
Learning to Map Sentences to Logical Form:
Structured Classification with Probabilistic Categorial Grammars

Luke S. Zettlemoyer and Michael Collins
MIT CSAIL

lsz@csail.mit.edu, mcollins@csail.mit.edu

Abstract

This paper addresses the problem of mapping
natural language sentences to lambda–calculus
encodings of their meaning. We describe a learn-
ing algorithm that takes as input a training set of
sentences labeled with expressions in the lambda
calculus. The algorithm induces a grammar for
the problem, along with a log-linear model that
represents a distribution over syntactic and se-
mantic analyses conditioned on the input sen-
tence. We apply the method to the task of learn-
ing natural language interfaces to databases and
show that the learned parsers outperform pre-
vious methods in two benchmark database do-
mains.

1 Introduction

Recently, a number of learning algorithms have been pro-
posed forstructured classificationproblems. Structured
classification tasks involve the prediction of output labels
y from inputsx in cases where the output labels have rich
internal structure. Previous work in this area has focused
on problems such as sequence learning, wherey is a se-
quence of state labels (e.g., see (Lafferty, McCallum, &
Pereira, 2001; Taskar, Guestrin, & Koller, 2003)), or nat-
ural language parsing, wherey is a context-free parse tree
for a sentencex (e.g., see Taskar et al. (2004)).

In this paper we investigate a new type of structured classi-
fication problem, where the goal is to learn to map natural
language sentences to a lambda calculus encoding of their
semantics. As one example, consider the following sen-
tence paired with a logical form representing its meaning:

Sentence: what states border texas
Logical Form: λx.state(x) ∧ borders(x, texas)

The logical form in this case is an expression representing
the set of entities that are states, and that also border Texas.

The training data in our approach consists of a set of sen-
tences paired with logical forms, as in this example.

This is a particularly challenging problem because the
derivation from each sentence to its logical form is not an-
notated in the training data. For example, there is no di-
rect evidence that the wordstatesin the sentence corre-
sponds to the predicatestate in the logical form; in gen-
eral there is no direct evidence of the syntactic analysis of
the sentence. Annotating entire derivations underlying the
mapping from sentences to their semantics is highly labor-
intensive. Rather than relying on full syntactic annotations,
we have deliberately formulated the problem in a way that
requires a relatively minimal level of annotation.

Our algorithm automatically induces a grammar that maps
sentences to logical form, along with a probabilistic model
that assigns a distribution over parses under the grammar.
The grammar formalism we use is combinatory categorial
grammar (CCG) (Steedman, 1996, 2000). CCG is a con-
venient formalism because it has an elegant treatment of a
wide range of linguistic phenomena; in particular, CCG has
an integrated treatment of semantics and syntax that makes
use of a compositional semantics based on the lambda
calculus. We use a log-linear model—similar to models
used in conditional random fields (CRFs) (Lafferty et al.,
2001)—for the probabilistic part of the model. Log-linear
models have previously been applied to CCGs by Clark and
Curran (2003), but our work represents a major departure
from previous work on CCGs and CRFs, in thatstructure
learning(inducing an underlying discrete structure, i.e., the
grammar or CCG lexicon) forms a substantial part of our
approach.

Mapping sentences to logical form is a central problem in
designing natural language interfaces. We describe exper-
imental results on two database domains: Geo880, a set
of 880 queries to a database of United States geography;
and Jobs640, a set of 640 queries to a database of job list-
ings. Tang and Mooney (2001) described previous work on
these data sets. Previous work by Thompson and Mooney
(2002) and Zelle and Mooney (1996) used a subset of the
Geo880 corpus. We evaluated the algorithm’s accuracy in

returning entirely correct logical forms for each test sen-
tence. Our method achieves over 95% precision on both of
these domains, with recall of 79% on each domain. These
are highly competitive results when compared to the previ-
ous work.

2 Background

This section gives background material underlying our
learning approach. We first describe the lambda–calculus
expressions used to represent logical forms. We then de-
scribe combinatory categorial grammar (CCG), and the ex-
tension of CCG to probabilistic CCGs (PCCGs) through
log-linear models.

2.1 Semantics

The sentences in our training data are annotated with ex-
pressions in a typed lambda–calculus language similar to
the one presented by Carpenter (1997). The system has
three basic types:e, the type of entities;t, the type of truth
values; andr, the type of real numbers. It also allows func-
tional types, for example〈e, t〉, which is the type assigned
to functions that map from entities to truth values. In spe-
cific domains, we will specify subtype hierarchies fore.
For example, in a geography domain we might distinguish
different entity subtypes such as cities, states, and rivers.

Figure 1 shows several sentences from the geography
(Geo880) domain, together with their associated logical
form. Each logical form is an expression from the lambda
calculus. The lambda–calculus expressions we use are
formed from the following items:

• Constants: Constants can either be entities, numbers
or functions. For example,texasis an entity (i.e., it
is of typee). state is a function that maps entities to
truth values, and is of type〈e, t〉. size is a function
that maps entities to real numbers, and is therefore of
type 〈e, r〉 (in the geography domain,size(x)returns
the land-area ofx).

• Logical connectors: The lambda–calculus expres-
sions include conjunction (∧), disjunction (∨), nega-
tion (¬), and implication (→).

