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iative memories withlinear learning rulesDavid C. Sterratt and David Willshaw20th De
ember 2006Abstra
tWe investigate how various inhomogeneities present in synapses and neuronsa�e
t the performan
e of feedforward asso
iative memories with linear learning,a high level network model of hippo
ampal 
ir
uitry and plasti
ity. The inhomo-geneities in
orporated into the model are: di�erential input attenuation, sto
hasti
synapti
 transmission and memories learnt with varying intensity. For a 
lass oflo
al learning rules, we determine the memory 
apa
ity of the model by extendingprevious analysis. We �nd that the signal to noise ratio (SNR), a measure of �delityof re
all, depends on the 
oeÆ
ients of variation (CVs) of the attenuation fa
tors,the transmission variables, and the intensity of the memories, as well as the pa-rameters of the learning rule, pattern sparsity and the number of memories stored.To predi
t the e�e
ts of attenuation due to extended dendriti
 trees, we use dis-tributions of attenuations appropriate to unbran
hed and bran
hed dendriti
 trees.Biologi
al parameters for sto
hasti
 transmission are used to determine the CV ofthe transmission fa
tors. The redu
tion in SNR due to di�erential attenuation issurprisingly low 
ompared to the redu
tion due to sto
hasti
 transmission. Traininga network by storing memories at di�erent intensities is equivalent to using a learn-ing rule in
orporating weight de
ay. In this type of network, new memories 
an bestored 
ontinuously at the expense of older ones being forgotten (a `palimpsest').We show that there is an optimal rate of weight de
ay that maximises the 
apa
ityof the network, whi
h is a fa
tor of e lower than its non-palimpsest equivalent.1 Introdu
tionAsso
iative memory network models resemble the 
ir
uitry and presumed fun
tion of theCA3 and CA1 areas of the hippo
ampus (M
Naughton and Morris, 1987; Treves andRolls, 1994; Levy, 1989), the mushroom bodies of the inse
t olfa
tory system (Laurentand Naraghi, 1994; Huerta et al., 2004) and the mammalian olfa
tory 
ortex (Haberlyand Bower, 1989). These networks 
an store memory patterns for later re
all until thememory 
apa
ity of the network is rea
hed. The dependen
e of the 
apa
ity on thenumber of units in the network, and other parameters su
h as the sparseness of memorypatterns or 
onne
tivity, has been 
al
ulated for many variants of the asso
iative memorymodel (Willshaw et al., 1969; Willshaw, 1971; Anderson, 1972; Kohonen, 1972; Hop�eld,1



1982; Amit et al., 1985; Palm, 1988; Dayan and Willshaw, 1991; Palm and Sommer, 1996;Graham and Willshaw, 1997).The neurons in high-level asso
iative memory models are `point' neurons. In reality,biologi
al neurons have ele
tri
ally extended dendriti
 trees whi
h attenuate distal in-puts more than proximal ones en route to the soma, a phenomenon we 
all di�erentialattenuation. The synapses in high-level models are deterministi
. By 
ontrast, biolog-i
al synapses exhibit sto
hasti
 transmission in both the o

urren
e and magnitude ofpostsynapti
 synapti
 
urrents.The �rst aim of this paper is to in
orporate these inhomogeneities into a high-levelasso
iative memory model to determine how mu
h they a�e
t the 
apa
ity of the mem-ory. Di�erential attenuation is of parti
ular interest in the 
ontext of experimental datashowing that mean synapti
 
ondu
tan
es in
rease with distan
e from the soma (Mageeand Cook, 2000), leading to somati
 ex
itatory postsynapti
 potential (EPSP) amplitudesthat are independent of distan
e, when the neuron is quies
ent.The se
ond aim of this paper is to determine the 
apa
ity of the network when thedi�erent memories are stored with di�ering intensities in the network. This is partlymotivated by eviden
e that behavioural stress at the time of learning leads to greatersynapti
 synapti
 potentiation or depression (Xu et al., 1997), suggesting that memorieslearnt in parti
ularly signi�
ant 
ontexts may have more intense tra
es. Our study ofnetworks with variable storage intensities is also motivated by `forgetful' learning rules,where the intensity of the tra
es of memories de
ays with time. Various types of asso-
iative memory with weight de
ay 
an be used to eliminate old memories as new onesare learnt (Willshaw, 1971; Nadal et al., 1986). Networks with this property are 
alledpalimpsests by analogy with the an
ient pra
ti
e of 
leaning old texts from papyrus tomake way for new ones, leaving a faint impression of the original text (Nadal et al., 1986).The asso
iative memory model studied is the heteroasso
iative memory network withlinear learning (Willshaw, 1971; Palm, 1988; Willshaw and Dayan, 1990; Dayan andWillshaw, 1991; Che
hik et al., 2001). This network allows us to spe
ify arbitrary lo
allearning rules su
h as heterosynapti
 long term depression (Lyn
h et al., 1977) or the
ovarian
e rule (Sejnowski, 1977b). The network 
omprises an input layer of binary-valued neurons 
onne
ted by real-valued feedforward synapti
 weights to an output layerof binary-valued neurons. During the training phase, the network learns to asso
iatea
tivity patterns on the output layer with input a
tivity patterns. Ea
h pair of patternsis stored by 
hanging ea
h synapti
 weight by an amount de�ned by the learning rule,whi
h is a fun
tion only of the a
tivity in the two neurons the synapse 
onne
ts. Thisdependen
e only on a
tivity lo
al to the synapse, but not on the a
tivity of other neuronsin the network, means the learning rule is 
lassi�ed as a lo
al learning rule. Sin
e there arefour possible 
ombinations of pre- and postsynapti
 a
tivity at a synapse, four parametersde�ne the learning rule. A previously stored output pattern is re
alled by the networkby ea
h output neuron 
omputing the weighted sum of the input pattern ve
tor andthresholding this quantity appropriately. The network is linear in the sense that the sumof the synapti
 
hanges over all patterns determines the synapti
 strength, in 
ontrast toasso
iative memory models where the weights are 
lipped at an upper value (Willshawet al., 1969).The performan
e of the network depends strongly on how the threshold is set. Clearlyif it is set very low, all output units will be a
tive for any input pattern presented, or
onversely, will be always o� if the threshold is set too high. This suggests that thereis an optimum threshold. Signal to noise ratio analysis 
an be used to show what the2



optimal performan
e is (Palm, 1988; Palm and Sommer, 1996; Dayan and Willshaw, 1991;Che
hik et al., 2001).A 
riti
al assumption about setting the threshold is whether all output units havethe same threshold or whether ea
h output unit 
an have its own threshold. Palm and
oworkers (Palm, 1988; Palm and Sommer, 1996) made the assumption that all outputunits have the same threshold, whi
h 
an be adjusted to optimise performan
e. Theirsignal to noise ratio (SNR) analysis (Palm and Sommer, 1996) shows that in general thereis a �nite limit on the 
apa
ity of the network, regardless of the number of input units.The only ex
eption to this are networks in whi
h the 
ovarian
e learning rule is operat-ing, where the SNR depends linearly on the number of input units. Che
hik et al. (2001)
onsidered how to res
ue the `ine�e
tive' learning rules by a homoeostati
 neuronal regu-lation me
hanism similar to the a
tivity-dependent s
aling of synapti
 weights observedin biology (Turrigiano et al., 1998). This has the e�e
t of normalising the weights ontoea
h postsynapti
 neuron, and leads to the 
apa
ity of the network s
aling linearly withthe number of input units. This is mathemati
ally equivalent to a restri
tion of the 
lassof possible learning rules, and there is a mapping from any ine�e
tive learning ruleIn 
ontrast Dayan and Willshaw (Dayan and Willshaw, 1991; Willshaw and Dayan,1990) allowed ea
h output unit to have its own threshold, whi
h 
an be adjusted to opti-mise performan
e. Interestingly, subsequent experimental work has shown that neurons
an adjust their level of ex
itability homoeostati
ally, so as to maintain a 
onstant av-erage level of output a
tivity (Desai et al., 1999). Their SNR analysis showed that withoptimal thresholds, there are two 
lasses of learning rules. In balan
ed learning rules (Se-jnowski, 1977a) the mean 
hange in synapti
 weights is zero and the 
apa
ity in
reaseslinearly with the number of input units. In unbalan
ed rules the mean 
hange in synapti
weights is nonzero and the 
apa
ity in
reases with the square root of the number of inputunits. The 
ovarian
e learning rule (Sejnowski, 1977b) is a balan
ed learning rule, and isin fa
t optimal for randomly generated memory patterns; the standard Hebbian rule isan example of an inferior unbalan
ed learning rule.The strategies of optimising performan
e by synapti
 neuronal regulation or by in-dividual optimal thresholds are 
ompatible. The set of learning rules produ
ed by theneuronal regulation me
hanism of Che
hik et al. (2001) are all balan
ed, so neuronal regu-lation operating in a network with individual optimal thresholds and with an unbalan
edlearning rule will improve the s
aling of the 
apa
ity with the size of the network.1.1 Biologi
al ba
kgroundThe di�erent types of inhomogeneity we study are: di�erential attenuation of inputs;sto
hasti
 synapti
 transmission and di�erent numbers of repetitions of ea
h patternduring the training phase.Di�erential input attenuation: Ex
itatory postsynapti
 potentials (EPSPs) tend toattenuate en route from synapse to soma be
ause of the 
able properties of passive den-drites, the amount of attenuation varying with the path distan
e of the synapse fromthe soma (Rall, 1964). Magee and Cook (2000) found that the mean EPSP amplitude ofS
ha�er 
ollateral synapses measured at the soma of a hippo
ampal CA1 
ell does notdepend on distan
e in vitro. This was due to the synapti
 
