
To appear in Neural CompuationInhomogeneities in heteroassoiative memories withlinear learning rulesDavid C. Sterratt and David Willshaw20th Deember 2006AbstratWe investigate how various inhomogeneities present in synapses and neuronsa�et the performane of feedforward assoiative memories with linear learning,a high level network model of hippoampal iruitry and plastiity. The inhomo-geneities inorporated into the model are: di�erential input attenuation, stohastisynapti transmission and memories learnt with varying intensity. For a lass ofloal learning rules, we determine the memory apaity of the model by extendingprevious analysis. We �nd that the signal to noise ratio (SNR), a measure of �delityof reall, depends on the oeÆients of variation (CVs) of the attenuation fators,the transmission variables, and the intensity of the memories, as well as the pa-rameters of the learning rule, pattern sparsity and the number of memories stored.To predit the e�ets of attenuation due to extended dendriti trees, we use dis-tributions of attenuations appropriate to unbranhed and branhed dendriti trees.Biologial parameters for stohasti transmission are used to determine the CV ofthe transmission fators. The redution in SNR due to di�erential attenuation issurprisingly low ompared to the redution due to stohasti transmission. Traininga network by storing memories at di�erent intensities is equivalent to using a learn-ing rule inorporating weight deay. In this type of network, new memories an bestored ontinuously at the expense of older ones being forgotten (a `palimpsest').We show that there is an optimal rate of weight deay that maximises the apaityof the network, whih is a fator of e lower than its non-palimpsest equivalent.1 IntrodutionAssoiative memory network models resemble the iruitry and presumed funtion of theCA3 and CA1 areas of the hippoampus (MNaughton and Morris, 1987; Treves andRolls, 1994; Levy, 1989), the mushroom bodies of the inset olfatory system (Laurentand Naraghi, 1994; Huerta et al., 2004) and the mammalian olfatory ortex (Haberlyand Bower, 1989). These networks an store memory patterns for later reall until thememory apaity of the network is reahed. The dependene of the apaity on thenumber of units in the network, and other parameters suh as the sparseness of memorypatterns or onnetivity, has been alulated for many variants of the assoiative memorymodel (Willshaw et al., 1969; Willshaw, 1971; Anderson, 1972; Kohonen, 1972; Hop�eld,1



1982; Amit et al., 1985; Palm, 1988; Dayan and Willshaw, 1991; Palm and Sommer, 1996;Graham and Willshaw, 1997).The neurons in high-level assoiative memory models are `point' neurons. In reality,biologial neurons have eletrially extended dendriti trees whih attenuate distal in-puts more than proximal ones en route to the soma, a phenomenon we all di�erentialattenuation. The synapses in high-level models are deterministi. By ontrast, biolog-ial synapses exhibit stohasti transmission in both the ourrene and magnitude ofpostsynapti synapti urrents.The �rst aim of this paper is to inorporate these inhomogeneities into a high-levelassoiative memory model to determine how muh they a�et the apaity of the mem-ory. Di�erential attenuation is of partiular interest in the ontext of experimental datashowing that mean synapti ondutanes inrease with distane from the soma (Mageeand Cook, 2000), leading to somati exitatory postsynapti potential (EPSP) amplitudesthat are independent of distane, when the neuron is quiesent.The seond aim of this paper is to determine the apaity of the network when thedi�erent memories are stored with di�ering intensities in the network. This is partlymotivated by evidene that behavioural stress at the time of learning leads to greatersynapti synapti potentiation or depression (Xu et al., 1997), suggesting that memorieslearnt in partiularly signi�ant ontexts may have more intense traes. Our study ofnetworks with variable storage intensities is also motivated by `forgetful' learning rules,where the intensity of the traes of memories deays with time. Various types of asso-iative memory with weight deay an be used to eliminate old memories as new onesare learnt (Willshaw, 1971; Nadal et al., 1986). Networks with this property are alledpalimpsests by analogy with the anient pratie of leaning old texts from papyrus tomake way for new ones, leaving a faint impression of the original text (Nadal et al., 1986).The assoiative memory model studied is the heteroassoiative memory network withlinear learning (Willshaw, 1971; Palm, 1988; Willshaw and Dayan, 1990; Dayan andWillshaw, 1991; Chehik et al., 2001). This network allows us to speify arbitrary loallearning rules suh as heterosynapti long term depression (Lynh et al., 1977) or theovariane rule (Sejnowski, 1977b). The network omprises an input layer of binary-valued neurons onneted by real-valued feedforward synapti weights to an output layerof binary-valued neurons. During the training phase, the network learns to assoiateativity patterns on the output layer with input ativity patterns. Eah pair of patternsis stored by hanging eah synapti weight by an amount de�ned by the learning rule,whih is a funtion only of the ativity in the two neurons the synapse onnets. Thisdependene only on ativity loal to the synapse, but not on the ativity of other neuronsin the network, means the learning rule is lassi�ed as a loal learning rule. Sine there arefour possible ombinations of pre- and postsynapti ativity at a synapse, four parametersde�ne the learning rule. A previously stored output pattern is realled by the networkby eah output neuron omputing the weighted sum of the input pattern vetor andthresholding this quantity appropriately. The network is linear in the sense that the sumof the synapti hanges over all patterns determines the synapti strength, in ontrast toassoiative memory models where the weights are lipped at an upper value (Willshawet al., 1969).The performane of the network depends strongly on how the threshold is set. Clearlyif it is set very low, all output units will be ative for any input pattern presented, oronversely, will be always o� if the threshold is set too high. This suggests that thereis an optimum threshold. Signal to noise ratio analysis an be used to show what the2



optimal performane is (Palm, 1988; Palm and Sommer, 1996; Dayan and Willshaw, 1991;Chehik et al., 2001).A ritial assumption about setting the threshold is whether all output units havethe same threshold or whether eah output unit an have its own threshold. Palm andoworkers (Palm, 1988; Palm and Sommer, 1996) made the assumption that all outputunits have the same threshold, whih an be adjusted to optimise performane. Theirsignal to noise ratio (SNR) analysis (Palm and Sommer, 1996) shows that in general thereis a �nite limit on the apaity of the network, regardless of the number of input units.The only exeption to this are networks in whih the ovariane learning rule is operat-ing, where the SNR depends linearly on the number of input units. Chehik et al. (2001)onsidered how to resue the `ine�etive' learning rules by a homoeostati neuronal regu-lation mehanism similar to the ativity-dependent saling of synapti weights observedin biology (Turrigiano et al., 1998). This has the e�et of normalising the weights ontoeah postsynapti neuron, and leads to the apaity of the network saling linearly withthe number of input units. This is mathematially equivalent to a restrition of the lassof possible learning rules, and there is a mapping from any ine�etive learning ruleIn ontrast Dayan and Willshaw (Dayan and Willshaw, 1991; Willshaw and Dayan,1990) allowed eah output unit to have its own threshold, whih an be adjusted to opti-mise performane. Interestingly, subsequent experimental work has shown that neuronsan adjust their level of exitability homoeostatially, so as to maintain a onstant av-erage level of output ativity (Desai et al., 1999). Their SNR analysis showed that withoptimal thresholds, there are two lasses of learning rules. In balaned learning rules (Se-jnowski, 1977a) the mean hange in synapti weights is zero and the apaity inreaseslinearly with the number of input units. In unbalaned rules the mean hange in synaptiweights is nonzero and the apaity inreases with the square root of the number of inputunits. The ovariane learning rule (Sejnowski, 1977b) is a balaned learning rule, and isin fat optimal for randomly generated memory patterns; the standard Hebbian rule isan example of an inferior unbalaned learning rule.The strategies of optimising performane by synapti neuronal regulation or by in-dividual optimal thresholds are ompatible. The set of learning rules produed by theneuronal regulation mehanism of Chehik et al. (2001) are all balaned, so neuronal regu-lation operating in a network with individual optimal thresholds and with an unbalanedlearning rule will improve the saling of the apaity with the size of the network.1.1 Biologial bakgroundThe di�erent types of inhomogeneity we study are: di�erential attenuation of inputs;stohasti synapti transmission and di�erent numbers of repetitions of eah patternduring the training phase.Di�erential input attenuation: Exitatory postsynapti potentials (EPSPs) tend toattenuate en route from synapse to soma beause of the able properties of passive den-drites, the amount of attenuation varying with the path distane of the synapse fromthe soma (Rall, 1964). Magee and Cook (2000) found that the mean EPSP amplitude ofSha�er ollateral synapses measured at the soma of a hippoampal CA1 ell does notdepend on distane in vitro. This was due to the synapti ondutanes being saledaording to distane so that distal synapses had higher ondutane synapses than moreproximal ones (Andr�asfalvy and Magee, 2001). Whether this result extends to in vivo3