• Quantification: The expressions include universal
quantification (∀) and existential quantification (∃).
For example,∃x.state(x)∧borders(x, texas) is true
if and only if there is at least one state that borders
Texas. Expressions involving∀ take a similar form.

• Lambda expressions:Lambda expressions represent
functions. For example,λx.borders(x, texas) is a
function from entities to truth values, which is true of
those states that border Texas.

a) What states border Texas
λx.state(x) ∧ borders(x, texas)

b) What is the largest state
arg max(λx.state(x), λx.size(x))

c) What states border the state that borders the most states
λx.state(x) ∧ borders(x, arg max(λy.state(y),

λy.count(λz.state(z) ∧ borders(y, z))))

Figure 1:Examples of sentences with their logical forms.

• Additional quantifiers: The expressions involve
the additional quantifying termscount, arg max,
arg min, and the definite operatorι. An example
of a count expression iscount(λx.state(x)), which
returns the number of entities for whichstate(x)
is true. arg max expressions are of the form
arg max(λx.state(x), λx.size(x)). The first argu-
ment is a lambda expression denoting some set of en-
tities; the second argument is a function of type〈e, r〉.
In this case thearg max operator would return the set
of items for whichstate(x) is true, and for which
size(x) takes its maximum value.arg min expres-
sions are defined analogously. Finally, the definite op-
erator creates expressions such asι(λx.state(x)). In
this case the argument is a lambda expression denot-
ing some set of entities.ι(λx.state(x)) would return
the unique item for whichstate(x) is true, if a unique
item exists. If no unique item exists, it causes a pre-
supposition error.

2.2 Combinatory Categorial Grammars

The parsing formalism underlying our approach is that of
combinatory categorial grammar (CCG) (Steedman, 1996,
2000). A CCG specifies one or more logical forms—of the
type described in the previous section—for each sentence
that can be parsed by the grammar.

The core of any CCG is a lexicon,Λ. In a purely syntactic
version of CCG, the entries inΛ consist of a word (lexical
item) paired with a syntactic type. A simple example of a
CCG lexicon is as follows:

Utah := NP
Idaho := NP
borders := (S\NP)/NP

In this lexiconUtahandIdahohave the syntactic typeNP ,
andbordershas the more complex type(S\NP)/NP . A
syntactic type can be either one of a number ofprimitive
categories(in the example,NP or S), or it can be acom-
plex typeof the formA/B or A\B where bothA andB
can themselves be a primitive or complex type. The prim-
itive categoriesNP andS stand for the linguistic notions

a) Utah borders Idaho

NP (S\NP)/NP NP
utah λx.λy.borders(y, x) idaho

>
(S\NP)

λy.borders(y, idaho)
<

S
borders(utah, idaho)

b) What states border Texas

(S/(S\NP))/N N (S\NP)/NP NP
λf.λg.λx.f(x) ∧ g(x) λx.state(x) λx.λy.borders(y, x) texas

> >
S/(S\NP) (S\NP)

λg.λx.state(x) ∧ g(x) λy.borders(y, texas)
>

S
λx.state(x) ∧ borders(x, texas)

Figure 2:Two examples of CCG parses.

of noun-phrase and sentence respectively. Note that a sin-
gle word can have more than one syntactic type, and hence
more than one entry in the lexicon.

In addition to the lexicon, a CCG has a set ofcombinatory
rules which describe how adjacent syntactic categories in
a string can be recursively combined. The simplest such
rules are rules offunctional application, defined as follows:

(1) The functional application rules:
a. A/B B ⇒ A
b. B A\B ⇒ A

Intuitively, a category of the formA/B denotes a string that
is of typeA but is missing a string of typeB to its right;
similarly, A\B denotes a string of typeA that is missing a
string of typeB to its left.

The first rule says that a string with typeA/B can be com-
bined with a right-adjacent string of typeB to form a new
string of typeA. As one example, in our lexicon,borders,
(which has the type(S\NP)/NP) can be combined with
Idaho (which has the typeNP) to form the stringborders
Idaho with type S\NP . The second rule is a symmetric
rule applying to categories of the formA\B. We can use
this to combineUtah (typeNP) with borders Idaho(type
S\NP) to form the stringUtah borders Idahowith the type
S. We can draw a parse tree (or derivation) ofUtah borders
Idahoas follows:

Utah borders Idaho

NP (S\NP)/NP NP
>

(S\NP)
<

S

Note that we use the notation−> and−< to denote appli-
cation of rules 1(a) and 1(b) respectively.

CCGs typically include asemantic type, as well as a syn-
tactic type, for each lexical entry. For example, our lexicon
would be extended as follows:

Utah := NP : utah
Idaho := NP : idaho
borders := (S\NP)/NP : λx.λy.borders(y, x)

We use the notationA : f to describe a category with syn-
tactic typeA and semantic typef . ThusUtahnow has syn-
tactic typeNP , and semantic typeutah. The functional

application rules are then extended as follows:

(2) The functional application rules (with semantics):
a. A/B : f B : g ⇒ A : f(g)
b. B : g A\B : f ⇒ A : f(g)

Rule 2(a) now specifies how the semantics of the category
A is compositionally built out of the semantics forA/B
andB. Our derivations are then extended to include a com-
positional semantics. See Figure 2(a) for an example parse.
This parse shows thatUtah borders Idahohas the syntactic
typeS and the semanticsborders(utah, idaho).