ondu
tan
es being s
aleda

ording to distan
e so that distal synapses had higher 
ondu
tan
e synapses than moreproximal ones (Andr�asfalvy and Magee, 2001). Whether this result extends to in vivo3




onditions is a subje
t to debate. London and Segev (2001) used a passive model of a den-driti
 tree to suggest that in vivo synapti
 s
aling would be `self-defeating', sin
e largerdistal synapti
 
ondu
tan
es imply a redu
tion in membrane resistan
e and 
onsequentlyredu
e the ele
trotoni
 length, leading to smaller EPSPs from more distal synapses. How-ever, this model left out a number of features that might res
ue synapti
 s
aling (Mageeand Cook, 2001) su
h as a
tive, amplifying 
ondu
tan
es (Magee and Johnston, 1995;Lipowsky et al., 1996; Gillessen and Alzheimer, 1997) and proximal shunting inhibition.While it is possible that a
tive 
ondu
tan
es redu
e lo
ation-dependen
e of synapti
 eÆ-
a
y and time 
ourse (Rudolph and Destexhe, 2003), it is unlikely that all su
h di�eren
es
an be eliminated; the attenuation su�ered by inputs from di�erent parts of the tree may
u
tuate with the level of ba
kground a
tivity.Sto
hasti
 synapti
 transmission: The release of synapti
 vesi
les in response toa
tion potentials at CA3 boutons is sto
hasti
, with a transmission probability rangingbetween 0.06 and 0.63 (Hessler et al., 1993; Stri
ker et al., 1996) though perhaps as high as0.8 in potentiated states (Stevens and Wang, 1994; Bolshakov et al., 1997). Measurementsof the quantal variability (QV) of ex
itatory postsynapti
 
urrents (EPSCs) at CA3{CA1synapses vary from under 0.1 (Stri
ker et al., 1996) to around 0.3 or 0.45 at potentiatedsynapses (Bolshakov et al., 1997; Forti et al., 1997).Inhomogeneous learning intensities: Some memories may be learnt more robustlythan others. This 
ould be be
ause they appear relatively frequently or be
ause one ofa host of mole
ules linked to behaviour 
hanges the intensity of Long Term Potentiation(LTP) and/or Long Term Depression (LTD) during their storage (Sanes and Li
htman,1999). For example stressed animals have redu
ed LTP and in
reased LTD (Shors et al.,1989; Xu et al., 1997). The intensity of a memory may de
ay through time. Chroni
re
ordings in vivo suggested that LTP in various forebrain areas has dual exponentialde
ay with a fast time 
onstant of around 1.5 hours and a slow time 
onstant of around�ve days (Ra
ine et al., 1983). More re
ent re
ordings suggest that the persisten
e of LTPdepends on the intensity of the indu
tion proto
ol and the ri
hness of the environment inwhi
h the animals are kept after indu
tion (Abraham et al., 2002). With a weak proto
olthe synapti
 strength falls ba
k to baseline exponentially with a de
ay time 
onstant ofaround a day, regardless of the environment. LTP resulting from more intense stimulationproto
ols 
an be stable for up to a year when the animals are kept in an unstimulatingenvironment after LTP indu
tion, but this gives way to exponential de
ay with a times
aleof days when the animals are kept in a more stimulating environment (Abraham et al.,2002). These results suggest that learning new memories 
auses synapti
 weights tode
ay. The dependen
e of the de
ay time 
onstant on the strength of indu
tion hints atsynapses with states with di�erent persisten
es, as modelled in a re
ent paper by Fusiet al. (2005). An alternative hypothesis is that stronger memories are rehearsed moreoften during sleep, leading to their greater persisten
e (Geszti and P�azm�andi, 1987).1.2 Theoreti
al ba
kgroundPrevious theoreti
al work has analysed the e�e
ts of 
ertain inhomogeneities in asso
iativememory networks. Graham (2001) studied di�erential attenuation using an asso
iativenetwork with a 
lipped Hebbian learning rule (Willshaw et al., 1969) embedded in a
ompartmental model of a hippo
ampal CA1 
ell with sto
hasti
 synapses. He showed4



that this redu
ed the SNR found in an abstra
t network by about 40%, for a parti
ularloading level of the network. S
aling synapses to 
ompensate for distan
e in
reased theSNR by about 5%, and various other strategies su
h as amplifying a
tive 
ondu
tan
esalso improved performan
e. Whether the inputs arrived syn
hronously or asyn
hronouslya�e
ted the SNR, depending on the type of 
ompensation used. Sto
hasti
 transmissionhas been analysed in autoasso
iative networks with inhibitory neurons (Bennett et al.,1994) where it fa
ilitates the re
all of memories from partial 
ues, though it also degradesthe retrieval state slightly.Inhomogeneities in memory intensity have been studied extensively. Willshaw (1971)investigated probabilisti
 weight de
ay in asso
iative networks with binary weights. Heshowed that in an asso
iative net with binary-valued synapses, randomly swit
hing o�previously a
tivated synapses enabled the memory to a
t as a palimpsest, but at theexpense of for
ing the memory to fun
tion under non-optimal 
onditions. Probabilisti
weight de
ay where the probability of de
ay depends on time has also been studied (Hen-son and Willshaw, 1995). Hop�eld (1982) suggested both weight de
ay and keeping theweights between pres
ribed maxima and minima as methods for allowing networks to
ontinue learning new memories whilst forgetting old ones. Nadal et al. (1986) studieda network where ea
h new memory is stored more intensely than the previous one. Thisguarantees perfe
t re
all of the last stored pattern and, a

ording to simulations, partialre
all for around half of the number of memories that 
ould be stored by a standardnetwork. Analyti
al mean �eld studies of networks with weight de
ay followed (M�ezardet al., 1986; van Hemmen and Zagrebnov, 1987). The 
apa
ity of a palimpsest Hop�eldnetwork was found to be about 1=e of a standard Hop�eld network of the same size(M�ezard et al., 1986). Networks in
orporating the `learning within bounds' feature havethe palimpsest property, as shown numeri
ally (Parisi, 1986; Nadal et al., 1986), analyt-i
ally with a 
ombined signal to noise and random walk analysis (Gordon, 1987) and bya sophisti
ated analysis in
luding a Markov 
hain representation of the iterative learningpro
edure (van Hemmen et al., 1988). If the bounds ex
eed a 
ertain threshold levelthey have little e�e
t and the performan
e of the network deteriorates 
atastrophi
ally,whereas if they are very small, only the most re
ently stored memory pattern is retrieveda

urately. Again, 
apa
ity is about 1=e that of a standard Hop�eld network, for theoptimal bound.2 The model and key results2.1 The modelOur model is a generalisation of the mathemati
al framework introdu
ed by Palm (1988)and developed by Willshaw and Dayan (1990). We 
hoose Willshaw and Dayan's devel-opment of the theory over that of Palm and Sommer (1996) and Che
hik et al. (2001)be
ause ea
h unit is assumed to be able to optimise its own threshold to improve perfor-man
e, as appears to be the 
ase in nature (Desai et al., 1999). As noted in se
tion 1, theidea of `neuronal regulation' (Che
hik et al., 2001) is 
ompatible with individual optimalthresholds.The network 
omprises N asso
iative inputs indexed by i and an unspe
i�ed numberof output neurons, indexed by j. 
 memories have been stored; the !th memory is a pairof strings (a(!); b(!)) with binary-valued 
omponents a(!)i and b(!)j . The typi
al element5



b(!)j of output pattern b(!) is assigned the `high' value h with probability r and the `low'value l with probability 1 � r. The typi
al element a(!)i of the input pattern a(!) isassigned the `high' value 1 with a probability p and the `low' value 
 with probability1 � p. 
 