onditions is a subjet to debate. London and Segev (2001) used a passive model of a den-driti tree to suggest that in vivo synapti saling would be `self-defeating', sine largerdistal synapti ondutanes imply a redution in membrane resistane and onsequentlyredue the eletrotoni length, leading to smaller EPSPs from more distal synapses. How-ever, this model left out a number of features that might resue synapti saling (Mageeand Cook, 2001) suh as ative, amplifying ondutanes (Magee and Johnston, 1995;Lipowsky et al., 1996; Gillessen and Alzheimer, 1997) and proximal shunting inhibition.While it is possible that ative ondutanes redue loation-dependene of synapti eÆ-ay and time ourse (Rudolph and Destexhe, 2003), it is unlikely that all suh di�erenesan be eliminated; the attenuation su�ered by inputs from di�erent parts of the tree mayutuate with the level of bakground ativity.Stohasti synapti transmission: The release of synapti vesiles in response toation potentials at CA3 boutons is stohasti, with a transmission probability rangingbetween 0.06 and 0.63 (Hessler et al., 1993; Striker et al., 1996) though perhaps as high as0.8 in potentiated states (Stevens and Wang, 1994; Bolshakov et al., 1997). Measurementsof the quantal variability (QV) of exitatory postsynapti urrents (EPSCs) at CA3{CA1synapses vary from under 0.1 (Striker et al., 1996) to around 0.3 or 0.45 at potentiatedsynapses (Bolshakov et al., 1997; Forti et al., 1997).Inhomogeneous learning intensities: Some memories may be learnt more robustlythan others. This ould be beause they appear relatively frequently or beause one ofa host of moleules linked to behaviour hanges the intensity of Long Term Potentiation(LTP) and/or Long Term Depression (LTD) during their storage (Sanes and Lihtman,1999). For example stressed animals have redued LTP and inreased LTD (Shors et al.,1989; Xu et al., 1997). The intensity of a memory may deay through time. Chronireordings in vivo suggested that LTP in various forebrain areas has dual exponentialdeay with a fast time onstant of around 1.5 hours and a slow time onstant of around�ve days (Raine et al., 1983). More reent reordings suggest that the persistene of LTPdepends on the intensity of the indution protool and the rihness of the environment inwhih the animals are kept after indution (Abraham et al., 2002). With a weak protoolthe synapti strength falls bak to baseline exponentially with a deay time onstant ofaround a day, regardless of the environment. LTP resulting from more intense stimulationprotools an be stable for up to a year when the animals are kept in an unstimulatingenvironment after LTP indution, but this gives way to exponential deay with a timesaleof days when the animals are kept in a more stimulating environment (Abraham et al.,2002). These results suggest that learning new memories auses synapti weights todeay. The dependene of the deay time onstant on the strength of indution hints atsynapses with states with di�erent persistenes, as modelled in a reent paper by Fusiet al. (2005). An alternative hypothesis is that stronger memories are rehearsed moreoften during sleep, leading to their greater persistene (Geszti and P�azm�andi, 1987).1.2 Theoretial bakgroundPrevious theoretial work has analysed the e�ets of ertain inhomogeneities in assoiativememory networks. Graham (2001) studied di�erential attenuation using an assoiativenetwork with a lipped Hebbian learning rule (Willshaw et al., 1969) embedded in aompartmental model of a hippoampal CA1 ell with stohasti synapses. He showed4



that this redued the SNR found in an abstrat network by about 40%, for a partiularloading level of the network. Saling synapses to ompensate for distane inreased theSNR by about 5%, and various other strategies suh as amplifying ative ondutanesalso improved performane. Whether the inputs arrived synhronously or asynhronouslya�eted the SNR, depending on the type of ompensation used. Stohasti transmissionhas been analysed in autoassoiative networks with inhibitory neurons (Bennett et al.,1994) where it failitates the reall of memories from partial ues, though it also degradesthe retrieval state slightly.Inhomogeneities in memory intensity have been studied extensively. Willshaw (1971)investigated probabilisti weight deay in assoiative networks with binary weights. Heshowed that in an assoiative net with binary-valued synapses, randomly swithing o�previously ativated synapses enabled the memory to at as a palimpsest, but at theexpense of foring the memory to funtion under non-optimal onditions. Probabilistiweight deay where the probability of deay depends on time has also been studied (Hen-son and Willshaw, 1995). Hop�eld (1982) suggested both weight deay and keeping theweights between presribed maxima and minima as methods for allowing networks toontinue learning new memories whilst forgetting old ones. Nadal et al. (1986) studieda network where eah new memory is stored more intensely than the previous one. Thisguarantees perfet reall of the last stored pattern and, aording to simulations, partialreall for around half of the number of memories that ould be stored by a standardnetwork. Analytial mean �eld studies of networks with weight deay followed (M�ezardet al., 1986; van Hemmen and Zagrebnov, 1987). The apaity of a palimpsest Hop�eldnetwork was found to be about 1=e of a standard Hop�eld network of the same size(M�ezard et al., 1986). Networks inorporating the `learning within bounds' feature havethe palimpsest property, as shown numerially (Parisi, 1986; Nadal et al., 1986), analyt-ially with a ombined signal to noise and random walk analysis (Gordon, 1987) and bya sophistiated analysis inluding a Markov hain representation of the iterative learningproedure (van Hemmen et al., 1988). If the bounds exeed a ertain threshold levelthey have little e�et and the performane of the network deteriorates atastrophially,whereas if they are very small, only the most reently stored memory pattern is retrievedaurately. Again, apaity is about 1=e that of a standard Hop�eld network, for theoptimal bound.2 The model and key results2.1 The modelOur model is a generalisation of the mathematial framework introdued by Palm (1988)and developed by Willshaw and Dayan (1990). We hoose Willshaw and Dayan's devel-opment of the theory over that of Palm and Sommer (1996) and Chehik et al. (2001)beause eah unit is assumed to be able to optimise its own threshold to improve perfor-mane, as appears to be the ase in nature (Desai et al., 1999). As noted in setion 1, theidea of `neuronal regulation' (Chehik et al., 2001) is ompatible with individual optimalthresholds.The network omprises N assoiative inputs indexed by i and an unspei�ed numberof output neurons, indexed by j. 
 memories have been stored; the !th memory is a pairof strings (a(!); b(!)) with binary-valued omponents a(!)i and b(!)j . The typial element5