In spite of their relative simplicity, CCGs can capture a
wide range of syntactic and semantic phenomena. As one
example, see Figure 2(b) for a more complex parse. Note
that in this case we have an additional primitive category,N
(for nouns), and the final semantics is a lambda expression
denoting the set of entities that are states and that border
Texas. In this case, the lexical itemwhat has a relatively
complex category, which leads to the correct analysis of
the underlying string.

A full description of CCG goes beyond the scope of this
paper. There are several extensions to the formalism: see
(Steedman, 1996, 2000) for more details. In particular,
CCG includes rules of combination that go beyond the sim-
ple function application rules in 1(a) and 1(b).1 Additional
combinatory rules allow CCGs to give an elegant treatment
of linguistic phenomena such as coordination and relative
clauses. In our work we make use of standard rules of
application, forward and backward composition, and type-
raising. In addition, we allow lexical entries consisting of
strings of length greater than one, for example

the Mississippi := NP : mississippi river

This leads to a relatively minor change to the formalism,
which in practice can be very useful. For example, it is eas-
ier to directly represent the fact thatthe Mississippirefers

1One example of a more complex combinatory rule is that of
forward composition:

A/B : f B/C : g ⇒ A/C : λx.f(g(x))

Another rule which is frequently used is that oftype-raising:

NP : f ⇒ S/(S\NP) : λg.g(f)

This would allowNP : Utah to be type-raised to a category
S/(S\NP) : λg.g(Utah).

to the Mississippi river with the lexical entry above than it
is to try to construct this meaning compositionally from the
meanings of the determinerthe and the wordMississippi,
which refers to the state of Mississippi when used without
the determiner.

2.3 Probabilistic CCGs

We now describe how to generalize CCGs to probabilis-
tic CCGs (PCCGs). A CCG, as described in the previous
section, will generate one or more derivations for each sen-
tenceS that can be parsed by the grammar. We will de-
scribe a derivation as a pair(L, T), whereL is the final
logical form for the sentence (e.g.,borders(utah, idaho)
in figure 2(a)), andT is the sequence of steps taken in de-
riving L. We will frequently refer toT as a parse tree.
A PCCG defines a conditional distributionP (L, T |S) over
possible(L, T) pairs for a given sentenceS.

In general, various sources of ambiguity can lead to a sen-
tenceS having more than one valid(L, T) pair. This is
the primary motivation for extending CCGs to PCCGs:
PCCGs deal with ambiguity by ranking alternative parses
for a sentence in order of probability. One source of am-
biguity is lexical items having more than one entry in
the lexicon. For example,New Yorkmight have entries
NP : new york city andNP : new york state. An-
other source of ambiguity is where a single logical formL
may be derived by multiple derivationsT . This latter form
of ambiguity can occur in CCG, and is often referred to as
spurious ambiguity; the termspuriousis used because the
different syntactic parses lead to identical semantics.

In defining PCCGs, we make use of a conditional log-
linear model that is similar to the model form in condi-
tional random fields (CRFs) (Lafferty et al., 2001) or log-
linear models applied to parsing (Ratnaparkhi, Roukos,
& Ward, 1994; Johnson, Geman, Canon, Chi, & Rie-
zler, 1999). Log-linear models for CCGs are described in
(Clark & Curran, 2003). We assume a functionf̄ mapping
(L, T, S) triples to feature vectors inRd. This function
is defined byd individual features, so that̄f(L, T, S) =
〈f1(L, T, S), . . . , fd(L, T, S)〉. Each featurefj is typi-
cally the count of some sub-structure within(L, T, S). The
model is parameterized by a vectorθ̄ ∈ Rd. The probabil-
ity of a particular (syntax, semantics) pair is defined as

P (L, T |S; θ̄) =
ef̄(L,T,S)·θ̄∑

(L,T) ef̄(L,T,S)·θ̄ (1)

The sum in the denominator is over all valid parses forS
under the CCG grammar.

In this paper we make use oflexical featuresalone. For
each lexical entry in the grammar, we have a featurefj

that counts the number of times that the lexical entry is
used inT . For example, in the simple grammar with en-
tries forUtah, Idahoandborders, there would be three fea-

tures of this type. While these features are quite simple, we
have found them to be quite successful when applied to the
Geo880 and Jobs640 data sets. More complex features are
certainly possible (e.g., see (Clark & Curran, 2003)). In the
future, we would like to explore more general features that
have been shown to be useful in other parsing settings.

