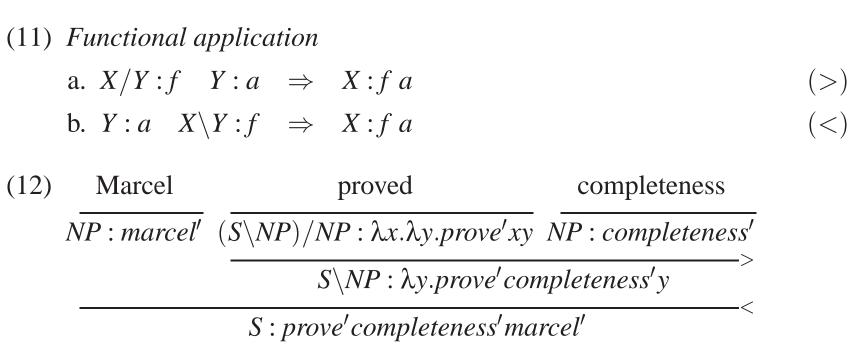
- (4) a. I will buy, and you will cook, the biggest turkey we can find.
  - b. I gave Deadeye Dick a sugar stick, and Mexican Pete a bun.
  - c. Deadeye Dick got a sugar stick, and Mexican Pete a bun.
  - This also is not a toy problem: the Wall Street Journal corpus is full of this sort of thing:
- (5) New England Electric System bowed out of the bidding for Public Service Co. of New Hampshire, saying that *the risks were too high, and the potential payoff too far in the future, to justify a higher offer.*

(Section 00, file 13, /corpora/treebank/combined/wsj/00/wsj\_0013.mrg)


#### **Combinatory Categorial Grammar (CCG)**

• CCG trades **categories** for PS rules, and **type-driven** combinatory rules for structure-dependent transformations



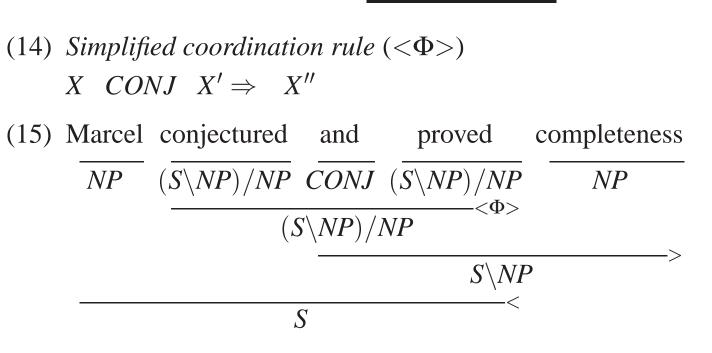

- (7) proved :=  $(S \setminus NP)/NP$
- (8) The functional application rules a. X/Y  $Y \Rightarrow X$ b. Y  $X \setminus Y \Rightarrow X$

## **A Derivation**



#### **Semantics**

(10) proved :=  $(S \setminus NP) / NP : \lambda x \cdot \lambda y \cdot prove' xy$ 



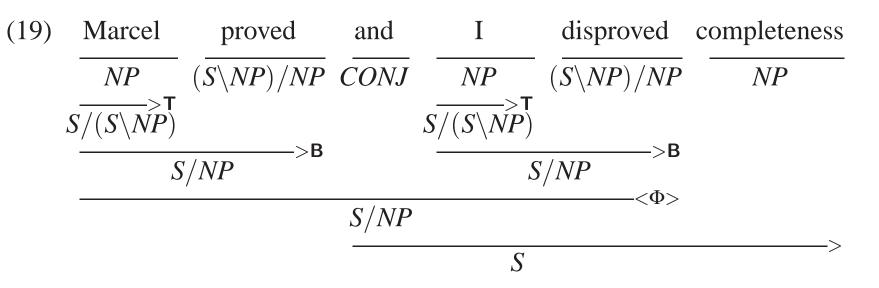



(13) a. (prove' completeness') marcel' b. prove' completeness' marcel'

• A nonordered form of the traditional VP is reflected at the level of propositional logical form. **Binding etc. must be defined at this level.** 