an take on any value apart from 1. In a standard Hop�eld network it wouldbe set at �1, but a biologi
ally-realisti
 value is 0. When ea
h output unit 
an have itsthreshold set independently, 
 is a s
aling parameter (Dayan and Willshaw, 1991) andthe results of signal to noise 
al
ulations are independent of 
; we use this fa
t to 
he
kour 
al
ulations in this paper.The synapti
 strength from input i to output neuron j iswij = 
X!=1 �(!)�(!)ij ; (1)where �(!) is the intensity of the !th memory and where the weight 
ontribution �(!)ijdepends on the input and output patterns presented during the training phase and thefour parameters of the generalised lo
al learning rule, �, �, 
 and Æ. These are allo
atedas shown in Table 1, whi
h also gives the spe
ial 
ases of the unbalan
ed Hebbian andbalan
ed 
ovarian
e learning rules.general�(!)ij b(!)jl ha(!)i 
 � �1 
 Æ
Hebbian�(!)ij b(!)jl ha(!)i 
 0 01 0 1


ovarian
e�(!)ij b(!)jl ha(!)i 
 pr �p(1� r)1 �(1� p)r (1� p)(1� r)Table 1: The general lo
al learning rule and its Hebbian and 
ovarian
e instantiations.During re
all of the output pattern asso
iated with the !th input pattern, the den-driti
 sum is 
al
ulated as d(!)j = NXi=1 wijfig(!)ij a(!)i ; (2)where fi is the attenuation fa
tor of the ith input and g(!)ij is the transmission fa
tor ofthe ijth synapse during presentation of the !th input pattern. In
lusion of fi and g(!)ijallows the attenuation due to the geometry and ele
tri
al properties of real neurons to bein
orporated in the model. We view the transmission fa
tors as random variables whi
hmodel quantal failure and varian
e in quantal amplitude.Ea
h unit has a threshold �j so that its output oj takes the value h (`high') whend(!)j > �j and l (`low') otherwise. We assume that it is possible to set an optimal thresholdfor ea
h output separately (Willshaw and Dayan, 1990).As an aid to 
omprehension of the ne
essarily long 
al
ulations in se
tion 3, we presentan overview of our analysis and the key result of the paper at the beginning of the nextse
tion. In the rest of the paper, this result is applied to di�erential attenuation (se
-tion 5), sto
hasti
 transmission (se
tion 6) and memories stored with di�erent intensities(se
tion 7).
6



Unit 1

‘low’ ‘high’ 

Unit 2

A

d1�1
�2 d2s2hs2l dl;2 dh;2

B

d0d0 d0 + 2N(Æ � �)d0 + 2N(
 � �)d0 +N(
 � �) d0 +N(Æ � �)Figure 1: A, S
hemati
 diagram of the `high' and `low' distributions of dendriti
 sumsd1 and d2 of units 1 and 2 in a network. Comparing the two units, the means of thedistributions are shifted with respe
t to ea
h other but the separation between the highand low distributions remains the same. B, The distribution of dendriti
 sums whenhalf the memories have an intensity � of 1 (solid lines) and half have an intensity � of 2(dashed lines). In order simplify the plot, we show a normalised version of the dendriti
sum d0, where d0 = d=(p(1� p)). The 
entres are at �N(Æ � �) and �N(
 � �) relativeto the mean of all dendriti
 sums. The distributions for � = 2 are further apart than for� = 1.2.2 Overview of analysis and key resultsWe take the signal to noise ratio (SNR) approa
h to analysing asso
iative memories(Willshaw, 1971; Anderson, 1972; Palm, 1988; Palm and Sommer, 1996; Dayan and Will-shaw, 1991; Che
hik et al., 2001). For autoasso
iative memories, mean �eld approa
hesare ne
essary to determine the 
apa
ity at whi
h they break down due to 
atastrophi
interferen
e, but the SNR analysis usually gives the same s
aling of the 
apa
ity with thenumber of units in the network (Hertz et al., 1991).The SNR analysis (see Figure 1A) is based on the expe
ted distribution of the dendriti
sum for memories whose output should be `high' (b(!)j = h) and the expe
ted distributionof the dendriti
 sum for memories whose output should be `low' (b(!)j = l). The area ofthe `high distribution' to the left of the threshold gives the number of `high' memorieswhere the retrieved output will be `low', and the area of the `low distribution' to the rightof the threshold gives the number of `low' memories where the retrieved output will be`high'. Thus the total number of erroneously re
alled memories (the bit error) dependson the threshold, whi
h is set so as to minimise the bit error.The SNR is a measure of the dis
riminability of the distributions. It is 
al
ulated asthe square of the expe
ted di�eren
e between the means dh and dl for the high and low7



patterns (the `signal') divided by the sum of the varian
es s2h and s2l of the high and lowdendriti
 sum distributions (the `noise'):� = (
dh � dl�)212(s2h + s2l ) : (3)Willshaw and Dayan (1990) observed that whereas the di�eren
e between means forthe high and low distributions is the same from unit to unit, the value of the two meansthemselves are shifted a

ording to the fra
tion of memories with high and low outputsstored in a parti
ular unit (Figure 1A). Therefore di�erent units have di�erent optimalthresholds. To ensure that the SNR is a measure of the dis
riminability when optimalthresholds are set, the varian
es of the high and low distributions in the SNR have to be
omputed as the sum of squared deviations from the unit high and low means of ea
h unitindividually. Using this de�nition of the varian
e, Dayan and Willshaw (1991) obtaineda general expression for the SNR whi
h s
ales with the number of input neurons N . Ifthe varian
e is 
omputed with respe
t to the means of the distributions averaged over allunits (Palm and Sommer, 1996), the SNR tends to a limiting value for large N , ex
eptwhen 
 
an be set to a biologi
ally-dubious non-zero value.Inserting the parameters of the 
ovarian
e and Hebbian learning rules into Dayan andWillshaw's general expression (see equation 12) leads to the following expressions for theSNRs due to the 
ovarian
e and Hebbian rules:�
ov = N
r(1� r) and �Hebb = N(1� p)
2pr2 : (4)At the number of stored memories 
 in
reases, the SNR de
reases. The 
apa
ity 
maxisde�ned as the maximum number of patterns that 
an be stored before the SNR fallsbelow a desired minimum level �min. Setting � = �min and 
 = 
max in these formulaeshows that for the 
ovarian
e rule the 
apa
ity is proportional to N=�min and for theHebbian rule the 
apa
ity is proportional to pN=�. In general, for balan
ed learningrules (prÆ + p(1 � r)
 + (1� p)r� + (1� p)(1� r)�=0) the 
apa
ity is proportional toN and for unbalan
ed learning rules, it is proportional to pN in the limit of large N(Dayan and Willshaw, 1991).We have used the same method as Dayan and Willshaw (1991) to 
ompute the SNRfor the network in
orporating di�erential attenuation, sto
hasti
 transmission and vari-able storage intensities. The attenuation and transmission fa
tors do not 
hange thequalitative form of the high and low distributions and the SNR. In 
ontrast, with inho-mogeneous memory intensities, the total distribution of the high or low dendriti
 sumsis a superposition of distributions due to memories stored with di�erent intensities.To make this 
lear, we 
onsider an example in whi
h one half of the stored memorieshave been 
hosen at random to be twi
e as intense (� = 2) as the other half (� = 1).We now need to look at the four distributions for high and low units with � = 1 and� = 2 as shown in Figure 1B. The means of the dendriti
 sum distributions of the strongermemories are further apart than the means of the weaker ones, meaning stronger memorieshave a greater `signal'. It turns out (see appendix A) that the varian
es are independentof � (for unbalan
ed rules this is only true in a network with a large number of inputunits), so the `noise' 
omponent is the same regardless of the intensity of the memory.Thus the SNR depends on the strength of the memory.We have 
al
ulated a full expression for �(�), the SNR of a memory stored at intensity� (equation (10) in se
tion 3. This expression be
omes mu
h simpler when expressed in8