b(!)j of output pattern b(!) is assigned the `high' value h with probability r and the `low'value l with probability 1 � r. The typial element a(!)i of the input pattern a(!) isassigned the `high' value 1 with a probability p and the `low' value  with probability1 � p.  an take on any value apart from 1. In a standard Hop�eld network it wouldbe set at �1, but a biologially-realisti value is 0. When eah output unit an have itsthreshold set independently,  is a saling parameter (Dayan and Willshaw, 1991) andthe results of signal to noise alulations are independent of ; we use this fat to hekour alulations in this paper.The synapti strength from input i to output neuron j iswij = 
X!=1 �(!)�(!)ij ; (1)where �(!) is the intensity of the !th memory and where the weight ontribution �(!)ijdepends on the input and output patterns presented during the training phase and thefour parameters of the generalised loal learning rule, �, �,  and Æ. These are alloatedas shown in Table 1, whih also gives the speial ases of the unbalaned Hebbian andbalaned ovariane learning rules.general�(!)ij b(!)jl ha(!)i  � �1  Æ
Hebbian�(!)ij b(!)jl ha(!)i  0 01 0 1

ovariane�(!)ij b(!)jl ha(!)i  pr �p(1� r)1 �(1� p)r (1� p)(1� r)Table 1: The general loal learning rule and its Hebbian and ovariane instantiations.During reall of the output pattern assoiated with the !th input pattern, the den-driti sum is alulated as d(!)j = NXi=1 wijfig(!)ij a(!)i ; (2)where fi is the attenuation fator of the ith input and g(!)ij is the transmission fator ofthe ijth synapse during presentation of the !th input pattern. Inlusion of fi and g(!)ijallows the attenuation due to the geometry and eletrial properties of real neurons to beinorporated in the model. We view the transmission fators as random variables whihmodel quantal failure and variane in quantal amplitude.Eah unit has a threshold �j so that its output oj takes the value h (`high') whend(!)j > �j and l (`low') otherwise. We assume that it is possible to set an optimal thresholdfor eah output separately (Willshaw and Dayan, 1990).As an aid to omprehension of the neessarily long alulations in setion 3, we presentan overview of our analysis and the key result of the paper at the beginning of the nextsetion. In the rest of the paper, this result is applied to di�erential attenuation (se-tion 5), stohasti transmission (setion 6) and memories stored with di�erent intensities(setion 7).
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d0d0 d0 + 2N(Æ � �)d0 + 2N( � �)d0 +N( � �) d0 +N(Æ � �)Figure 1: A, Shemati diagram of the `high' and `low' distributions of dendriti sumsd1 and d2 of units 1 and 2 in a network. Comparing the two units, the means of thedistributions are shifted with respet to eah other but the separation between the highand low distributions remains the same. B, The distribution of dendriti sums whenhalf the memories have an intensity � of 1 (solid lines) and half have an intensity � of 2(dashed lines). In order simplify the plot, we show a normalised version of the dendritisum d0, where d0 = d=(p(1� p)). The entres are at �N(Æ � �) and �N( � �) relativeto the mean of all dendriti sums. The distributions for � = 2 are further apart than for� = 1.2.2 Overview of analysis and key resultsWe take the signal to noise ratio (SNR) approah to analysing assoiative memories(Willshaw, 1971; Anderson, 1972; Palm, 1988; Palm and Sommer, 1996; Dayan and Will-shaw, 1991; Chehik et al., 2001). For autoassoiative memories, mean �eld approahesare neessary to determine the apaity at whih they break down due to atastrophiinterferene, but the SNR analysis usually gives the same saling of the apaity with thenumber of units in the network (Hertz et al., 1991).The SNR analysis (see Figure 1A) is based on the expeted distribution of the dendritisum for memories whose output should be `high' (b(!)j = h) and the expeted distributionof the dendriti sum for memories whose output should be `low' (b(!)j = l). The area ofthe `high distribution' to the left of the threshold gives the number of `high' memorieswhere the retrieved output will be `low', and the area of the `low distribution' to the rightof the threshold gives the number of `low' memories where the retrieved output will be`high'. Thus the total number of erroneously realled memories (the bit error) dependson the threshold, whih is set so as to minimise the bit error.The SNR is a measure of the disriminability of the distributions. It is alulated asthe square of the expeted di�erene between the means dh and dl for the high and low7



patterns (the `signal') divided by the sum of the varianes s2h and s2l of the high and lowdendriti sum distributions (the `noise'):� = (
dh � dl�)212(s2h + s2l ) : (3)Willshaw and Dayan (1990) observed that whereas the di�erene between means forthe high and low distributions is the same from unit to unit, the value of the two meansthemselves are shifted aording to the fration of memories with high and low outputsstored in a partiular unit (Figure 1A). Therefore di�erent units have di�erent optimalthresholds. To ensure that the SNR is a measure of the disriminability when optimalthresholds are set, the varianes of the high and low distributions in the SNR have to beomputed as the sum of squared deviations from the unit high and low means of eah unitindividually. Using this de�nition of the variane, Dayan and Willshaw (1991) obtaineda general expression for the SNR whih sales with the number of input neurons N . Ifthe variane is omputed with respet to the means of the distributions averaged over allunits (Palm and Sommer, 1996), the SNR tends to a limiting value for large N , exeptwhen  an be set to a biologially-dubious non-zero value.Inserting the parameters of the ovariane and Hebbian learning rules into Dayan andWillshaw's general expression (see equation 12) leads to the following expressions for theSNRs due to the ovariane and Hebbian rules:�ov = N
r(1� r) and �Hebb = N(1� p)
2pr2 : (4)At the number of stored memories 
 inreases, the SNR dereases. The apaity 
maxisde�ned as the maximum number of patterns that an be stored before the SNR fallsbelow a desired minimum level �min. Setting � = �min and 
 = 
max in these formulaeshows that for the ovariane rule the apaity is proportional to N=�min and for theHebbian rule the apaity is proportional to pN=�. In general, for balaned learningrules (prÆ + p(1 � r) + (1� p)r� + (1� p)(1� r)�=0) the apaity is proportional toN and for unbalaned learning rules, it is proportional to pN in the limit of large N(Dayan and Willshaw, 1991).We have used the same method as Dayan and Willshaw (1991) to ompute the SNRfor the network inorporating di�erential attenuation, stohasti transmission and vari-able storage intensities. The attenuation and transmission fators do not hange thequalitative form of the high and low distributions and the SNR. In ontrast, with inho-mogeneous memory intensities, the total distribution of the high or low dendriti sumsis a superposition of distributions due to memories stored with di�erent intensities.To make this lear, we onsider an example in whih one half of the stored memorieshave been hosen at random to be twie as intense (� = 2) as the other half (� = 1).We now need to look at the four distributions for high and low units with � = 1 and� = 2 as shown in Figure 1B. The means of the dendriti sum distributions of the strongermemories are further apart than the means of the weaker ones, meaning stronger memorieshave a greater `signal'. It turns out (see appendix A) that the varianes are independentof � (for unbalaned rules this is only true in a network with a large number of inputunits), so the `noise' omponent is the same regardless of the intensity of the memory.Thus the SNR depends on the strength of the memory.We have alulated a full expression for �(�), the SNR of a memory stored at intensity� (equation (10) in setion 3. This expression beomes muh simpler when expressed in8