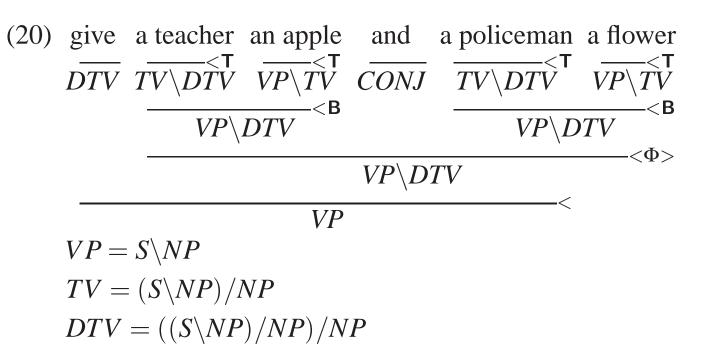
#### Coordination



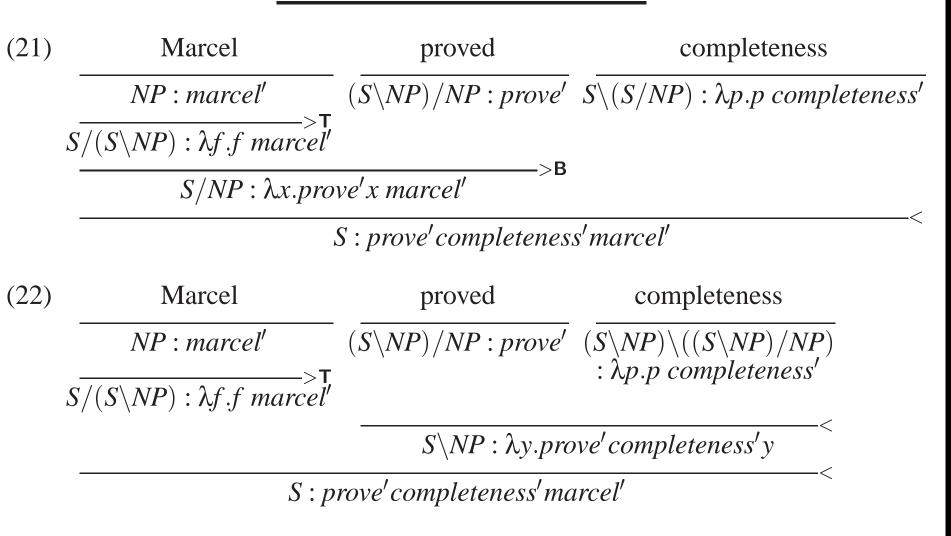

#### Composition

(16) Forward composition (>**B**)  $X/Y: f \quad Y/Z: g \Rightarrow_{\mathbf{B}} X/Z: \lambda x. f(gx)$ 

Marcel conjectured and (17)might completeness prove  $(S \setminus NP)/NP$  CONJ  $(S \setminus NP)/VP$  VP/NP NP NP : marcel' : conjecture' : and' `:'might' : completeness' : prove'  $\overline{(S \setminus NP)/NP} > B$ :  $\lambda x \cdot \lambda y \cdot might'(prove'x)y$  $\langle \Phi \rangle$  $(S \setminus NP) / NP$ :  $\lambda x.\lambda y.and'(might'(prove'x)y)(conjecture'xy)$  $S \setminus NP$ :  $\lambda y.and'(might'(prove'completeness')y)(conjecture'completeness'y)$ S: and'(might'(prove' completeness')marcel')(conjecture' completeness' marcel')


## **Type-Raising**

(18) Subject type-raising (>**T**) NP:  $a \Rightarrow_{\mathbf{T}} S/(S \setminus NP) : \lambda f.fa$ 




• Type raising is restricted to primitive argument categories, NP, PP etc.

#### **Many Linguistic Predictions**



## **Surface Structure in CCG**



# **Intonation/Information Structure = Syntax/Semantics**

- Clearly, such a theory is capable of capturing intonation structure and coordinate structure directly in the same "mildly context-sensitive" syntax that derives predicate argument relations.
- We do this by making pitch accents mark constituents as theme or rheme, and making boundaries limit combinatory derivation (as well as marking speech act, continuation etc.).

#### **The Sense Unit Condition Follows**

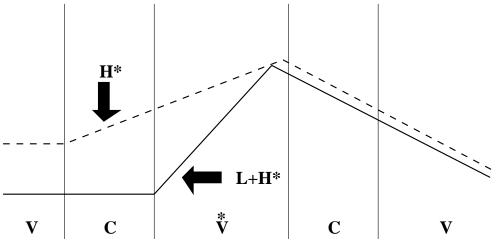
- The following is ruled out:
  - (23) a. \*(Three MATHEMATICIANS) (in ten derive a LEMMA).

L+H\* LH% H\* LL%

b. \*(Seymour prefers the NUTS) (and bolts APPROACH).

L+H\* LH% H\* LL%

—for the same reason as the following:


- (24) a. \*Three mathematicians in ten derive a lemma and in a hundred can cook a boiled egg.
  - b. \*The nuts which Seymour prefers and bolts approach
- That is, substrings like *\*in a hundred can cook a boiled egg* are not consituents in a CCG of English.