terms of the SNR �̂ of a homogeneous network with the same input and output patternsparsities and learning rule. Assuming that 
 takes the biologi
ally-plausible value of 0,when �f , �g and �� are the 
oeÆ
ients of variation (CVs) of the attenuation fa
tors, thetransmission fa
tors and the intensities respe
tively, the SNR of a pattern stored withintensity �(�) is �(�) = �2(1 + �2f)(1 + �2g=(1� p))(1 + k�2�) �̂ ; (5)where the 
onstant k is an expression whose form depends on whether the learning ruleis balan
ed or unbalan
ed. �(�) also depends on p, r, the parameters of the learning rule,and, in the 
ase of unbalan
ed learning rules, 
.Sin
e the dendriti
 sum distributions depend on the memory intensity, at �rst sight itmay appear that the optimum threshold should depend on the intensity of the memorybeing re
alled, whi
h might be diÆ
ult to arrange in biology. However, this turns out notto be a problem. As more and more memories are stored, the least intense memories inthe network will fall below the 
riterion threshold �min �rst. For any number of patternsstored 
, there will be a memory intensity � for whi
h the SNR is at the 
riterion. Ifthe threshold is set to minimise the bit error for memories with this intensity, the moreintense memories will be retrieved with less than this bit error (even if they are notretrieved as well as they 
ould if their own optimal threshold had been used).This means the network 
apa
ity is still well-de�ned. Thus the s
aling fa
tor inequation (5) also s
ales the 
apa
ity of the network with balan
ed learning rules and itssquare root s
ales the 
apa
ity in the 
ase of unbalan
ed learning rules .A key insight from the 
ompa
t expression (5) is that the redu
tion in performan
e ofthe network due to the inhomogeneity fa
tors depends only on their CVs. Furthermore,the e�e
ts of di�erential input attenuation, sto
hasti
 transmission and inhomogeneouslearning intensities are independent of ea
h other.3 General theory3.1 Distribution of dendriti
 sumsFor a parti
ular output unit j, the sample mean of the high distribution for memorieswith intensity � is dhj(�) = 1
hj(�) Xf!:b(!)j =h;�(!)=�g d(!)j ; (6)where 
hj(�) is the number of high patterns stored by unit j with an intensity of �. Inappendix A.1 we show that the expe
ted value of dhj(�) is
dhj(�)� = N hfiiDg(!)ij E��p(1� p)(1� 
)(Æ � �) + h�i �(
hj�+ 
lj )� ; (7)where � = p+(1�p)
 is the expe
ted value of an input, and 
hj and 
lj are respe
tivelythe total number of high and low memories stored in the weights of unit j. The expe
tedsample varian
e or dispersion of the high patterns with intensity � iss2h(�) = * 1
h(�) Xf!:b(!)j =h;�(!)=�g�d(!)j �2 � dh2j(�)+ : (8)9



R1 = p(1� p)(r(Æ � �)2 + (1� r)(
 � �)2)+ r(1� r)(��  )2 S1 = p+(1�p)
2p(1�p)(1�
)2R1R2 = (1� 2p)(Æ � � + 
 � �)(r�+ (1� r) ) S2 = 
+1
�1R2R3 = (r�+ (1� r) )2 S3 = p+(1�p)
2p(1�p)(1�
)2R3R4 = r(pÆ2 + (1� p)�2) + (1� r)(p
2 + (1� p)�2) S4 = p+(1�p)
2p(1�p)(1�
)2R4 (11)
Table 2: Expressions for the 
omponents of equation (10). � = pÆ + (1 � p)� is theexpe
ted weight 
ontribution of a high pattern and  = p
 + (1 � p)� is the expe
tedweight 
ontribution of a low pattern.Analogous equations apply for dlj, and s2l (�).The stri
t de�nition of the signal to noise ratio of memories with intensity � is:�(�) = �
dhj(�)� dlj(�)��212(s2h(�) + s2l (�)) : (9)We 
al
ulate it to be�(�) = Np(1� p)(Æ � 
 � � + �)2~�2
(1 + �2f) �R1 +R2~� +R3
 +R4�2� + �2g(S1 + S2~�+ S3
 + S4�2�)� (10)where ~� = �= h�i is the normalised memory intensity, �2f is the squared 
oeÆ
ient ofvariation (CV) of the attenuation fa
tors, �2g is the squared CV of the transmissionfa
tors, �2� is the CV of the memory intensities and the other fa
tors are fun
tions of theparameters �, �, 
, Æ, p, r and 
, as given in Table 2.Any threshold is optimal for only one memory intensity �. As dis
ussed in se
tion 2.2,we assume the threshold is optimal for memories with intensity �min for whi
h the SNRis at the performan
e 
riterion �min. In the next se
tion we show there is no dependen
eof the noise on � for balan
ed rules, and the dependen
e vanishes for large N withunbalan
ed rules. From (7), we 
an see that as long as Æ � �, memories whi
h aremore intense than �min will have the mean of their high distribution further from thethreshold. Sin
e they have the same dispersion as weaker memories, they will have fewerbits omitted erroneously. A similar argument applies for the low distribution, as long as� � 
. These 
onditions hold in all the learning rules we 
onsider.3.2 Comparison with previous analysisBy setting all the CVs to zero and � = 1, equation (10) redu
es to the expression derivedby Dayan and Willshaw (1991):�̂ = Np(1� p)(Æ � 
 � � + �)2
(R1 +R2 +R3
) : (12)In the 
ase of balan
ed learning rules sin
e R2 and R3 are zero,�(�) = Np(1� p)(Æ � 
 � � + �)2~�2
(1 + �2f)�1 + �2g p+
2(1�p)p(1�p)(1�
)2� (R1 +R4�2�) : (13)From this, the value of k in (5) is 
al
ulated to be R4=R1. 10



In the 
ase of unbalan
ed learning rules at large 
, the R1 terms are negligible. Aslong as �(!) � h�i
, the R2 terms 
an be negle
ted too. Thus the terms in 
 and in �2�dominate the denominator of (10) to give�(�) � Np(1� p)(Æ � 
 � � + �)2~�2
2(1 + �2f)�1 + �2g p+
2(1�p)p(1�p)(1�
)2� (R3 +R4�2�=
) : (14)From this, the value of k in (5) is 
al
ulated to be R4=(R3
).This shows that the redu
tion in SNR due to (i) di�erential attenuation, (ii) sto
hasti
transmission and (iii) di�erential memory intensity 
ombine multipli
atively.4 SimulationsIn order to 
on�rm our theory, simulation results are presented alongside the theoreti
alSNR 
urves in some of the �gures in the rest of this paper. In the simulations, a networkwith N = 1000 input units and 100 output units learns randomly-generated patternswith p = 0:2 and r = 0:2 using the 
ovarian
e rule. The mean and dispersion of the'high' and 'low' dendriti
 sums are 
omputed for ea
h of the output units.The sample mean of the di�eren
e in dendriti
 sums is an estimator for the 
omponents
dh � dl� of the SNR, and the sample error in the mean is the sample standard deviationof the di�eren
es in dendriti
 sums, divided by the square root of the number of outputunits. Likewise the sample mean and error in the mean of the denominator s2h+ s2l of theSNR 
an be 
al
ulated. We used these values to 
ompute the sample SNR and 
ombinedthe errors to obtain the error in the SNR.The simulation 
ode was written in the R language (http://www.r-proje
t.org) andis available from http://www.an
.ed.a
.uk/�d
s/pubs/inhomog-asso
-net .5 Di�erential input attenuationWe now study the e�e
ts of di�erential input attenuation on memory performan
e. To dothis we assume that transmission and memory intensity are homogeneous (�g = �� = 0)by setting g(!)i = �(!) = 1. The only inhomogeneity remaining is in the attenuationfa
tors fi. Using (5), for an arbitrary distribution of attenuation fa
tors, the generalexpression for the SNR (10) redu
es to:� = 11 + �2f �̂ : (15)This formula shows that di�erential attenuation simply redu
es the SNR of the homoge-neous network by a fa
tor only involving the 
oeÆ
ient of variation of the attenuationfa
tors. The 
apa
ity is redu
ed at most by the same fa
tor (for balan
ed learning rules)or by the square root of the fa
tor (for unbalan
ed learning rules in the limit of largeN). Sin
e the redu
tion in SNR is independent of all of the parameters of the network,the di�erential attenuation has no e�e
t on the optimality of the learning rule or on thedependen
e of the 
apa
ity on network size.In the remainder of this se
tion, we apply equation (15) to various distributions offi that might arise out of the spatial distribution of inputs on a dendriti
 tree and thegeometry of the tree itself. 11