terms of the SNR �̂ of a homogeneous network with the same input and output patternsparsities and learning rule. Assuming that  takes the biologially-plausible value of 0,when �f , �g and �� are the oeÆients of variation (CVs) of the attenuation fators, thetransmission fators and the intensities respetively, the SNR of a pattern stored withintensity �(�) is �(�) = �2(1 + �2f)(1 + �2g=(1� p))(1 + k�2�) �̂ ; (5)where the onstant k is an expression whose form depends on whether the learning ruleis balaned or unbalaned. �(�) also depends on p, r, the parameters of the learning rule,and, in the ase of unbalaned learning rules, 
.Sine the dendriti sum distributions depend on the memory intensity, at �rst sight itmay appear that the optimum threshold should depend on the intensity of the memorybeing realled, whih might be diÆult to arrange in biology. However, this turns out notto be a problem. As more and more memories are stored, the least intense memories inthe network will fall below the riterion threshold �min �rst. For any number of patternsstored 
, there will be a memory intensity � for whih the SNR is at the riterion. Ifthe threshold is set to minimise the bit error for memories with this intensity, the moreintense memories will be retrieved with less than this bit error (even if they are notretrieved as well as they ould if their own optimal threshold had been used).This means the network apaity is still well-de�ned. Thus the saling fator inequation (5) also sales the apaity of the network with balaned learning rules and itssquare root sales the apaity in the ase of unbalaned learning rules .A key insight from the ompat expression (5) is that the redution in performane ofthe network due to the inhomogeneity fators depends only on their CVs. Furthermore,the e�ets of di�erential input attenuation, stohasti transmission and inhomogeneouslearning intensities are independent of eah other.3 General theory3.1 Distribution of dendriti sumsFor a partiular output unit j, the sample mean of the high distribution for memorieswith intensity � is dhj(�) = 1
hj(�) Xf!:b(!)j =h;�(!)=�g d(!)j ; (6)where 
hj(�) is the number of high patterns stored by unit j with an intensity of �. Inappendix A.1 we show that the expeted value of dhj(�) is
dhj(�)� = N hfiiDg(!)ij E��p(1� p)(1� )(Æ � �) + h�i �(
hj�+ 
lj )� ; (7)where � = p+(1�p) is the expeted value of an input, and 
hj and 
lj are respetivelythe total number of high and low memories stored in the weights of unit j. The expetedsample variane or dispersion of the high patterns with intensity � iss2h(�) = * 1
h(�) Xf!:b(!)j =h;�(!)=�g�d(!)j �2 � dh2j(�)+ : (8)9



R1 = p(1� p)(r(Æ � �)2 + (1� r)( � �)2)+ r(1� r)(��  )2 S1 = p+(1�p)2p(1�p)(1�)2R1R2 = (1� 2p)(Æ � � +  � �)(r�+ (1� r) ) S2 = +1�1R2R3 = (r�+ (1� r) )2 S3 = p+(1�p)2p(1�p)(1�)2R3R4 = r(pÆ2 + (1� p)�2) + (1� r)(p2 + (1� p)�2) S4 = p+(1�p)2p(1�p)(1�)2R4 (11)
Table 2: Expressions for the omponents of equation (10). � = pÆ + (1 � p)� is theexpeted weight ontribution of a high pattern and  = p + (1 � p)� is the expetedweight ontribution of a low pattern.Analogous equations apply for dlj, and s2l (�).The strit de�nition of the signal to noise ratio of memories with intensity � is:�(�) = �
dhj(�)� dlj(�)��212(s2h(�) + s2l (�)) : (9)We alulate it to be�(�) = Np(1� p)(Æ �  � � + �)2~�2
(1 + �2f) �R1 +R2~� +R3
 +R4�2� + �2g(S1 + S2~�+ S3
 + S4�2�)� (10)where ~� = �= h�i is the normalised memory intensity, �2f is the squared oeÆient ofvariation (CV) of the attenuation fators, �2g is the squared CV of the transmissionfators, �2� is the CV of the memory intensities and the other fators are funtions of theparameters �, �, , Æ, p, r and , as given in Table 2.Any threshold is optimal for only one memory intensity �. As disussed in setion 2.2,we assume the threshold is optimal for memories with intensity �min for whih the SNRis at the performane riterion �min. In the next setion we show there is no dependeneof the noise on � for balaned rules, and the dependene vanishes for large N withunbalaned rules. From (7), we an see that as long as Æ � �, memories whih aremore intense than �min will have the mean of their high distribution further from thethreshold. Sine they have the same dispersion as weaker memories, they will have fewerbits omitted erroneously. A similar argument applies for the low distribution, as long as� � . These onditions hold in all the learning rules we onsider.3.2 Comparison with previous analysisBy setting all the CVs to zero and � = 1, equation (10) redues to the expression derivedby Dayan and Willshaw (1991):�̂ = Np(1� p)(Æ �  � � + �)2
(R1 +R2 +R3
) : (12)In the ase of balaned learning rules sine R2 and R3 are zero,�(�) = Np(1� p)(Æ �  � � + �)2~�2
(1 + �2f)�1 + �2g p+2(1�p)p(1�p)(1�)2� (R1 +R4�2�) : (13)From this, the value of k in (5) is alulated to be R4=R1. 10



In the ase of unbalaned learning rules at large 
, the R1 terms are negligible. Aslong as �(!) � h�i
, the R2 terms an be negleted too. Thus the terms in 
 and in �2�dominate the denominator of (10) to give�(�) � Np(1� p)(Æ �  � � + �)2~�2
2(1 + �2f)�1 + �2g p+2(1�p)p(1�p)(1�)2� (R3 +R4�2�=
) : (14)From this, the value of k in (5) is alulated to be R4=(R3
).This shows that the redution in SNR due to (i) di�erential attenuation, (ii) stohastitransmission and (iii) di�erential memory intensity ombine multipliatively.4 SimulationsIn order to on�rm our theory, simulation results are presented alongside the theoretialSNR urves in some of the �gures in the rest of this paper. In the simulations, a networkwith N = 1000 input units and 100 output units learns randomly-generated patternswith p = 0:2 and r = 0:2 using the ovariane rule. The mean and dispersion of the'high' and 'low' dendriti sums are omputed for eah of the output units.The sample mean of the di�erene in dendriti sums is an estimator for the omponents
dh � dl� of the SNR, and the sample error in the mean is the sample standard deviationof the di�erenes in dendriti sums, divided by the square root of the number of outputunits. Likewise the sample mean and error in the mean of the denominator s2h+ s2l of theSNR an be alulated. We used these values to ompute the sample SNR and ombinedthe errors to obtain the error in the SNR.The simulation ode was written in the R language (http://www.r-projet.org) andis available from http://www.an.ed.a.uk/�ds/pubs/inhomog-asso-net .5 Di�erential input attenuationWe now study the e�ets of di�erential input attenuation on memory performane. To dothis we assume that transmission and memory intensity are homogeneous (�g = �� = 0)by setting g(!)i = �(!) = 1. The only inhomogeneity remaining is in the attenuationfators fi. Using (5), for an arbitrary distribution of attenuation fators, the generalexpression for the SNR (10) redues to:� = 11 + �2f �̂ : (15)This formula shows that di�erential attenuation simply redues the SNR of the homoge-neous network by a fator only involving the oeÆient of variation of the attenuationfators. The apaity is redued at most by the same fator (for balaned learning rules)or by the square root of the fator (for unbalaned learning rules in the limit of largeN). Sine the redution in SNR is independent of all of the parameters of the network,the di�erential attenuation has no e�et on the optimality of the learning rule or on thedependene of the apaity on network size.In the remainder of this setion, we apply equation (15) to various distributions offi that might arise out of the spatial distribution of inputs on a dendriti tree and thegeometry of the tree itself. 11