2.4 Parsing and Parameter Estimation

We now turn to issues of parsing and parameter estimation.
Parsing under a PCCG involves computing the most prob-
able logical formL for a sentenceS,

arg max
L

P (L|S; θ̄) = arg max
L

∑
T

P (L, T |S; θ̄)

where thearg max is taken over all logical formsL and the
hidden syntaxT is marginalized out by summing over all
parses that produceL. We use dynamic programming al-
gorithms for this step, which are very similar to CKY–style
algorithms for parsing probabilistic context-free grammars
(PCFGs).2 Dynamic programming is feasible within our
approach because the feature-vector definitionsf̄(L, T, S)
involve local features that keep track of counts of lexical
items in the derivationT .3

In parameter estimation, we assume that we haven training
examples,{(Si, Li) : i = 1 . . . n}. Si is thei’th sentence
in training data, andLi is the lambda expression associ-
ated with that sentence. The task is to estimate the param-
eter values̄θ from these examples. Note that the training
set does not include derivationsTi, and we therefore view
derivations as hidden variables within the approach. The
log-likelihood of the training set is given by:

O(θ̄) =
n∑

i=1

log P (Li|Si; θ̄)

=
n∑

i=1

log

(∑
T

P (Li, T |Si; θ̄)

)

Differentiating with respect toθj yields:

∂O

∂θj
=

n∑
i=1

∑
T

fj(Li, T, Si)P (T |Si, Li; θ̄)

−
n∑

i=1

∑
L,T

fj(L, T, Si)P (L, T |Si; θ̄)

The two terms in the derivative involve the calculation
of expected values of a feature under the distributions

2CKY–style algorithms for PCFGs (Manning & Schutze,
1999) are related to the Viterbi algorithm for hidden Markov mod-
els, or dynamic programming methods for Markov random fields.

3We use beam–search during parsing, where low-probability
sub-parses are discarded at some points during parsing, in order
to improve efficiency.

P (T |Si, Li; θ̄) or P (T,L|Si; θ̄). Expectations of this type
can again be calculated using dynamic programming, us-
ing a variant of the inside-outside algorithm (Baker, 1979),
which was originally formulated for probabilistic context-
free grammars.

Given this derivative, we can use it directly to maximize
the likelihood using a stochastic gradient ascent algorithm
(LeCun, Bottou, Bengio, & Haffner, 1998),4 which takes
the following form:

Setθ̄ to some initial value
for k = 0 . . . N − 1

for i = 1 . . . n

θ̄ = θ̄ + α0
(1+ct)

∂ log P (Li|Si;θ̄)

∂θ̄

wheret = i+k×n is the total number of previous updates,
N is a parameter that controls the number of passes over the
training data, andα0 andc are learning–rate parameters.

3 Learning

In the previous section we saw that a probabilistic Com-
binatory Categorial Grammar (PCCG) is defined by a lex-
icon Λ, together with a parameter vectorθ̄. In this sec-
tion, we present an algorithm that learns a PCCG. One
input to the algorithm is a training set ofn examples,
{(Si, Li) : i = 1 . . . n}, where each training example is
a stringSi paired with a logical formLi. Another input to
the algorithm is an initial lexicon,Λ0.5

Note that the training data includes neither direct evidence
about the parse trees mapping eachSi to Li, nor the set
of lexical entries which are required for this mapping. We
treat the parse trees as a hidden variable within our model.
The set of possible parse trees for a sentence depends on the
lexicon, which is itself learned from the training examples.
Thus, at a high level, learning will involve the following
two sub-problems:

• Induction of a lexicon,Λ, which defines a set of parse
trees for each training sentenceSi.

• Estimation of parameter values, which define a distri-
bution over parse trees for any sentence.

4The EM algorithm could also be used, but would require
some form of gradient ascent for the M–step. Because of this, we
found it simpler to use gradient ascent for the entire optimization.

5In our experiments the initial lexicon includes lexical items
that are derived directly from the database in the domain; for ex-
ample, we have a list of entries{Utah := NP : utah, Idaho :=
NP : idaho, Nevada := NP : nevada, . . .} including every
U.S. state in the geography domain. It also includes lexical items
that are domain independent, and easily specified by hand: for ex-
ample, the definition for “what” in Figure 2(b) would be included,
as it would be useful across many domains.

The first problem can be thought of as a form ofstructure
learning, and is a major focus of the current section. The
second problem is a more conventionalparameter estima-
tion problem, which roughly speaking can be solved using
the gradient descent methods described in section 2.4.

The remainder of this section describes an overall strat-
egy for these two problems. We show how to interleave
a structure-building step, GENLEX, with a parameter esti-
mation step, in a way that results in a PCCG with a compact
lexicon and effective parameter estimates for the weights of
the log-linear model. Section 3.1 describes the main struc-
tural step, GENLEX(S, L), which generates a set of candi-
date lexical items that may be useful in derivingL from S.
In section 3.2 we describe the overall learning algorithm,
which prunes the lexical entries suggested by GENLEX
and estimates the parameters of a log-linear model.

3.1 Lexical Learning

We now describe the function GENLEX, which takes a sen-
tenceS and a logical formL and generates a set of lexical
items. Our aim is to define GENLEX(S, L) in such a way
that the set of lexical items that it generates allows at least
one parse ofS that results inL.

As an example, consider the parse in Figure 2(a). When
presented with the input sentenceUtah borders Idaho
and logical formborders(utah, idaho), we would like
GENLEX to produce a lexicon that includes the three
lexical items that were used in this parse, namely

Utah := NP : utah
Idaho := NP : idaho
borders := (S\NP)/NP : λx.λy.borders(y, x)

Our definition of GENLEX will also producespurious
lexical items, such asborders := NP : idaho and
borders utah := (S\NP)/NP : λx.λy.borders(y, x).
Later, we will see how these items can be pruned from the
lexicon in a later stage of processing.