5.1 Unbran
hed dendrite, linear attenuationOur �rst appli
ation of equation (15) is to an unbran
hed dendrite of uniform thi
kness,with a uniform distribution of inputs per unit area and a linear dependen
e of attenuationon distan
e. Linear dependen
e has the virtue of simpli
ity and is a good approximationto the more biologi
ally realisti
 exponential 
ase when the dendrite is shorter than itsele
trotoni
 length. In this 
ase the fa
tors fi will be uniformly distributed. For fa
torsdistributed uniformly between 1 and F , and approximating sums by integrals, we obtain:�linatt(F ) = 34 �1 + 1F + 1 + 1=F � �̂Figure 2A shows the theoreti
al 
urve, whi
h was 
on�rmed by simulations.
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Figure 2: Redu
tion in SNR for unbran
hed dendrites with linear and de
aying expo-nential attenuation. Lines show theoreti
al predi
tions and points indi
ate simulationresults. A, Redu
tion in SNR (�=�̂) versus attenuation at distal end of dendrite F forlinear attenuation (dashed line, diamonds) and exponential attenuation (solid line, 
ir-
les; F = e�L). B, Redu
tion in SNR with exponential attenuation versus length ofdendrite L. In the simulations, 
 = 500 patterns have been stored in the network.In data re
orded in CA1 neurons in vitro, the attenuation of the distal inputs is roughlydouble that of the more proximal ones (Magee and Cook, 2000), implying F=1/2. Forthis value of F , �linatt � 0:96�̂. This redu
tion in SNR equates to a 4% redu
tion in
apa
ity (with balan
ed learning rules) or 2% (with unbalan
ed learning rules).Under in vivo 
onditions we might expe
t the range of attenuation to be greaterbe
ause of ba
kground inputs to the neuron putting it into a high 
ondu
tan
e state(London and Segev, 2001; Destexhe et al., 2003). Assuming that in this 
ase there isa tenfold di�eren
e between the attenuation of the proximal and distal inputs, �linatt �0:82�̂, redu
ing the 
apa
ity by 18% at most. In the limiting 
ase, where F ! 1,�linatt ! 3=4�, giving a maximum redu
tion in 
apa
ity of 25%.5.2 Unbran
hed dendrite, exponential attenuationThe next step up in biologi
al plausibility is a de
aying exponential dependen
e of atten-uation on distan
e, as predi
ted by 
able theory applied to passive dendrites. If X is the12



ele
trotoni
 distan
e along an unbran
hed dendrite, thenf = �(X) = e�X ;where the dendrite extends from X = 0 to X = L. The 
orresponding distribution of fis proportional to the inverse of the gradient of the attenuation:p(f) / 1=j�0(X)j = 1=j�0(��1(f))j = 1=f : (16)Cal
ulating the squared CV of this distribution and substituting the result substitutedin equation (15), we obtain �expatt = 2(1� e�L)L(1 + e�L) �̂ :The SNR is plotted versus ele
trotoni
 length in Figure 2B. For ele
trotoni
ally longdendrites (large L), the SNR of the network de
ays to zero. To 
ompare exponentialattenuation with linear attenuation, Figure 2A shows the SNR as a fun
tion of the amountof attenuation at the end (position X = L) of the dendrite F = e�L. For F = 1=2, theperforman
e is virtually un
hanged from the linear attenuation 
ase. For F = 1=10 (theestimate under high-
ondu
tan
e 
onditions) the ratio of attenuated to non-attenuatedSNR is 0.71, as 
ompared to 0.82 in the linear attenuation 
ase.5.3 Bran
hed dendrite, exponential attenuationWe now 
onsider bran
hed dendrites, su
h as those found in CA1 and CA3 
ells. Assum-ing that the number of inputs per unit length is 
onstant, there will be a greater fra
tionof inputs further away from the soma. This is in broad agreement with anatomi
al worksuggesting most of the input to CA1 
ells is on the oblique bran
hes (Meg��as et al., 2001).We 
hara
terise the density of inputs as a fun
tion of ele
trotoni
 length by�(X) = eX=D ;where D is the 
hara
teristi
 bran
hing distan
e. This approximates to a situation wherethe distan
e (in units of ele
trotoni
 length) between su

essive bifur
ations is D ln 2.In
orporating the input density in (16) leads to the distribution of attenuations as afun
tion of the ele
trotoni
 length L and the bran
hing distan
e D:p(f) / �(X)=j�0(X)j = �(��1(f))=j�0(��1(f))j = (1=f)1=D+1 :Cal
ulating the squared CV of this distribution and substituting it into equation (15),the SNR is �expatt;bran
hed = (1� 2D) �eL(1=D�1) � 1�2(D � 1)2(eL=D � 1)(eL(1=D�2) � 1) �̂ :The redu
tion in SNR for bran
hed dendrites is shown in Figure 3. As the bifur
a-tion length be
omes large relative to the length of the dendrites, the ratio approa
hesthe value for the unbran
hed dendrites. For small D 
ompared to L, the performan
eapproa
hes the unattenuated 
ase. This seemingly paradoxi
al result is be
ause withprofusely bran
hing dendrites, most of the area of the dendrites is 
on
entrated near thetips, so that most of the inputs are attenuated equally. The ratio has a minimum atD = 1 of L2(1�e�L)(eL�1) .To estimate how mu
h performan
e might be redu
ed in hippo
ampal CA1 
ells, wetook L to be 2, following Stri
ker et al. (1996) who found that S
ha�er 
ollateral synapseson CA1 
ells of synapses were lo
ated between 0.3 and 2.1 length 
onstants from the soma.For L = 2, the value of the minimum is 0.72, a redu
tion by a fa
tor of 1.4. 13
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Figure 3: Fra
tional redu
tion of SNR �=�̂ in bran
hed dendrites where the attenuationde
ays exponentially as a fun
tion of the bran
hing length 
onstant D. A, Redu
tionas a fun
tion of ele
trotoni
 length L for various values of D. Performan
e de
reasesmonotoni
ally with L for all values of D. B, Redu
tion as a fun
tion of D for variousvalues of L. Note that there is no de
rease in performan
e for very rapidly bran
hing
ells (D! 0), and that the worst performan
e always o

urs when D = 1.6 Sto
hasti
 synapti
 transmissionWe now examine the 
ase with homogeneous attenuation fa
tors and memory intensityand inhomogeneous, sto
hasti
 transmission (non-zero �2g and �2f = �2� = 0; fi = �(!) = 1for all i and !).Rather than using equation (5), where 
 was set to zero, the theory presented inse
tion 3 is required to derive the most general expression for the redu
tion in SNR dueto sto
hasti
 transmission. From the general formula (10) and Table 2, the sto
hasti
transmission redu
es the SNR by a fa
tor of�1 + �2g p+ 
2(1� p)p(1� p)(1� 
)2��1 : (17)In 
ontrast to the 
ases studied so far, the value of the low state 
 appears in the formula.This appears to 
ontradi
t Dayan and Willshaw (1991), who showed that the SNR isindependent of the value of 
 for all 
 6= 1. We investigate this by de�ning 
anoni
alinputs â(!)i 2 f0; 1g and deriving the a
tual inputs from them: a(!)i = (1 � 
)â(!)i + 
.Then the postsynapti
 sum is given byd(!)j = (1� 
) NXi=1 wijâ(!)i g(!)ij + 
 NXi=1 wijg(!)ij :With homogeneous transmission (g(!)ij = 1) the se
ond term is the same for all ! and sorepresents a translation. Sto
hasti
 transmission 
auses this term to vary with ! and this14



adds to the dispersion of the dendriti
 sum distribution. Similarly, whereas the �rst termrepresents a stret
h in the homogeneous 
ase, it adds to the dispersion in the sto
hasti

ase.To predi
t the e�e
t of sto
hasti
 transmission in the hippo
ampus, we assume synapsesrelease single quanta with a transmission probability t and amplitude q. The squared CVof g is �2g = �2q + 1� tt ; (18)where �q is the CV of q. Measurements from the experimental literature suggest amaximum value of �2g of about 10 (t = 0:1, �q = 0:1; Stri
ker et al., 1996) and a minimumof 0.5 in a potentiated state (t = 0:8, �q = 0:45; Bolshakov et al., 1997). A CV of about2 may be more realisti
 for unpotentiated synapses (t = 0:4, �q = 0:3; Bolshakov et al.,1997). We estimate the range of p to be 0.2{0.3 on the basis of in vivo re
ordings from CA3(Barnes et al., 1990; Leutgeb et al., 2004). Substituting these values into equation (17)with 
 = 0, we derive an upper limit on the redu
tion in SNR of 1 + 10=0:7 � 15 and alower limit of 1+ 0:5=0:8 � 2. For a CV of 2 we estimate the SNR redu
tion fa
tor to be1 + 2=0:8 = 3:5.7 Inhomogeneous memory intensitiesWe now 
onsider networks with homogeneous attenuation fa
tors and perfe
tly reliabletransmission but with inhomogeneous memory intensities. This means that �(!) is notuniform and �f = �g = 0; fi = g(!)i = 1 for all i and !.There are a number of ways of imagining how su
h inhomogeneous memory intensitiesmight be established in a network. For example, parti
ularly signi�
ant memories mightbe learnt with greater weights, or might be rehearsed more, leading to greater weights overa period of time. These s
enarios are probably best studied in the 
ontext of 
ontinuouslearning and forgetting of memories. A

ordingly, here we apply the general result to themore familiar 
ase of a network where the intensities are graded so that e�e
tively thereis weight de
ay.7.1 Weight de
ayWe suppose that the network is learning 
ontinuously (
 ! 1) with e�e
tively weightde
ay o

urring between ea
h presentation of pattern pairs. Thus ea
h memory's intensityis �(!) = e�!� where � is the weight de
ay (or `forgetting') time 
onstant and where theindex ! now measures the `age' of a memory; it is 1 for the most re
ent. This distributionof � has h�i � �=
, h�2i � �=(2
), �2� � �=(2
) and �2� = 
=(2�). Substitution of thesequantities into equation (5) leads to a general expression for the SNR of a memory withage !: �(!) = Np(1� p)(Æ � 
 � � + �)2e� 2!�� �R2e�!� +R3� +R4=2� : (19)For balan
ed learning rules the R2 and R3 terms in the denominator vanish, so theSNR of an ageing memory de
ays exponentially with a time 
onstant �=2. For unbalan
edlearning rules this relation holds approximately, espe
ially for older patterns.
15