### **Aside on Expressive Power of BTS**

- The Combinatory Calculus **BTS** is essentially equivalent to the simply-typed  $\lambda_{I}$  calculus.
- All linguistic restrictions stem from constraints which forbid rules like the following, which override the directionality specified in the lexicon:
  - $Y \quad X/Y \Rightarrow X$
  - $X/Y \quad Y/Z \Rightarrow X \backslash Z$
- Such restrictions imply that directionality is as much a heritable feature-value as *S* or *N*, and still yield a general reordering/rebracketing calculus that must be further constrained for languages like English.
- It is interesting in terms of the origins of language to speculate on whether individual combinators like B and T have independent cognitive uses, conferring an evolutionary advantage

# Aside on a Pilot Study of Elicited Theme and Rheme Contour

• ToBI annotators failure to reliably distinguish L+H\* and H\* seems to be an artefact of the annotation instructions:



(Ladd & Steedman, in prep.)

# **Can We Achieve Large Coverage Robust CCG Parsing?**

- Rumors of intractability arising from "spurious ambiguity" in CCG have been greatly exaggerated (Karttunen 1989; Komagata 1999, Hockenmaier et al. 2000).
- The currently most successful large coverage statistical parsers (Collins 1998; Charniak 1999) work by exploiting a statistical model based on dependencies between heads of predicates and heads of their arguments. CCG is a lexicalized grammar that is ideally suited to application of this technique using lexicons and models induced from labeled data.
- It is certainly possible in principle to apply such techniques to suitably labeled speech corpora, and realistic to expect that tones could be recognized, given segments or syllable boundaries.
- Pitch accents are highly ambiguous—but so is everything else. That's what statistics is for.

## A Maximum Entropy CCG "Supertagger" (Clark)

- $p(t|h) = \frac{1}{Z(h)} e^{\sum \lambda_j f_j(t,h)}$  where  $f_j$  are the features
- Example features: current word, POS tag of current word, next word, previous word, previous two supertags...
- Trained a model on Sections 02-23 of the Treebank using Generalized Iterative Scaling over 377 CCG categories
- Current performance ≈ 90% per word accuracy and ≈ 98% with a ±.01% beam (average cats/word 3.8) on a development set (Section 00) compares well with Chen 1999 using a similar sized (> 300) set of TAG elementary trees and Chen and Vijayshanker 2000 for an automatically induced lexicon.

# Dependency-based PCFG-style CCG Parser (Hockenmaier)

| Model            | NoParse | Cat  | LP   | LR   | BP   | BR   | $\langle P, H, S \rangle$ | $\langle S \rangle$ | $\langle \rangle$ | CM   | $\leq$ 2 ID |
|------------------|---------|------|------|------|------|------|---------------------------|---------------------|-------------------|------|-------------|
| Baseline         | 6       | 87.7 | 72.8 | 72.4 | 78,3 | 77.9 | 75.7                      | 81.1                | 84.3              | 23.0 | 51.1        |
| HWDep (+POS)     | 8       | 92.0 | 81.6 | 81.9 | 85.5 | 85.9 | 84.0                      | 87.8                | 90.1              | 37.9 | 69.2        |
| HWDep (+ tagger) | 7       | 91.7 | 81.4 | 81.8 | 85.6 | 85.9 | 83.6                      | 87.5                | 89.9              | 38.1 | 69.1        |

Table 1: Cat = word categories correct; LP, LR, BP and BR = Parseval scores;  $\langle H, C \rangle$ ,  $\langle C \rangle$ , and  $\langle \rangle$  = completely labeled, complement-labeled and unlabeled dependencies. CM = complete match on  $\langle \rangle$ , and  $\leq 2$  ID = under 2 incorrect  $\langle \rangle$ .

• State of the art (Collins '98): unlabeled dependencies  $\langle \rangle$  91.0%

• CCG does less well on parseval because of binary rules and size of category set (400 vs. 37), and the consequent problem of **unknown word-category pairs**.

#### References

- Hockenmaier, Julia: 2001, "Statistical Parsing for CCG with Simple Generative Models," *Proceedings of the Student Session of the 39th Annual Meeting of the Association for Computational Linguistics*, July, Toulouse, France. 7-12.
- Hockenmaier, Julia and Gann Bierner and Jason Baldridge: 2002, Extending the Coverage of a CCG System, *Journal of Logic and Computation*, (to appear).
- Prevost, Scott and Mark Steedman: 1994, "Specifying Intonation from Context for Speech Synthesis," *Speech Communication*, 15:139-153.
- Steedman, Mark: 2000a, The Syntactic Process, MIT Press, Cambridge MA.
- Steedman, Mark: 2000b, "Information Structure and the Syntax-Phonology Interface," *Linguistic Inquiry*, 31.4, 649-689.
- Taylor, Paul: 2000, "Analysis and Synthesis of Intonation Using the Tilt Model", *Journal of the Acoustical Society of America*, 107, 1697-1714.