5.1 Unbranhed dendrite, linear attenuationOur �rst appliation of equation (15) is to an unbranhed dendrite of uniform thikness,with a uniform distribution of inputs per unit area and a linear dependene of attenuationon distane. Linear dependene has the virtue of simpliity and is a good approximationto the more biologially realisti exponential ase when the dendrite is shorter than itseletrotoni length. In this ase the fators fi will be uniformly distributed. For fatorsdistributed uniformly between 1 and F , and approximating sums by integrals, we obtain:�linatt(F ) = 34 �1 + 1F + 1 + 1=F � �̂Figure 2A shows the theoretial urve, whih was on�rmed by simulations.
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Figure 2: Redution in SNR for unbranhed dendrites with linear and deaying expo-nential attenuation. Lines show theoretial preditions and points indiate simulationresults. A, Redution in SNR (�=�̂) versus attenuation at distal end of dendrite F forlinear attenuation (dashed line, diamonds) and exponential attenuation (solid line, ir-les; F = e�L). B, Redution in SNR with exponential attenuation versus length ofdendrite L. In the simulations, 
 = 500 patterns have been stored in the network.In data reorded in CA1 neurons in vitro, the attenuation of the distal inputs is roughlydouble that of the more proximal ones (Magee and Cook, 2000), implying F=1/2. Forthis value of F , �linatt � 0:96�̂. This redution in SNR equates to a 4% redution inapaity (with balaned learning rules) or 2% (with unbalaned learning rules).Under in vivo onditions we might expet the range of attenuation to be greaterbeause of bakground inputs to the neuron putting it into a high ondutane state(London and Segev, 2001; Destexhe et al., 2003). Assuming that in this ase there isa tenfold di�erene between the attenuation of the proximal and distal inputs, �linatt �0:82�̂, reduing the apaity by 18% at most. In the limiting ase, where F ! 1,�linatt ! 3=4�, giving a maximum redution in apaity of 25%.5.2 Unbranhed dendrite, exponential attenuationThe next step up in biologial plausibility is a deaying exponential dependene of atten-uation on distane, as predited by able theory applied to passive dendrites. If X is the12



eletrotoni distane along an unbranhed dendrite, thenf = �(X) = e�X ;where the dendrite extends from X = 0 to X = L. The orresponding distribution of fis proportional to the inverse of the gradient of the attenuation:p(f) / 1=j�0(X)j = 1=j�0(��1(f))j = 1=f : (16)Calulating the squared CV of this distribution and substituting the result substitutedin equation (15), we obtain �expatt = 2(1� e�L)L(1 + e�L) �̂ :The SNR is plotted versus eletrotoni length in Figure 2B. For eletrotonially longdendrites (large L), the SNR of the network deays to zero. To ompare exponentialattenuation with linear attenuation, Figure 2A shows the SNR as a funtion of the amountof attenuation at the end (position X = L) of the dendrite F = e�L. For F = 1=2, theperformane is virtually unhanged from the linear attenuation ase. For F = 1=10 (theestimate under high-ondutane onditions) the ratio of attenuated to non-attenuatedSNR is 0.71, as ompared to 0.82 in the linear attenuation ase.5.3 Branhed dendrite, exponential attenuationWe now onsider branhed dendrites, suh as those found in CA1 and CA3 ells. Assum-ing that the number of inputs per unit length is onstant, there will be a greater frationof inputs further away from the soma. This is in broad agreement with anatomial worksuggesting most of the input to CA1 ells is on the oblique branhes (Meg��as et al., 2001).We haraterise the density of inputs as a funtion of eletrotoni length by�(X) = eX=D ;where D is the harateristi branhing distane. This approximates to a situation wherethe distane (in units of eletrotoni length) between suessive bifurations is D ln 2.Inorporating the input density in (16) leads to the distribution of attenuations as afuntion of the eletrotoni length L and the branhing distane D:p(f) / �(X)=j�0(X)j = �(��1(f))=j�0(��1(f))j = (1=f)1=D+1 :Calulating the squared CV of this distribution and substituting it into equation (15),the SNR is �expatt;branhed = (1� 2D) �eL(1=D�1) � 1�2(D � 1)2(eL=D � 1)(eL(1=D�2) � 1) �̂ :The redution in SNR for branhed dendrites is shown in Figure 3. As the bifura-tion length beomes large relative to the length of the dendrites, the ratio approahesthe value for the unbranhed dendrites. For small D ompared to L, the performaneapproahes the unattenuated ase. This seemingly paradoxial result is beause withprofusely branhing dendrites, most of the area of the dendrites is onentrated near thetips, so that most of the inputs are attenuated equally. The ratio has a minimum atD = 1 of L2(1�e�L)(eL�1) .To estimate how muh performane might be redued in hippoampal CA1 ells, wetook L to be 2, following Striker et al. (1996) who found that Sha�er ollateral synapseson CA1 ells of synapses were loated between 0.3 and 2.1 length onstants from the soma.For L = 2, the value of the minimum is 0.72, a redution by a fator of 1.4. 13
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Figure 3: Frational redution of SNR �=�̂ in branhed dendrites where the attenuationdeays exponentially as a funtion of the branhing length onstant D. A, Redutionas a funtion of eletrotoni length L for various values of D. Performane dereasesmonotonially with L for all values of D. B, Redution as a funtion of D for variousvalues of L. Note that there is no derease in performane for very rapidly branhingells (D! 0), and that the worst performane always ours when D = 1.6 Stohasti synapti transmissionWe now examine the ase with homogeneous attenuation fators and memory intensityand inhomogeneous, stohasti transmission (non-zero �2g and �2f = �2� = 0; fi = �(!) = 1for all i and !).Rather than using equation (5), where  was set to zero, the theory presented insetion 3 is required to derive the most general expression for the redution in SNR dueto stohasti transmission. From the general formula (10) and Table 2, the stohastitransmission redues the SNR by a fator of�1 + �2g p+ 2(1� p)p(1� p)(1� )2��1 : (17)In ontrast to the ases studied so far, the value of the low state  appears in the formula.This appears to ontradit Dayan and Willshaw (1991), who showed that the SNR isindependent of the value of  for all  6= 1. We investigate this by de�ning anonialinputs â(!)i 2 f0; 1g and deriving the atual inputs from them: a(!)i = (1 � )â(!)i + .Then the postsynapti sum is given byd(!)j = (1� ) NXi=1 wijâ(!)i g(!)ij +  NXi=1 wijg(!)ij :With homogeneous transmission (g(!)ij = 1) the seond term is the same for all ! and sorepresents a translation. Stohasti transmission auses this term to vary with ! and this14



adds to the dispersion of the dendriti sum distribution. Similarly, whereas the �rst termrepresents a streth in the homogeneous ase, it adds to the dispersion in the stohastiase.To predit the e�et of stohasti transmission in the hippoampus, we assume synapsesrelease single quanta with a transmission probability t and amplitude q. The squared CVof g is �2g = �2q + 1� tt ; (18)where �q is the CV of q. Measurements from the experimental literature suggest amaximum value of �2g of about 10 (t = 0:1, �q = 0:1; Striker et al., 1996) and a minimumof 0.5 in a potentiated state (t = 0:8, �q = 0:45; Bolshakov et al., 1997). A CV of about2 may be more realisti for unpotentiated synapses (t = 0:4, �q = 0:3; Bolshakov et al.,1997). We estimate the range of p to be 0.2{0.3 on the basis of in vivo reordings from CA3(Barnes et al., 1990; Leutgeb et al., 2004). Substituting these values into equation (17)with  = 0, we derive an upper limit on the redution in SNR of 1 + 10=0:7 � 15 and alower limit of 1+ 0:5=0:8 � 2. For a CV of 2 we estimate the SNR redution fator to be1 + 2=0:8 = 3:5.7 Inhomogeneous memory intensitiesWe now onsider networks with homogeneous attenuation fators and perfetly reliabletransmission but with inhomogeneous memory intensities. This means that �(!) is notuniform and �f = �g = 0; fi = g(!)i = 1 for all i and !.There are a number of ways of imagining how suh inhomogeneous memory intensitiesmight be established in a network. For example, partiularly signi�ant memories mightbe learnt with greater weights, or might be rehearsed more, leading to greater weights overa period of time. These senarios are probably best studied in the ontext of ontinuouslearning and forgetting of memories. Aordingly, here we apply the general result to themore familiar ase of a network where the intensities are graded so that e�etively thereis weight deay.7.1 Weight deayWe suppose that the network is learning ontinuously (
 ! 1) with e�etively weightdeay ourring between eah presentation of pattern pairs. Thus eah memory's intensityis �(!) = e�!� where � is the weight deay (or `forgetting') time onstant and where theindex ! now measures the `age' of a memory; it is 1 for the most reent. This distributionof � has h�i � �=
, h�2i � �=(2
), �2� � �=(2
) and �2� = 
=(2�). Substitution of thesequantities into equation (5) leads to a general expression for the SNR of a memory withage !: �(!) = Np(1� p)(Æ �  � � + �)2e� 2!�� �R2e�!� +R3� +R4=2� : (19)For balaned learning rules the R2 and R3 terms in the denominator vanish, so theSNR of an ageing memory deays exponentially with a time onstant �=2. For unbalanedlearning rules this relation holds approximately, espeially for older patterns.
15