7.2 Palimpsests with balan
ed learning rulesWe now analyse the 
ovarian
e learning rule (� = (1 � p)(1 � r); � = �p(1 � r); 
 =�(1 � p)r; Æ = (1 � p)(1 � r)) as an example of a balan
ed learning rule. The analysisapplies equally to the homosynapti
 (� = 0; � = 0; 
 = �r; Æ = 1� r) and heterosynapti
(� = 0; � = �p; 
 = 0; Æ = 1� p) instantiations of balan
ed learning rules. The formulafor the SNR depends on the pre
ise learning rule, but our basi
 �nding { the dependen
eof the 
apa
ity of the network on the de
ay time 
onstant { remains un
hanged.Substituting the 
ovarian
e learning rule into (19) leads to the following expressionfor the SNR: �
ov(!) = 2Ne� 2!�r(1� r)� : (20)Figure 4 shows the expe
ted SNR and error levels as a fun
tion of the age of the patternsfor three di�erent forgetting time 
onstants � . For small � , the network forgets qui
kly.For large � the network's memory is longer but the interferen
e from older patternsdegrades the performan
e of the more re
ent patterns. In the �gure we have 
hosen anSNR of 10 to de�ne su

essful retrieval; this is shown by the horizontal dashed line. Theintermediate value of � shown in the plot provides the largest 
apa
ity at this level ofperforman
e. Simulations 
on�rmed the results shown in Figure 4.Rearranging (20) leads to an expression for the 
apa
ity in terms of � and the minimumSNR of �min: 
max = �2(ln 2
̂max � ln �) (21)where 
̂max = Nr(1� r)�min (22)is the 
apa
ity of a homogeneous network with the minimum SNR �min. The dependen
eof 
max on � is shown in Figure 5. For � > 2
̂max it is not possible for the networkto perform at the spe
i�ed SNR of �̂ be
ause of interferen
e from older memories. Theoptimal value of 
max is 
̂max=e whi
h o

urs at � = 2
̂max=e. Thus the palimpsestproperty redu
es the 
apa
ity of the network by a fa
tor of at least e.The s
aling of the 
apa
ity of the network with number of synapses N in an output unitdepends on whether the time 
onstant is s
aled with N or not. If � = kN=(r(1� r)�min)for 0 < k < 2, then 
max will s
ale with N . In this 
ase the initial SNR is independentof N : �(1) = 2�mine�2=�=k. In 
ontrast, if � is �xed, the 
apa
ity only grows as lnN , butthe initial SNR is proportional to N . In the Dis
ussion (se
tion 8), we 
onsider whetherthis is reasonable.7.3 Palimpsests with a Hebbian ruleApplying equation (19) to the Hebbian learning rule, we obtain an expression for theSNR: �Hebb(!) = N(1� p)e� 2!��r((1� 2p)e�!� + pr� + 1=2) : (23)In the limit N ! 1 the denominator is dominated by the terms quadrati
 in � and we
an 
ompare the palimpsest 
apa
ity with the standard 
apa
ity in the large N limit.This gives a redu
tion in 
apa
ity by a fa
tor of e, as in the balan
ed 
ase, though theoptimal time 
onstant is a fa
tor of 2 smaller at 
̂max=e. 16



With the de
ay time 
onstant mat
hed to the number of inputs, the memory lifetimeis proportional to pN and the initial performan
e is independent of N . When the de
aytime 
onstant is �xed, the initial SNR is proportional to N and the lifetime is proportionalto ln(pN).8 Dis
ussionIn this paper we have derived a general expression for the 
apa
ity of a heteroasso
iativememory with 
ontinuous weights trained with a general lo
al learning rule with di�er-ential input attenuation, sto
hasti
 synapti
 transmission and inhomogeneous memoryintensities. This work extends that of Dayan and Willshaw (1991), whi
h 
onsidered
ompletely homogeneous networks.As far as we are aware, ours is the �rst analysis of di�erential attenuation in amathemati
ally-tra
table asso
iative network, though an asso
iative network embeddedin a multi
ompartmental CA1 model was studied numeri
ally by Graham (2001). Hisapproa
h is more biologi
ally-grounded than ours and 
an be used to predi
t the e�e
tof a
tive 
ondu
tan
es or the pre
ision of timing of the inputs. The geometry of the
ell is an integral part of Graham's 
ompartmental model, rather than being imposed onthe model as we have done. Any intera
tions between inputs are ignored in our model.For example, a distal input might be boosted by a
tivation of proximal NMDA re
ep-tors. Nevertheless, our model suggests that it is the spread of e�e
tive attenuations (asmeasured by the CV) that is important rather than the pre
ise dynami
s of attenuation.Sto
hasti
ally-�ring units are often 
onsidered in 
apa
ity 
al
ulations of Hop�eldnetworks (Hertz et al., 1991) and sto
hasti
 transmission has been in
orporated in asso-
iative network models (Bennett et al., 1994; Graham, 2001). Numeri
al analysis of anautoasso
iative network model of CA3 shows that sto
hasti
 �ring redu
es the 
apa
ityof the network, but enhan
es its ability to re
all a pattern from a partial 
ue (Bennettet al., 1994). Our results also indi
ate that sto
hasti
 �ring de
reases 
apa
ity, thoughwe 
annot make the 
omparison with autoasso
iative re
all dynami
s as they are absentfrom our model.Weight de
ay has been studied in binary-weighted asso
iative networks (Willshaw,1971; Henson and Willshaw, 1995) and Hop�eld networks (M�ezard et al., 1986; Nadalet al., 1986; van Hemmen and Zagrebnov, 1987). We have in
orporated weight de
ayinto an asso
iative model with arbitrary pattern sparsity and lo
al, linear learning rules.In 
ommon with M�ezard et al. (1986), our approa
h also 
overs arbitrary distributionsof memory intensities, as well as those arising from weight de
ay.8.1 The e�e
ts of di�erential attenuation and sto
hasti
 trans-missionWe have 
onsidered how mu
h di�erential attenuation and sto
hasti
 transmission arelikely to a�e
t the network performan
e of the CA3{CA1 network.In se
tion 5.3 we found the worst-
ase redu
tion in 
apa
ity with uniform inputs over abran
hing dendriti
 tree was a fa
tor of 1.4, assuming the dendriti
 tree is 2 ele
trotoni
lengths long (Stri
ker et al., 1996). Me
hanisms su
h as synapti
 s
aling and a
tive
ondu
tan
es should lead to a tree that is ele
troni
ally more 
ompa
t, but the highmembrane 
ondu
tan
e might lead to a greater ele
trotoni
 length. 17



Our assumptions about the bran
hing stru
ture of dendrites for CA1 neurons are onlyapproximate, though they do suggest that the e�e
t of bran
hing dendrites will not bevery great. A more pre
ise estimation of the a�e
t on the SNR 
ould be made by usingthe statisti
s of synapse pla
ement on CA1 su
h as those obtained by Meg��as et al. (2001).In se
tion 6 we used values of the sparseness of presynapti
 a
tivity, transmissionprobabilities and CVs of su