To compute GENLEX, we make use of a function,C(L),
that maps a logical form to a set of categories (such asNP :
utah, or NP : idaho). GENLEX is then defined as

GENLEX(S, L) = {x := y | x ∈ W (S), y ∈ C(L)}

whereW (S) is the set of all subsequences of words inS.

The functionC(L) is defined through a set of rules that
examineL and produce categories based on its structure.
Figure 3 shows the rules that we use. Each rule consists
of a trigger that identifies some sub-structure within the
logical form L. For each sub-structure inL that matches
the trigger, a category is created and added toC(L). As
one example, the second row in the table defines a rule that
identifies all arity-one predicatesp within the logical form

Rules Categories produced from logical form
Input Trigger Output Category arg max(λx.state(x) ∧ borders(x, texas), λx.size(x))

constantc NP : c NP : texas
arity one predicatep1 N : λx.p1(x) N : λx.state(x)
arity one predicatep1 S\NP : λx.p1(x) S\NP : λx.state(x)
arity two predicatep2 (S\NP)/NP : λx.λy.p2(y, x) (S\NP)/NP : λx.λy.borders(y, x)
arity two predicatep2 (S\NP)/NP : λx.λy.p2(x, y) (S\NP)/NP : λx.λy.borders(x, y)
arity one predicatep1 N/N : λg.λx.p1(x) ∧ g(x) N/N : λg.λx.state(x) ∧ g(x)

literal with arity two predicatep2
and constant second argumentc

N/N : λg.λx.p2(x, c) ∧ g(x) N/N : λg.λx.borders(x, texas) ∧ g(x)

arity two predicatep2 (N\N)/NP : λx.λg.λy.p2(x, y) ∧ g(x) (N\N)/NP : λg.λx.λy.borders(x, y) ∧ g(x)
anarg max / min with second
argument arity one functionf NP/N : λg. arg max / min(g, λx.f(x)) NP/N : λg. arg max(g, λx.size(x))

an arity one
numeric-ranged functionf S/NP : λx.f(x) S/NP : λx.size(x)

Figure 3:The rules that define GENLEX. We use the termpredicateto refer to a function that returns a truth value;functionto refer
to all other functions; andconstantto refer to constants of typee. Each row represents a rule. The first column lists the triggers that
identify some sub-structure within a logical formL, and then generate a category. The second column lists the category that is created.
The third column lists example categories that are created when the rule is applied to the logical form at the top of this column.

as triggers for creating a categoryN : λx.p(x). Given the
logical formλx.major(x) ∧ city(x), which has the arity-
one predicatesmajor andcity, this rule would create the
categoriesN : λx.major(x) andN : λx.city(x).

Intuitively, each of the rules in Figure 3 corresponds to a
different linguistic sub-category such as noun, transitive
verb, adjective, and so on. For example, the rule in the first
row generates categories that are noun phrases, and the sec-
ond rule generates nouns. The end result is an efficient way
to generate a large set of linguistically plausible categories
C(L) that could be used to construct a logical formL.

3.2 The Learning Algorithm

Figure 4 shows the learning algorithm used within our ap-
proach. The output of the algorithm is a PCCG, defined by
a lexiconΛ and a parameter vector̄θ. As input, the algo-
rithm takes a training set of sentences paired with logical
forms, together with an initial lexicon,Λ0.

At all stages, the algorithm maintains a parameter vector
θ̄ which stores a real value associated with every possible
lexical item. The set of possible lexical items is

Λ∗ = Λ0 ∪
n⋃

i=1

GENLEX(Si, Li)

In our experiments, the parameters were initialized to be
0.1 for all lexical items inΛ0, and0.01 for all other lexical
items. These values were chosen through experiments on
the development data; they give a small initial bias towards
using lexical items fromΛ0 and favor parses that include
more lexical items.

The goal of the algorithm is to provide a relatively com-
pact lexicon, which is a small subset of the entire set of
possible lexical items. The algorithm achieves this by al-
ternating between two steps. The goal of step 1 is to search
for a relatively small number of lexical entries, which are
nevertheless sufficient to successfully parse all training ex-

amples. Step 2 is then used to re-estimate the parameters
of the lexical items that are selected in step 1.

In the t’th application of step 1, each sentence in turn
is parsed with the current parametersθ̄t−1 and a spe-
cial, sentence–specific lexicon which is defined asΛ0 ∪
GENLEX(Si, Li). This will result in one or more highest-
scoring parses that have the logical formLi.6 Lexical
items are extracted from these highest-scoring parses alone.
The result of this stage is to generate a small subsetλi

of GENLEX(Si, Li) for each training example. The out-
put of step 1, at iterationt, is a subset ofΛ∗, defined as
Λt = Λ0 ∪

⋃n
i=1 λi.

Step 2 re-estimates the parameters of the members ofΛt,
using stochastic gradient descent. The starting point for
gradient descent when estimatingθ̄t is θ̄t−1, i.e., the pa-
rameter values at the previous iteration. For any lexical
item that is not a member ofΛt, the associated parameter
in θ̄t is set to be the same as the corresponding parameter in
θ̄t−1 (i.e., parameter values are simply copied across from
the previous iteration).