7.2 Palimpsests with balaned learning rulesWe now analyse the ovariane learning rule (� = (1 � p)(1 � r); � = �p(1 � r);  =�(1 � p)r; Æ = (1 � p)(1 � r)) as an example of a balaned learning rule. The analysisapplies equally to the homosynapti (� = 0; � = 0;  = �r; Æ = 1� r) and heterosynapti(� = 0; � = �p;  = 0; Æ = 1� p) instantiations of balaned learning rules. The formulafor the SNR depends on the preise learning rule, but our basi �nding { the dependeneof the apaity of the network on the deay time onstant { remains unhanged.Substituting the ovariane learning rule into (19) leads to the following expressionfor the SNR: �ov(!) = 2Ne� 2!�r(1� r)� : (20)Figure 4 shows the expeted SNR and error levels as a funtion of the age of the patternsfor three di�erent forgetting time onstants � . For small � , the network forgets quikly.For large � the network's memory is longer but the interferene from older patternsdegrades the performane of the more reent patterns. In the �gure we have hosen anSNR of 10 to de�ne suessful retrieval; this is shown by the horizontal dashed line. Theintermediate value of � shown in the plot provides the largest apaity at this level ofperformane. Simulations on�rmed the results shown in Figure 4.Rearranging (20) leads to an expression for the apaity in terms of � and the minimumSNR of �min: 
max = �2(ln 2
̂max � ln �) (21)where 
̂max = Nr(1� r)�min (22)is the apaity of a homogeneous network with the minimum SNR �min. The dependeneof 
max on � is shown in Figure 5. For � > 2
̂max it is not possible for the networkto perform at the spei�ed SNR of �̂ beause of interferene from older memories. Theoptimal value of 
max is 
̂max=e whih ours at � = 2
̂max=e. Thus the palimpsestproperty redues the apaity of the network by a fator of at least e.The saling of the apaity of the network with number of synapses N in an output unitdepends on whether the time onstant is saled with N or not. If � = kN=(r(1� r)�min)for 0 < k < 2, then 
max will sale with N . In this ase the initial SNR is independentof N : �(1) = 2�mine�2=�=k. In ontrast, if � is �xed, the apaity only grows as lnN , butthe initial SNR is proportional to N . In the Disussion (setion 8), we onsider whetherthis is reasonable.7.3 Palimpsests with a Hebbian ruleApplying equation (19) to the Hebbian learning rule, we obtain an expression for theSNR: �Hebb(!) = N(1� p)e� 2!��r((1� 2p)e�!� + pr� + 1=2) : (23)In the limit N ! 1 the denominator is dominated by the terms quadrati in � and wean ompare the palimpsest apaity with the standard apaity in the large N limit.This gives a redution in apaity by a fator of e, as in the balaned ase, though theoptimal time onstant is a fator of 2 smaller at 
̂max=e. 16



With the deay time onstant mathed to the number of inputs, the memory lifetimeis proportional to pN and the initial performane is independent of N . When the deaytime onstant is �xed, the initial SNR is proportional to N and the lifetime is proportionalto ln(pN).8 DisussionIn this paper we have derived a general expression for the apaity of a heteroassoiativememory with ontinuous weights trained with a general loal learning rule with di�er-ential input attenuation, stohasti synapti transmission and inhomogeneous memoryintensities. This work extends that of Dayan and Willshaw (1991), whih onsideredompletely homogeneous networks.As far as we are aware, ours is the �rst analysis of di�erential attenuation in amathematially-tratable assoiative network, though an assoiative network embeddedin a multiompartmental CA1 model was studied numerially by Graham (2001). Hisapproah is more biologially-grounded than ours and an be used to predit the e�etof ative ondutanes or the preision of timing of the inputs. The geometry of theell is an integral part of Graham's ompartmental model, rather than being imposed onthe model as we have done. Any interations between inputs are ignored in our model.For example, a distal input might be boosted by ativation of proximal NMDA reep-tors. Nevertheless, our model suggests that it is the spread of e�etive attenuations (asmeasured by the CV) that is important rather than the preise dynamis of attenuation.Stohastially-�ring units are often onsidered in apaity alulations of Hop�eldnetworks (Hertz et al., 1991) and stohasti transmission has been inorporated in asso-iative network models (Bennett et al., 1994; Graham, 2001). Numerial analysis of anautoassoiative network model of CA3 shows that stohasti �ring redues the apaityof the network, but enhanes its ability to reall a pattern from a partial ue (Bennettet al., 1994). Our results also indiate that stohasti �ring dereases apaity, thoughwe annot make the omparison with autoassoiative reall dynamis as they are absentfrom our model.Weight deay has been studied in binary-weighted assoiative networks (Willshaw,1971; Henson and Willshaw, 1995) and Hop�eld networks (M�ezard et al., 1986; Nadalet al., 1986; van Hemmen and Zagrebnov, 1987). We have inorporated weight deayinto an assoiative model with arbitrary pattern sparsity and loal, linear learning rules.In ommon with M�ezard et al. (1986), our approah also overs arbitrary distributionsof memory intensities, as well as those arising from weight deay.8.1 The e�ets of di�erential attenuation and stohasti trans-missionWe have onsidered how muh di�erential attenuation and stohasti transmission arelikely to a�et the network performane of the CA3{CA1 network.In setion 5.3 we found the worst-ase redution in apaity with uniform inputs over abranhing dendriti tree was a fator of 1.4, assuming the dendriti tree is 2 eletrotonilengths long (Striker et al., 1996). Mehanisms suh as synapti saling and ativeondutanes should lead to a tree that is eletronially more ompat, but the highmembrane ondutane might lead to a greater eletrotoni length. 17