essful transmission taken from the literature to estimatethat the sto
hasti
 transmission redu
es the SNR by a fa
tor of 3.5 (with a possiblerange of 2{15). It would appear then that transmission noise should lead to a greaterde
rease in SNR than di�erential attenuation.Bursts of presynapti
 neuronal a
tivity 
an lead to reliable synapti
 transmission fromunreliable synapses, when the burst (rather than individual spikes) is 
onsidered as theunit of presynapti
 a
tivity (Lisman, 1997). If we assume a squared CV of around 0.3for the postsynapti
 response to a burst and a presynapti
 a
tivity p = 0:2, this leads toan estimate of about 1.4 for the fa
torial redu
tion in SNR, similar to the redu
tion dueto di�erential attenuation.Asso
iative memories with linear learning therefore seem to be quite robust to di�er-ential input attenuation. This 
ould be important in the biologi
al neural networks su
has CA3{CA1 network whi
h might have attenuation pro�les varying with the level ofba
kground a
tivity. It also raises the question of whether synapses are s
aled with dis-tan
e at all (Magee and Cook, 2000), espe
ially given the potential for this me
hanism todefeat itself (London and Segev, 2001). Nevertheless, in
reasing the homogeneity of theinput attenuations does lead to improved performan
e, so it is perhaps not so surprisingthat there should be synapti
 s
aling.Graham (2001) found that the SNR was redu
ed by a fa
tor of 2.5 (40%) in anasso
iative network embedded in a 
ompartmental model of a CA1 
ell with a synapti
transmission probability of 1 and a quantal amplitude CV of 0.3. We estimate that thesto
hasti
 transmission should redu
e the SNR by approximately 10%. Combined withour estimate of a redu
tion of 1.4 due to attenuation di�eren
es, this leads to a redu
tionof 1.5 in the SNR, 
onsiderably less severe than the redu
tion in the multi
ompartmentalmodel. This dis
repan
y 
ould arise from di�eren
es in the network models used or fromour underestimating the e�e
tive attenuations. The 
apa
ity of the binary-weightednetwork used in Graham's model depends logarithmi
ally on the number of synapses(Willshaw et al., 1969), as opposed to the linear or square-root dependen
e in our model.In the binary-weighted network there is no varian
e in the `high' distribution but thevariable attenuations will smear this out, perhaps in
reasing the apparent redu
tion inSNR. A simple test of whether the di�eren
es are due to the underlying network modelor the neuron model would be to repeat Graham's simulations using a heteroasso
iativenetwork with linear learning, though negative weights in this model would have to beprevented by some means.8.2 Optimal forgetting in palimpsestsOur results suggest that for optimal 
apa
ity, the de
ay 
onstant of the memories shouldbe tuned to the number of neurons, 
onsistent with the s
aling in Hop�eld networks(Nadal et al., 1986; M�ezard et al., 1986). The optimal value we �nd for the forgettingtime 
onstant also agrees. For balan
ed networks, it is a fa
tor 2=e times the 
apa
ityof the equivalent standard network. The tuning of the time 
onstant need not be verypre
ise, but does have to be less than a 
riti
al value as otherwise re
all breaks down.18



We have shown that if the forgetting rate is �xed, the network 
apa
ity s
ales only withthe logarithm of the number of inputs (for balan
ed rules) or the logarithm of the squareroot of the number of inputs (for unbalan
ed rules).In a model with binary synapses with states with varying levels of persisten
e, Fusiet al. (2005) showed that memory lifetime 
an s
ale with the number of synapses raisedto a power less than one, without having to tune the forgetting time 
onstant. Thiss
aling is better than the logarithmi
 s
aling we �nd for �xed forgetting time 
onstant,but worse than the s
aling if the time 
onstant is s
aled with the number of synapses.The question arises of how reasonable is it to tune � . This will not be a problem thathas to be dealt with within an animal's lifetime, as we expe
t the number of inputs andthe sparsity of the memory 
oding to be fairly 
onstant. It seems feasible that � 
ould betuned through evolutionary me
hanisms. Our results suggest that the di�erent forgettingtime 
onstants should appear in di�erent asso
iative memory systems a

ording to thesparsity of the input and output patterns and the numbers of inputs.Whether forgetting obeys a power law or an exponential fun
tion is a matter of some
ontroversy in the psy
hophysi
al literature (Wixted and Ebbesen, 1997; Anderson andTweney, 1997). In the physiologi
al literature, long term studies suggest LTP de
aysexponentially (Ra
ine et al., 1983; Abraham et al., 2002). However, LTP results froman arti�
ial proto
ol, and is probably not subje
t to me
hanisms su
h as rehearsal ormodulation due to behavioural state (Xu et al., 1997). The general results presentedin this paper 
ould provide a framework for predi
ting the memory time 
ourses arisingfrom physiologi
al pro
esses.A
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tive reviews.A Derivation of SNRWe now devise the expression for the SNR given in equation (10) and the asso
iatedrelations in Table 2, in se
tion 3.A.1 Expe
ted di�eren
e of high and low dendriti
 sumsTo avoid notational 
lutter, we drop the j suÆx of the postsynapti
 neuron throughoutthis appendix. The expe
ted dendriti
 sum for a high pattern !h with intensity �h = �(!h)
an be written as
d(!h)� =NXi=1 *fi g(!h)i �ha(!h)i �(!h)i + X!2H;! 6=!h g(!)i �(!)a(!h)i �(!)i +X!2L g(!)i �(!)a(!h)i �(!)i !+where H = f! : b(!) = hg and L = f! : b(!) = lg. The attenuation fa
tors fi andthe transmission fa
tors g(!)i are independent of ea
h other and all the other variables,so their expe
tations 
an be fa
tored out. The weight 
ontributions are independent of19



the values of 
, h and l. For 
onvenien
e, and without loss of generality, we de�ne themin terms of 
anoni
al input patterns â(!)i 2 f0; 1g and output patterns b̂(!) 2 f0; 1g:�(!)i = �(1 � â(!)i )(1 � b̂(!)) + �(1 � â(!)i )b̂(!) + 
â(!)i (1 � b̂(!)) + Æâ(!)i b̂(!). Using thefa
t that the �(!) fa
tors are independent from the inputs and weight in
rements, we 
ansubstitute in the expe
ted values of the produ
ts of a(!h)i �(!h)i and a(!)i �(!)i for high andlow patterns to obtain:
d(!h)� = N hfiiDg(!)i E*�h(pÆ + (1� p)
�) + X!2H;! 6=!h �(!)��+X!2L �(!)� + ;where � = p+ 
(1� p) is the expe
ted a
tivity of an input unit.We now de�ne 
h to be the number of high patterns, 
l the number of low patterns,�h the mean of the high patterns and �l the mean of the low patterns. These quantitiesare random, varying between output units. By adding �h� to the �rst sum of the aboveformula and taking it away from the �rst term and simplifying we 
an write this formulaas: 
d(!h)� = N hfiiDg(!)i E �h (p(1� p)(1� 
)(Æ � �) + h
h�h��+ 
l�l� i) : (24)The equivalent formula for low patterns is
d(!l)� = N hfiiDg(!)i E �l (p(1� p)(1� 
)(
 � �) + h
h�h��+ 
l�l� i) : (25)Hen
e 
d(!h) � d(!l)� = N hfiiDg(!)i E p(1� p)(1� 
) (�h(Æ � �)� �l(�� 
)) : (26)A.2 Dispersion of dendriti
 sumsThe dispersion of the high patterns as de�ned in equation (8), 
an be rearranged (Dayanand Willshaw, 1991) into the form�
h � 1
h ��d(!h1)�2 � d(!h1)d(!h2)�� ;where !h1 and !h2 index two di�erent patterns with high outputs. An approximation tothis quantity, whi
h is tra
table to 
ompute is:D�d(!h1)�2E� 
d(!h1)d(!h2)� :A.2.1 The expe
tation of �d(!h1)�2This 
an be partitioned into a sum with N terms where the a
tivity is from the sameinput units and a double sum with N(N � 1) terms where the a
tivity is from di�erentunits:D�d(!h1)�2E = * NXi=1 f 2i �g(!h1)i �2 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i �a(!h1)i �2++* NXi=1 NXj=1;j 6=i fifjg(!h1)i g(!h1)j 
X!=1 
X!0=1�(!)�(!0)�(!)i �(!0)j a(!h1)i a(!h1)j + (27)20



k Tk Vk1 �h2 pÆ2 + 
2(1� p)�2 (pÆ + 
(1� p)�)22 
h�h2 � �h2 �(pÆ2 + (1� p)�2) �2�23 
l�l2 �(p
2 + (1� p)�2) �2 24 2
h�h�h � 2�h2 (pÆ + 
2(1� p)�)� (pÆ + 
(1� p)�)��5 2
l�h�l (pÆ + 
2(1� p)�) (pÆ + 
(1� p)�)� 6 
h2�h2 � (2
h�h�h � 2�h2) ��2 �2�2�(
h�h � �h2)� �h27 2
l
h�h�l � 2
l�h�l �� �2� 8 
l2�l2 � 
l�l2 � 2 �2 2Table 3: Components of D�d(!h1)�2E.Under the assumption that the attenuation and transmission fa
tors are independentfrom ea
h other and from the inputs, we 
an apply the expe
tations to ea
h fa
tor in thesums:D�d(!h1)�2E = N hf 2i hg2i* 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i �a(!h1)i �2+| {z }=: Th+N(N � 1)(hfi)2(hgi)2* 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i a(!h1)i a(!h1)j +| {z }=: Vh (28)We de�ne Th to be the inner sums for the same-unit terms and Vh the inner sums forthe 
ross-unit terms. The expe
tation of ea
h of the 
2 terms of Th and Vh dependson whether ! or !0 are equal to ea
h or other or !h1. There are eight di�erent typesof 
ombinations of !, !0 and !h1. We index the 
ombinations with k and denote theexpe
tation of a 
ombination ��(!)i �(!0)i �a(!h1)i �2� by Tk and D�(!)i �(!0)i a(!h1)i a(!h1)j E byVk. The expe
tation of the whole of the inner sum is then the sum of the produ
ts of theexpe
tations with the sums of the intensities �(!)�(!0), similar to equation (A.1). We thenrearrange the sums (in a similar way to equation (24)) so that we have expressions interms of the �h, �h and �l et
. Table 3 gives the values of ea
h of these 8 terms togetherwith the appropriate prefa
tors.From the table, we 
an write down an expression for Th:Th = �h2(T1 � T2 � 2T4 + 2T6) + �h�h
h(2T4 � 2T6) + �h�l
l(2T5 � 2T7)+ �h2
h(T2 � T6) + �l2
l(T3 � T8) + (
h�h)2T6 + 2
h�h
l�lT7 + (
l�l)2T8= �h2p(1� p)(1� 
2)(1� 2p)(Æ � �)2+ 2p(1� p)(1� 
2)(Æ � �)(�h�h
h�+ �h�l
l )+ �p(1� p)(�h2
h(Æ � �)2 + �l2
l(
 � �)2) + �(
h�h�+ 
l�l )2 (29)
We 
an write down a similar equation for Vh and there are analogous expressions for Tland Vl whi
h are obtained by inter
hanging 
h and 
l, Æ and 
, � and �, and � and  .21