The motivation for cycling between steps 1 and 2 is as fol-
lows. In step 1, keeping only those lexical items that occur
in the highest scoring parse(s) leading toLi results in a
compact lexicon. This step is also guaranteed to produce
a lexiconΛt ⊂ Λ∗ such that the accuracy on the training
data when running the PCCG(Λt, θ̄

t−1) is at least as ac-
curate as applying the PCCG(Λ∗, θ̄t−1). In other words,
pruning the lexicon in this way cannot hurt parsing perfor-
mance on training data in comparison to using all possible
lexical entries.7

6Note that this set of highest-scoring parses is identical to the
set produced by parsing withΛ∗, rather than the sentence-specific
lexicon. This is becauseΛ0 ∪ GENLEX(Si, Li) contains all lex-
ical items that can possibly be used to deriveLi.

7To see this, note that restricting the lexicon in this way cannot
exclude any of the highest-scoring parses forSi that lead toLi. In
practice, it may exclude some parses that lead to logical forms for
Si that are incorrect. Because the highest-scoring correct parses

Step 2 also has a guarantee, in that the log-likelihood on the
training data will improve (assuming that stochastic gradi-
ent descent is successful in improving its objective). Step 2
is needed because after each application of step 1, the pa-
rametersθ̄t−1 are optimized forΛt−1 rather thanΛt, the
current lexicon. Step 2 derives new parameter valuesθ̄t

which are optimized forΛt.

In summary, steps 1 and 2 together form a greedy, itera-
tive method for simultaneously finding a compact lexicon
and also optimizing the log-likelihood of the model on the
training data.

4 Related Work

This section discusses related work on natural language in-
terfaces to databases (NLIDBs), in particular focusing on
learning approaches, and related work on learning CCGs.

There has been a significant amount of work on hand engi-
neering NLIDBs. Androutsopoulos, Ritchie, and Thanisch
(1995) provide a comprehensive summary of this work.
Recent work in this area has focused on improved pars-
ing techniques and designing grammars that can be ported
easily to new domains (Popescu, Armanasu, Etzioni, Ko, &
Yates, 2004).

Zelle and Mooney (1996) developed one of the earliest ex-
amples of a learning system for NLIDBs. This work made
use of a deterministic shift–reduce parser and developed
a learning algorithm, called CHILL , based on techniques
from Inductive Logic Programming, to learn control rules
for parsing. The major limitation of this approach is that
it does not learn the lexicon, instead assuming that a lex-
icon that pairs words with their semantic content (but not
syntax) has been created in advance. Later, Thompson and
Mooney (2002) developed a system that learns a lexicon
for CHILL that performed almost as well as the original
system. Most recently, Tang and Mooney (2001) devel-
oped a statistical shift–reduce parser that significantly out-
performed these original systems. However, this system,
again, does not learn a lexicon.

A number of previous learning methods (Papineni, Roukos,
& Ward, 1997; Ramaswamy & Kleindienst, 2000; Miller,
Stallard, Bobrow, & Schwartz, 1996; He & Young, 2004)
have been applied to the ATIS domain, which involves a
natural language interface to a travel database of flight in-
formation. In the future we plan to test our method on this
domain. Miller et al. (1996) describe an approach that as-
sumes full annotation of parse trees. Papineni et al. (1997)
and Ramaswamy and Kleindienst (2000) use approaches
based on methods originally developed for machine trans-
lation. He and Young (2004) describe an approach using an
extension of hidden Markov models, resulting in a model
with some of the power of context-free models.

are still allowed, parsing performance cannot deteriorate.

Inputs:

• Training examplesE = {(Si, Li) : i = 1 . . . n} where
eachSi is a sentence, eachLi is a logical form.

• An initial lexiconΛ0

Procedures:

• PARSE(S, L, Λ, θ̄): takes as input a sentenceS, a logical
form L, a lexiconΛ, and a parameter vector̄θ. Returns the
highest probability parse forS with logical formL, whenS
is parsed by a PCCG with lexiconΛ and parameters̄θ. If
there is more than one parse with the same highest proba-
bility, the entire set of highest probability parses is returned.
Dynamic programming methods are used when implement-
ing PARSE, see section 2.4 of this paper.

• ESTIMATE(Λ, E, θ̄): takes as input a lexiconΛ, a train-
ing setE, and a parameter vectorθ̄. Returns parameter val-
uesθ̄ that are the output of stochastic gradient descent on the
training setE under the grammar defined byΛ. The inputθ̄
is the initial setting for the parameters in the stochastic gra-
dient descent algorithm. Dynamic programming methods
are used when implementing ESTIMATE, see section 2.4.

• GENLEX(S, L): takes as input a sentenceS and a logical
form L. Returns a set of lexical items. See section 3.1 for a
description of GENLEX.

Initialization: Defineθ̄ to be a real-valued vector of arity|Λ∗|,
whereΛ∗ = Λ0 ∪

Sn
i=1 GENLEX(Si, Li). θ̄ stores a pa-

rameter value for each potential lexical item. The initial pa-
rameters̄θ0 are taken to be0.1 for any member ofΛ0, and
0.01 for all other lexical items.