Our assumptions about the branhing struture of dendrites for CA1 neurons are onlyapproximate, though they do suggest that the e�et of branhing dendrites will not bevery great. A more preise estimation of the a�et on the SNR ould be made by usingthe statistis of synapse plaement on CA1 suh as those obtained by Meg��as et al. (2001).In setion 6 we used values of the sparseness of presynapti ativity, transmissionprobabilities and CVs of suessful transmission taken from the literature to estimatethat the stohasti transmission redues the SNR by a fator of 3.5 (with a possiblerange of 2{15). It would appear then that transmission noise should lead to a greaterderease in SNR than di�erential attenuation.Bursts of presynapti neuronal ativity an lead to reliable synapti transmission fromunreliable synapses, when the burst (rather than individual spikes) is onsidered as theunit of presynapti ativity (Lisman, 1997). If we assume a squared CV of around 0.3for the postsynapti response to a burst and a presynapti ativity p = 0:2, this leads toan estimate of about 1.4 for the fatorial redution in SNR, similar to the redution dueto di�erential attenuation.Assoiative memories with linear learning therefore seem to be quite robust to di�er-ential input attenuation. This ould be important in the biologial neural networks suhas CA3{CA1 network whih might have attenuation pro�les varying with the level ofbakground ativity. It also raises the question of whether synapses are saled with dis-tane at all (Magee and Cook, 2000), espeially given the potential for this mehanism todefeat itself (London and Segev, 2001). Nevertheless, inreasing the homogeneity of theinput attenuations does lead to improved performane, so it is perhaps not so surprisingthat there should be synapti saling.Graham (2001) found that the SNR was redued by a fator of 2.5 (40%) in anassoiative network embedded in a ompartmental model of a CA1 ell with a synaptitransmission probability of 1 and a quantal amplitude CV of 0.3. We estimate that thestohasti transmission should redue the SNR by approximately 10%. Combined withour estimate of a redution of 1.4 due to attenuation di�erenes, this leads to a redutionof 1.5 in the SNR, onsiderably less severe than the redution in the multiompartmentalmodel. This disrepany ould arise from di�erenes in the network models used or fromour underestimating the e�etive attenuations. The apaity of the binary-weightednetwork used in Graham's model depends logarithmially on the number of synapses(Willshaw et al., 1969), as opposed to the linear or square-root dependene in our model.In the binary-weighted network there is no variane in the `high' distribution but thevariable attenuations will smear this out, perhaps inreasing the apparent redution inSNR. A simple test of whether the di�erenes are due to the underlying network modelor the neuron model would be to repeat Graham's simulations using a heteroassoiativenetwork with linear learning, though negative weights in this model would have to beprevented by some means.8.2 Optimal forgetting in palimpsestsOur results suggest that for optimal apaity, the deay onstant of the memories shouldbe tuned to the number of neurons, onsistent with the saling in Hop�eld networks(Nadal et al., 1986; M�ezard et al., 1986). The optimal value we �nd for the forgettingtime onstant also agrees. For balaned networks, it is a fator 2=e times the apaityof the equivalent standard network. The tuning of the time onstant need not be verypreise, but does have to be less than a ritial value as otherwise reall breaks down.18



We have shown that if the forgetting rate is �xed, the network apaity sales only withthe logarithm of the number of inputs (for balaned rules) or the logarithm of the squareroot of the number of inputs (for unbalaned rules).In a model with binary synapses with states with varying levels of persistene, Fusiet al. (2005) showed that memory lifetime an sale with the number of synapses raisedto a power less than one, without having to tune the forgetting time onstant. Thissaling is better than the logarithmi saling we �nd for �xed forgetting time onstant,but worse than the saling if the time onstant is saled with the number of synapses.The question arises of how reasonable is it to tune � . This will not be a problem thathas to be dealt with within an animal's lifetime, as we expet the number of inputs andthe sparsity of the memory oding to be fairly onstant. It seems feasible that � ould betuned through evolutionary mehanisms. Our results suggest that the di�erent forgettingtime onstants should appear in di�erent assoiative memory systems aording to thesparsity of the input and output patterns and the numbers of inputs.Whether forgetting obeys a power law or an exponential funtion is a matter of someontroversy in the psyhophysial literature (Wixted and Ebbesen, 1997; Anderson andTweney, 1997). In the physiologial literature, long term studies suggest LTP deaysexponentially (Raine et al., 1983; Abraham et al., 2002). However, LTP results froman arti�ial protool, and is probably not subjet to mehanisms suh as rehearsal ormodulation due to behavioural state (Xu et al., 1997). The general results presentedin this paper ould provide a framework for prediting the memory time ourses arisingfrom physiologial proesses.Aknowledgements This work is arried out with the �nanial support of the UKMedial Researh Counil (Grant P9119632). Our thanks go to Kit Longden, GuyBillings, Fiona Jamieson, Jesus Cortes and other members of the Institute for Adaptiveand Neural Computation for their helpful omments during preparation of this paper,and to the referees for their onstrutive reviews.A Derivation of SNRWe now devise the expression for the SNR given in equation (10) and the assoiatedrelations in Table 2, in setion 3.A.1 Expeted di�erene of high and low dendriti sumsTo avoid notational lutter, we drop the j suÆx of the postsynapti neuron throughoutthis appendix. The expeted dendriti sum for a high pattern !h with intensity �h = �(!h)an be written as
d(!h)� =NXi=1 *fi g(!h)i �ha(!h)i �(!h)i + X!2H;! 6=!h g(!)i �(!)a(!h)i �(!)i +X!2L g(!)i �(!)a(!h)i �(!)i !+where H = f! : b(!) = hg and L = f! : b(!) = lg. The attenuation fators fi andthe transmission fators g(!)i are independent of eah other and all the other variables,so their expetations an be fatored out. The weight ontributions are independent of19



the values of , h and l. For onveniene, and without loss of generality, we de�ne themin terms of anonial input patterns â(!)i 2 f0; 1g and output patterns b̂(!) 2 f0; 1g:�(!)i = �(1 � â(!)i )(1 � b̂(!)) + �(1 � â(!)i )b̂(!) + â(!)i (1 � b̂(!)) + Æâ(!)i b̂(!). Using thefat that the �(!) fators are independent from the inputs and weight inrements, we ansubstitute in the expeted values of the produts of a(!h)i �(!h)i and a(!)i �(!)i for high andlow patterns to obtain:
d(!h)� = N hfiiDg(!)i E*�h(pÆ + (1� p)�) + X!2H;! 6=!h �(!)��+X!2L �(!)� + ;where � = p+ (1� p) is the expeted ativity of an input unit.We now de�ne 
h to be the number of high patterns, 
l the number of low patterns,�h the mean of the high patterns and �l the mean of the low patterns. These quantitiesare random, varying between output units. By adding �h� to the �rst sum of the aboveformula and taking it away from the �rst term and simplifying we an write this formulaas: 
d(!h)� = N hfiiDg(!)i E �h (p(1� p)(1� )(Æ � �) + h
h�h��+ 
l�l� i) : (24)The equivalent formula for low patterns is
d(!l)� = N hfiiDg(!)i E �l (p(1� p)(1� )( � �) + h
h�h��+ 
l�l� i) : (25)Hene 
d(!h) � d(!l)� = N hfiiDg(!)i E p(1� p)(1� ) (�h(Æ � �)� �l(�� )) : (26)A.2 Dispersion of dendriti sumsThe dispersion of the high patterns as de�ned in equation (8), an be rearranged (Dayanand Willshaw, 1991) into the form�
h � 1
h ��d(!h1)�2 � d(!h1)d(!h2)�� ;where !h1 and !h2 index two di�erent patterns with high outputs. An approximation tothis quantity, whih is tratable to ompute is:D�d(!h1)�2E� 
d(!h1)d(!h2)� :A.2.1 The expetation of �d(!h1)�2This an be partitioned into a sum with N terms where the ativity is from the sameinput units and a double sum with N(N � 1) terms where the ativity is from di�erentunits:D�d(!h1)�2E = * NXi=1 f 2i �g(!h1)i �2 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i �a(!h1)i �2++* NXi=1 NXj=1;j 6=i fifjg(!h1)i g(!h1)j 
X!=1 
X!0=1�(!)�(!0)�(!)i �(!0)j a(!h1)i a(!h1)j + (27)20