k Uk Wk1 2�h2 (pÆ2 + 
(1� p)�2)� (pÆ + 
(1� p)�)��2 �h2 (pÆ + 
(1� p)�)2 (pÆ + 
(1� p)�)23 �h2 (pÆ + 
(1� p)�)2 �2�24 2(
h�h�h � 2�h2) (pÆ + 
(1� p)�)�� (pÆ + 
(1� p)�)��5 2
l�h�l (pÆ + 
(1� p)�)� (pÆ + 
(1� p)�)� 6 2(
h�h�h � 2�h2) (pÆ + 
(1� p)�)�� �2�27 2
l�h�l (pÆ + 
(1� p)�)� �2� 8 
h�h2 � 2�h2 �2(pÆ2 + (1� p)�2) �2�29 
l�l2 �2(p
2 + (1� p)�2) �2 210 
h2�h2 � 4(
h�h�h � 2�h2) �2�2 �2�2�(
h�h2 � 2�h2)� 4�h211 4
l
h�h�l � 4
l�h�l �2� �2� 12 
l2�l2 � 
l�l2 �2 2 �2 2Table 4: Components of 
d(!h1)d(!h2)�A.2.2 The expe
tation of d(!h1)d(!h2)This 
an be partitioned similarly into N terms from the same input unit and N(N � 1)terms where the a
tivity is from di�erent units:
d(!h1)d(!h2)� = * NXi=1 f 2i g(!h1)i g(!h2)i 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i a(!h1)i a(!h2)i +
+* NXi=1 NXj=1;j 6=i fifjg(!h1)i g(!h1)j 
X!=1 
X!0=1�(!)�(!0)�(!)i �(!0)i a(!h1)i a(!h2)j + (30)Again, we fa
tor out the expe
tations of the attenuation and transmission fa
tors:
d(!h1)d(!h2)� = N hf 2i (hgi)2* 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i a(!h1)i a(!h2)i +| {z }=: Uh+N(N � 1)(hfi)2(hgi)2* 
X!=1 
X!0=1 �(!)�(!0)�(!)i �(!0)i a(!h1)i a(!h2)j +| {z }=:Wh : (31)There are twelve di�erent types of 
ombinations of !, !0, !h1 and !h2 (see Fig-ure 6). We denote the expe
tation of a 
ombination D�(!)i �(!0)i a(!h1)i a(!h2)i E by Uk andD�(!)i �(!0)i a(!h1)i a(!h2)j E by Wk. These expe
tations, along with the prefa
tors, are shownin Table 4. Adding up the terms leads to this expression for Uh:Uh = �h2(2U1 + U2 + U3 � 4U4 � 4U6 � 2U8 + 6U10)+ �h�h
h(2U4 + 2U6 � 4U10) + �h�l
l(2U5 + 2U7 � 4U11)+ �h2
h(U8 � U10) + �l2
l(U9 � U12)+ (�h
hU10 + �l
lU12)2 ; (32)22



and by subtra
ting Uh from Th (equation (29)), we obtainTh � Uh = p(1� p)(1� 
)2
�h2(6p(p� 1) + 1)(Æ � �)2+ 2(1� 2p)(Æ � �)(�h�h
h�+ �h�l
l )+ p(1� p)(�h2
h(Æ � �)2 + �l2
l(
 � �)2)+ (
h�h�+ 
l�l )2� : (33)A similar 
omputation yields Vh�Wh = 0, so there is no 
ontribution from the 
ross-unitterms.This absen
e of 
ross-term 
ontributions means that the dispersion of the high andlow patterns depends only on Th, Uh, Tl and Ul. The expression for the high patterns iss2h(�h) = N 
f 2� �(hgi)2(Th � Uh) + (
g2�� (hgi)2)Th� (34)and there is an analogous expression for the low patterns. We de�neR = Th + Tl � Uh � Ul2(h�i)2
p(1� p)(1� 
)2 and T y = Th + Tl2(h�i)2
p(1� p)(1� 
)2 (35)so that we 
an write down the SNR as a fun
tion of intensity whi
h is of the same formas equation (10) in se
tion 3:�(�) = Np(1� p)(Æ � 
 � � + �)2(�=h�i)2
(1 + �2f) �R + �2gT y� : (36)A.2.3 Cal
ulation of expe
tations involving �hThe terms whi
h are linear in �h, �h2 and 
h are straightforward sin
e D�h2E = h�h2iand h�hi = h�hi. As these are independent of 
h, the expe
tations D�h2
hE and h�h
hifa
torise. In order to evaluate the term h(
h�h�+ 
l�l )2i, we 
ompute the expe
tationof �h2 
onditional on 
h 
�h2j
h� = 1
h�2�h + (h�hi)2 (37)This means that 

h2�h2� = 

�h2j
h�
h2� = h
hi �2�h + 

h2� (h�hi)2 (38)Hen
e 
(
h�h�+ 
l�l )2� =�2(h
hi�2�h+ 

h2� (h�hi)2) +  2(h
li �2�l + 

l2� (h�li)2)+ 2� h
h(
� 
h)�h�li= 
(r�2�2�h + (1� r) 2�2�l)+
r(1� r)(h�hi�� h�li )2 + 
2(r h�hi�+ (1� r) h�li )2 (39)
We 
an use equation (39) to remove the expe
tations over 
h and 
l from Th and Tl. Whenwe substitute the new expressions for Th and Tl into the T y (de�ned in equation (35)),23



and ignore terms in 1=
, we obtain:T y � 1 + 
1� 
(Æ � � + 
 � �)(r�+ (1� r) )�=h�i+ �(1� 
)2 �r(Æ � �)2 + (1� r)(
 � �)2� 
�2� =(h�i)2+ �p(1� p)(1� 
)2 �(r�2 + (1� r) 2)�2�=(h�i)2 + r(1� r)(��  )2�+ �p(1� p)(1� 
)2 (r�+ (1� r) )2
 : (40)
Similarly, we 
an remove the expe
tations from Th � Uh to give:R � (1� 2p)(Æ � � + 
 � �)(r�+ (1� r) )�=h�i+ p(1� p)(r(Æ � �)2 + (1� r)(
 � �)2) 
�2� =(h�i)2+ (r�2 + (1� r) 2)�2�=(h�i)2 + r(1� r)(��  )2+ (r�+ (1� r) )2
 : (41)By rewriting the h�2i =(h�i)2 in terms of the 
oeÆ
ient of variation �� and grouping termswe arrive at the expression for the SNR given by equation (10) and Table 2 in se
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Figure 4: SNR (A) and bit error (B) as fun
tions of the age of a memory in a network witha 
ovarian
e learning rule with three di�erent forgetting time 
onstants: fast (� = 187;dashed line), optimal (� = 460; dash-dotted line) and slow (� = 939; dotted line).The solid horizontal lines indi
ate the SNR de�ning good retrieval �min(A) or bit errorthresholds (B). The 
apa
ity of the network is de�ned by the age of memory at thepoint where the SNR or bit error 
urve 
rosses the SNR or bit error 
riterion. The biterror is derived from the SNR � a

ording to the formula of Dayan and Willshaw (1991):(1 � r)�(�p�2 + 1p� ln r1�r ) + r�(�p�2 � 1p� ln r1�r ) where �(x) = 1p2� R x�1 e�u22 du. The
apa
ities for the three 
urves are indi
ated along the x-axis.
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