Algorithm:

• For t = 1 . . . T

Step 1: (Lexical generation)
• For i = 1 . . . n:

– Setλ = Λ0 ∪ GENLEX(Si, Li).
– Calculateπ = PARSE(Si, Li, λ, θ̄t−1).
– Defineλi to be the set of lexical entries inπ.

• SetΛt = Λ0 ∪
Sn

i=1 λi

Step 2: (Parameter Estimation)
• Setθ̄t = ESTIMATE(Λt, E, θ̄t−1)

Output: LexiconΛT together with parameters̄θT .

Figure 4: The overall learning algorithm.

There have been several pieces of previous work on learn-
ing CCGs. Clark and Curran (2003) developed a method
for leaning the parameters of a log-linear model for syntac-
tic CCG parsing given fully annotated normal–form parse
trees. Watkinson and Manandhar (1999) presented an un-
supervised approach for learning CCGs that, again, does
not perform any semantic analysis. We know of only one
previous system (Bos, Clark, Steedman, Curran, & Hock-
enmaier, 2004) that learns CCGs with semantics. However,
this approach requires fully–annotated CCG derivations as
supervised training data. As such, the techniques they em-
ployed are not applicable to learning in our framework.

Geo880 Jobs640
P R P R

Our Method 96.25 79.29 97.36 79.29
COCKTAIL 89.92 79.40 93.25 79.84

Figure 5:The results for our method, and the previous work of
COCKTAIL , when applied to the two database query domains.P
is precision in recovering entire logical forms,R is recall.

5 Experiments

We evaluated the learning algorithm on two domains:
Geo880, a set of 880 queries to a database of U.S. geogra-
phy; and Jobs640, a set of 640 queries to a database of job
listings. The data were originally annotated with Prolog
style semantics which we manually converted to equivalent
statements in the lambda calculus.

We compare the structured classifier results to the COCK-
TAIL system (Tang & Mooney, 2001). The COCKTAIL

experiments were conducted by performing ten–fold cross
validation of the entire data set. We used a slightly differ-
ent experimental set-up, where we made an explicit split
between training and test data sets.8 The Geo880 data set
was divided into 600 training examples and 280 test ex-
amples; the Jobs640 set was divided into 500 training and
140 test examples. The parameters of the training algo-
rithm were tuned by cross–validation on the training set.
We did two passes of the overall learning loop in Figure 4.
Each time we used gradient descent to estimate parame-
ters, we performed three passes over the training set with
the learning-rate parametersα0 = 0.1 andc = 0.001.

We give precision and recall for the different algorithms,
defined asPrecision = # correct/total # parsed,
Recall = # correct/total # examples. Sentences are
correct if the parser gives a completely correct semantics.

Figure 5 shows the results of the experiments. Our ap-
proach has higher precision than COCKTAIL on both do-
mains, with a very small reduction in recall. When eval-
uating these results, it is important to realize that COCK-
TAIL is provided with a fairly extensive lexicon that pairs
words with semantic predicates. For example, the word
borderswould be paired with the predicateborders(x, y).
This prior information goes substantially beyond the initial
lexicon used in our own experiments.9

8This allowed us to use cross-validation experiments on the
training setto optimize parameters, and more importantly to de-
velop our algorithms while ensuring that we had not implicitly
tuned our approach to the final test set.

9Note that the work of (Thompson & Mooney, 2002) does de-
scribe a method which automatically learns a lexicon. However,
results for this approach were worse than results for CHILL (Zelle
& Mooney, 1996), which in turn were considerably worse than
results for COCKTAIL on the Geo250 domain, a subset of the ex-
amples in Geo880.

states := N : λx.state(x)
major := N/N : λf.λx.major(x) ∧ f(x)
population := N : λx.population(x)
cities := N : λx.city(x)
rivers := N : λx.river(x)
run through := (S\NP)/NP : λx.λy.traverse(y, x)
the largest := NP/N : λf. arg max(f, λx.size(x))
river := N : λx.river(x)
the highest := NP/N : λf. arg max(f, λx.elev(x))
the longest := NP/N : λf. arg max(f, λx.len(x))

Figure 6: Ten learned lexical items that had highest associated
parameter values from a randomly chosen development run in the
Geo880 domain.

To better understand these results, we examined perfor-
mance of our method through cross-validation on the train-
ing set. We found that the approach creates a compact
lexicon for the training examples that it parses. On the
Geo880 domain, the initial number of lexical items created
by GENLEX was on average 393.8 per training example
After pruning, on average only 5.1 lexical items per train-
ing example remained. The Jobs640 domain showed a re-
duction from an average of 697.1 lexical items per training
example, to 6.6 items.

To investigate the disparity between precision and recall,
we examined the behavior of the algorithm when trained in
the cross-validation (development) regime. We found that
on average, the learner failed to parse 9.3% of the training
examples in the Geo880 domain, and 8.7% of training ex-
amples in the Jobs640 domain. (Note that sentences which
cannot be parsed in step 1 of the training algorithm are ex-
cluded from the training set during step 2.) These parse
failures were caused by sentences whose semantics could
not be built from the lexical items that GENLEX created.
For example, the learner failed to parse complex sentences
such asThrough which states does the Mississippi runbe-
cause GENLEX does not create lexical entries that allow
the verbrun to find its argument, the prepositionthrough,
when it has moved to the front of the sentence. This prob-
lem is almost certainly a major cause of the lower recall
on test examples. Exploring the addition of more rules to
GENLEX is an important area for future work.