k Tk Vk1 �h2 pÆ2 + 2(1� p)�2 (pÆ + (1� p)�)22 
h�h2 � �h2 �(pÆ2 + (1� p)�2) �2�23 
l�l2 �(p2 + (1� p)�2) �2 24 2
h�h�h � 2�h2 (pÆ + 2(1� p)�)� (pÆ + (1� p)�)��5 2
l�h�l (pÆ + 2(1� p)�) (pÆ + (1� p)�)� 6 
h2�h2 � (2
h�h�h � 2�h2) ��2 �2�2�(
h�h � �h2)� �h27 2
l
h�h�l � 2
l�h�l �� �2� 8 
l2�l2 � 
l�l2 � 2 �2 2Table 3: Components of D�d(!h1)�2E.Under the assumption that the attenuation and transmission fators are independentfrom eah other and from the inputs, we an apply the expetations to eah fator in thesums:D�d(!h1)�2E = N hf 2i hg2i* 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i �a(!h1)i �2+| {z }=: Th+N(N � 1)(hfi)2(hgi)2* 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i a(!h1)i a(!h1)j +| {z }=: Vh (28)We de�ne Th to be the inner sums for the same-unit terms and Vh the inner sums forthe ross-unit terms. The expetation of eah of the 
2 terms of Th and Vh dependson whether ! or !0 are equal to eah or other or !h1. There are eight di�erent typesof ombinations of !, !0 and !h1. We index the ombinations with k and denote theexpetation of a ombination ��(!)i �(!0)i �a(!h1)i �2� by Tk and D�(!)i �(!0)i a(!h1)i a(!h1)j E byVk. The expetation of the whole of the inner sum is then the sum of the produts of theexpetations with the sums of the intensities �(!)�(!0), similar to equation (A.1). We thenrearrange the sums (in a similar way to equation (24)) so that we have expressions interms of the �h, �h and �l et. Table 3 gives the values of eah of these 8 terms togetherwith the appropriate prefators.From the table, we an write down an expression for Th:Th = �h2(T1 � T2 � 2T4 + 2T6) + �h�h
h(2T4 � 2T6) + �h�l
l(2T5 � 2T7)+ �h2
h(T2 � T6) + �l2
l(T3 � T8) + (
h�h)2T6 + 2
h�h
l�lT7 + (
l�l)2T8= �h2p(1� p)(1� 2)(1� 2p)(Æ � �)2+ 2p(1� p)(1� 2)(Æ � �)(�h�h
h�+ �h�l
l )+ �p(1� p)(�h2
h(Æ � �)2 + �l2
l( � �)2) + �(
h�h�+ 
l�l )2 (29)
We an write down a similar equation for Vh and there are analogous expressions for Tland Vl whih are obtained by interhanging 
h and 
l, Æ and , � and �, and � and  .21



k Uk Wk1 2�h2 (pÆ2 + (1� p)�2)� (pÆ + (1� p)�)��2 �h2 (pÆ + (1� p)�)2 (pÆ + (1� p)�)23 �h2 (pÆ + (1� p)�)2 �2�24 2(
h�h�h � 2�h2) (pÆ + (1� p)�)�� (pÆ + (1� p)�)��5 2
l�h�l (pÆ + (1� p)�)� (pÆ + (1� p)�)� 6 2(
h�h�h � 2�h2) (pÆ + (1� p)�)�� �2�27 2
l�h�l (pÆ + (1� p)�)� �2� 8 
h�h2 � 2�h2 �2(pÆ2 + (1� p)�2) �2�29 
l�l2 �2(p2 + (1� p)�2) �2 210 
h2�h2 � 4(
h�h�h � 2�h2) �2�2 �2�2�(
h�h2 � 2�h2)� 4�h211 4
l
h�h�l � 4
l�h�l �2� �2� 12 
l2�l2 � 
l�l2 �2 2 �2 2Table 4: Components of 
d(!h1)d(!h2)�A.2.2 The expetation of d(!h1)d(!h2)This an be partitioned similarly into N terms from the same input unit and N(N � 1)terms where the ativity is from di�erent units:
d(!h1)d(!h2)� = * NXi=1 f 2i g(!h1)i g(!h2)i 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i a(!h1)i a(!h2)i +
+* NXi=1 NXj=1;j 6=i fifjg(!h1)i g(!h1)j 
X!=1 
X!0=1�(!)�(!0)�(!)i �(!0)i a(!h1)i a(!h2)j + (30)Again, we fator out the expetations of the attenuation and transmission fators:
d(!h1)d(!h2)� = N hf 2i (hgi)2* 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i a(!h1)i a(!h2)i +| {z }=: Uh+N(N � 1)(hfi)2(hgi)2* 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i a(!h1)i a(!h2)j +| {z }=:Wh : (31)There are twelve di�erent types of ombinations of !, !0, !h1 and !h2 (see Fig-ure 6). We denote the expetation of a ombination D�(!)i �(!0)i a(!h1)i a(!h2)i E by Uk andD�(!)i �(!0)i a(!h1)i a(!h2)j E by Wk. These expetations, along with the prefators, are shownin Table 4. Adding up the terms leads to this expression for Uh:Uh = �h2(2U1 + U2 + U3 � 4U4 � 4U6 � 2U8 + 6U10)+ �h�h
h(2U4 + 2U6 � 4U10) + �h�l
l(2U5 + 2U7 � 4U11)+ �h2
h(U8 � U10) + �l2
l(U9 � U12)+ (�h
hU10 + �l
lU12)2 ; (32)22



and by subtrating Uh from Th (equation (29)), we obtainTh � Uh = p(1� p)(1� )2
�h2(6p(p� 1) + 1)(Æ � �)2+ 2(1� 2p)(Æ � �)(�h�h
h�+ �h�l
l )+ p(1� p)(�h2
h(Æ � �)2 + �l2
l( � �)2)+ (
h�h�+ 
l�l )2� : (33)A similar omputation yields Vh�Wh = 0, so there is no ontribution from the ross-unitterms.This absene of ross-term ontributions means that the dispersion of the high andlow patterns depends only on Th, Uh, Tl and Ul. The expression for the high patterns iss2h(�h) = N 
f 2� �(hgi)2(Th � Uh) + (
g2�� (hgi)2)Th� (34)and there is an analogous expression for the low patterns. We de�neR = Th + Tl � Uh � Ul2(h�i)2
p(1� p)(1� )2 and T y = Th + Tl2(h�i)2
p(1� p)(1� )2 (35)so that we an write down the SNR as a funtion of intensity whih is of the same formas equation (10) in setion 3:�(�) = Np(1� p)(Æ �  � � + �)2(�=h�i)2
(1 + �2f) �R + �2gT y� : (36)A.2.3 Calulation of expetations involving �hThe terms whih are linear in �h, �h2 and 
h are straightforward sine D�h2E = h�h2iand h�hi = h�hi. As these are independent of 
h, the expetations D�h2
hE and h�h
hifatorise. In order to evaluate the term h(
h�h�+ 
l�l )2i, we ompute the expetationof �h2 onditional on 
h 
�h2j
h� = 1
h�2�h + (h�hi)2 (37)This means that 

h2�h2� = 

�h2j
h�
h2� = h
hi �2�h + 

h2� (h�hi)2 (38)Hene 
(
h�h�+ 
l�l )2� =�2(h
hi�2�h+ 

h2� (h�hi)2) +  2(h
li �2�l + 

l2� (h�li)2)+ 2� h
h(
� 
h)�h�li= 
(r�2�2�h + (1� r) 2�2�l)+
r(1� r)(h�hi�� h�li )2 + 
2(r h�hi�+ (1� r) h�li )2 (39)
We an use equation (39) to remove the expetations over 
h and 
l from Th and Tl. Whenwe substitute the new expressions for Th and Tl into the T y (de�ned in equation (35)),23



and ignore terms in 1=
, we obtain:T y � 1 + 1� (Æ � � +  � �)(r�+ (1� r) )�=h�i+ �(1� )2 �r(Æ � �)2 + (1� r)( � �)2� 
�2� =(h�i)2+ �p(1� p)(1� )2 �(r�2 + (1� r) 2)�2�=(h�i)2 + r(1� r)(��  )2�+ �p(1� p)(1� )2 (r�+ (1� r) )2
 : (40)
Similarly, we an remove the expetations from Th � Uh to give:R � (1� 2p)(Æ � � +  � �)(r�+ (1� r) )�=h�i+ p(1� p)(r(Æ � �)2 + (1� r)( � �)2) 
�2� =(h�i)2+ (r�2 + (1� r) 2)�2�=(h�i)2 + r(1� r)(��  )2+ (r�+ (1� r) )2
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