Figure 6 gives a sample of lexical entries that are learned
by the approach. These entries are linguistically plausible
and should generalize well to unseen data.

6 Discussion and Future Work

In this paper, we presented a learning algorithm that cre-
ates accurate structured classifiers for natural language in-
terfaces. A major focus for future work is to apply the algo-
rithm to a range of larger data sets. Larger data sets should
improve the recall performance and allow us to develop a
more comprehensive set of rules for GENLEX, ultimately
creating a robust system that can quickly learn interfaces

for new, unseen domains with little human assistance.

Although the experiments in this paper only learned natural
language interfaces to databases, there are many other nat-
ural language interfaces that the techniques can be gener-
alized to handle. In particular, we will explore building in-
terfaces to dialogue systems. These interfaces must handle
a much wider range of semantic phenomena (for example,
anaphora and ellipses). Extending the current algorithm to
address these challenges will greatly increase the range of
possible interfaces that are successfully learned.

Acknowledgements

We would like to thank Rohit Kate and Raymond Mooney
for their help with obtaining the Geo880 and Jobs640 data
sets. We also gratefully acknowledge the support of a ND-
SEG graduate research fellowship and the National Science
Foundation under grants 0347631 and 0434222.

References

Androutsopoulos, I., Ritchie, G., & Thanisch, P. (1995).
Natural language interfaces to databases–an intro-
duction.Journal of Language Engineering, 1(1), 29–
81.

Baker, J. (1979). Trainable grammars for speech recogni-
tion. In Speech Communication Papers for the 97th
Meeting of the Acoustical Society of America.

Bos, J., Clark, S., Steedman, M., Curran, J. R., & Hock-
enmaier, J. (2004). Wide-coverage semantic repre-
sentations from a CCG parser. InProceedings of
the 20th International Conference on Computational
Linguistics, pp. 1240–1246.

Carpenter, B. (1997).Type-Logical Semantics. The MIT
Press.

Clark, S., & Curran, J. R. (2003). Log-linear models for
wide-coverage CCG parsing. InProceedings of the
SIGDAT Conference on Empirical Methods in Natu-
ral Language Processing.

He, Y., & Young, S. (2004). Semantic processing using
the hidden vector state model.Computer Speech and
Language.

Johnson, M., Geman, S., Canon, S., Chi, Z., & Riezler, S.
(1999). Estimators for stochastic “unification-based”
grammars. InProceedings of the Association for
Computational Linguistics, pp. 535–541.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for seg-
menting and labeling sequence data. InProceed-
ings of the 18th International Conference on Ma-
chine Learning.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11), 2278–2324.

Manning, C. D., & Schutze, H. (1999).Foundations of sta-
tistical natural language processing. The MIT Press.

Miller, S., Stallard, D., Bobrow, R. J., & Schwartz, R. L.
(1996). A fully statistical approach to natural lan-
guage interfaces. InProceedings of the Association
for Computational Linguistics, pp. 55–61.

Papineni, K. A., Roukos, S., & Ward, T. R. (1997). Feature-
based language understanding. InProceedings of
European Conference on Speech Communication
and Technology.

Popescu, A.-M., Armanasu, A., Etzioni, O., Ko, D., &
Yates, A. (2004). Modern natural language interfaces
to databases: Composing statistical parsing with se-
mantic tractability. InProceedings of the 20th Inter-
national Conference on Computational Linguistics.

Ramaswamy, G., & Kleindienst, J. (2000). Hierarchi-
cal feature-based translation for scalable natural lan-
guage understanding. InProceedings of 6th Interna-
tional Conference on Spoken Language Processing.

Ratnaparkhi, A., Roukos, S., & Ward, R. T. (1994). A max-
imum entropy model for parsing. InProceedings of
the International Conference on Spoken Language
Processing.

Steedman, M. (1996).Surface Structure and Interpreta-
tion. The MIT Press.

Steedman, M. (2000).The Syntactic Process. The MIT
Press.

Tang, L. R., & Mooney, R. J. (2001). Using multiple clause
constructors in inductive logic programming for se-
mantic parsing. InProceedings of the 12th European
Conference on Machine Learning, pp. 466–477.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin
markov networks. InNeural Information Processing
Systems.

Taskar, B., Klein, D., Collins, M., Koller, D., & Manning,
C. (2004). Max-margin parsing. InProceedings
of the SIGDAT Conference on Empirical Methods in
Natural Language Processing.

Thompson, C. A., & Mooney, R. J. (2002). Acquiring
word-meaning mappings for natural language inter-
faces.Journal of Artificial Intelligence Research, 18.

Watkinson, S., & Manandhar, S. (1999). Unsupervised
lexical learning with categorial grammars using the
LLL corpus. InProceedings of the 1st Workshop on
Learning Language in Logic, pp. 16–27.

Zelle, J. M., & Mooney, R. J. (1996). Learning to parse
database queries using inductive logic programming.
In Proceedings of the 14th National Conference on
Artificial Intelligence.

