Revisiting: Algebraic laws for nondeterminism
and concurrency

Matthew Hennessy

Milner-Symposium, Edinburgh april 2012

COLAISTE NA TRIONGIDE, BAILE ATHA CLIATH

9’% E TRINITY COLLEGE DUBLIN

-
History of a paper

Algebraic laws for nondeterminism and concurrency, JACM 1985
Matthew Hennessy and Robin Milner

> Research in late 1979 33 years ago

v

Results presented at ICALP 1980 32 years ago
(On Observing Nondeterminism and Concurrency)

v

Rejected for publication 1982

v

Rejected for publication 1983

Published in JACM 1985

v

-
Edinburgh 1979 33 years ago

» No Labelled Transition Systems

» No CCS No CSP No ACP No ...
> No street lightening

» What happened to the sun ?

» Lots of mushrooms

» No Bisimulations

» When does the summer arrive?

» Walks on Arthurs seat

» Lots of parking near George Square

-
Edinburgh 1979: Lots of denotational semantics

D =[D — D] functions Scott, 1969

P=V - (VxP) transformers Milner 1971

R=P(S. + (P(SL)®@R.))® resumptions Plotkin 1976

PL=P(D (Us x (Vs — PL))) processes Milne&Milner 197
BeL

-
Edinburgh 1979: Lots of algebraic semantics

The Auld Alliance
> Jean-Marie Cadiou (1972): Recursive Definitions of Partial Functions and
their Computations
» Jean Vuillemin (1973): Proof Techniques for Recursive Programs

» Bruno Courcelle, Maurice Nivat (1978): The Algebraic Semantics of
Recursive Programme Schemes

> Irene Guessarian (1981): Algebraic Semantics

-
Edinburgh 1979: Lots of algebraic semantics

The Auld Alliance

>

Jean-Marie Cadiou (1972): Recursive Definitions of Partial Functions and
their Computations

» Jean Vuillemin (1973): Proof Techniques for Recursive Programs

Bruno Courcelle, Maurice Nivat (1978): The Algebraic Semantics of
Recursive Programme Schemes

Irene Guessarian (1981): Algebraic Semantics

Magmas: ordered sets with operators

> Ideal completions: adding limit points

Initial algebra semantics

A behavioural equivalence

ICALP 1980:

over P, Since in general there may be various means of cammication we have a set
of relations {Ring P, ieI}. Using these atanic experinents, ve define a sequence
of equivalence relations N, over P as follows:
Let pre if pqeP
P -
i) Viel, <p,p'>eR.l implies Iq". <q,q'>eRi,p'~nq‘
and i) Viel, <q,q'>eRi imlies Ip' <p,p'>eRi,p‘~nq'

Then p is observationally equivalent to q , written p~q, if prd for every n.

-
Observatonal equivalence 1079

» Reduction semantics: P — @ well-known

Observatonal equivalence 1079
» Reduction semantics: P — @ well-known
» Observational semantics: P - Q New to me

Observatonal equivalence 1079
» Reduction semantics: P — @ well-known
» Observational semantics: P - Q New to me

Observing processes:

> p ~o q fOI’ a” p, q zero observations
> P ~n+t1 q |f for every u (n + 1) observations
(i) p— p’ implies ¢ 5 ¢’ such that p’ ~, ¢’
(i) g% ¢ implies p = p’ such that p’ ~, ¢’

Transfer properties

Observatonal equivalence 1079
» Reduction semantics: P — @ well-known
» Observational semantics: P - Q New to me

Observing processes:

> p ~o q for a” P, q zero observations
> p ~n+1 q |f for eVery /.L (n + 1) observations

(i) p— p’ implies ¢ 5 ¢’ such that p’ ~, ¢’
(i) g% ¢ implies p = p’ such that p’ ~, ¢’

Transfer properties

Observational equivalence:

p~qif p [(Nn>0 ~n)| g

Observing processes

o,
—sfi

Observing processes

: %&I

a a
2 a
b
,/IC Ib IC bN bN
Py ~o Q2 Py ~1 Q Py~ Qo P>~/3 @2

Observing processes

a a I
a a a
b c c
,/IC Ib Ic b bI\
Py ~o Q2 Py ~1 Q Py~ Qo P>~/3 @2

Life could get much more complicated:

Pn ~n Qn Pn '\/(n+1) Qn

Observational equivalence: Where from?

A Denotational Model Milne&Milner 1979

P = P(Y (Us x (Vs — Pr)))
BeL

» L. set of ports
» Ug: output values on port /3
» Vj: input values on port 3

A simplification Ug = V3 = 1:

PLo= P _PL)

pel

How would you compare two elements p, g from P;?

Observational equivalence: a theorem

ICALP 1980:

Then p is observationally equivalent to q , written p~gq, if Pd for every n.
Before discussing ~ we give same of its properties. 'For any SCPXP let E(S)
be defined by

<p,@> ¢E(S) if Viel
i) pp'>eRy = g <qqeRy, plges

ii) <«qq'>eR; = ' <pp'>eRy, plaes

We say that a relation R is image-finite if for each p, {p'|<pp'>¢R} is finite.

Theorem 2.1

If each Ry is image-finite then ~ is the maximal solution to S =E(S). f

-
First research experiment

PrOCGSS Ia nguage finite non-deterministic machines

peWs, :=0[p+p]|pp

o,
—sfi

-
First research experiment

PrOCGSS Ia nguage finite non-deterministic machines

peWs, :=0[p+p]|pp
Result:

> m is a X1- congruence

Axioms (A): x+(y+z)=(x+y)+z x+y=y+x
X+ x=x x+0=x

o,
—sfi

-
First research experiment

PrOCGSS Ia nguage finite non-deterministic machines

peWs, :=0[p+p]|pp
Result:

> m is a X1- congruence

Axioms (A): x+(y+z)=(x+y)+z x+y=y+x
X+ x=x x+0=x

Denotational semantics:

: ST E T

(Wg,\A) : Initial algebra over W5, generated by axioms A

o,
—sfi

-
Robin had a lot of background

» 1973:
» 1978:
» 1978:
» 1978:
» 1979:
» 19709:

Processes: A Mathematical model ...
Algebras for Communicating Systems
Synthesis of Communicating Behaviour
Flowgraphs and Flow Algebras

An Algebraic Theory for Synchronisation

Concurrent Processes and Their Syntax

-
Robin had a lot of background

» 1973:
» 1978:
» 1978:
» 1978:
» 1979:
» 19709:

Processes: A Mathematical model ...
Algebras for Communicating Systems
Synthesis of Communicating Behaviour
Flowgraphs and Flow Algebras

An Algebraic Theory for Synchronisation

Concurrent Processes and Their Syntax

Combinators and their Laws proposed:

-
Robin had a lot of background

>

1973:
1978:
1978:
1978:
1979:
1979:

Processes: A Mathematical model ...
Algebras for Communicating Systems
Synthesis of Communicating Behaviour
Flowgraphs and Flow Algebras

An Algebraic Theory for Synchronisation

Concurrent Processes and Their Syntax

Combinators and their Laws proposed:

» Flowgraphs and flow algebras for static structure

> Synchronisation trees for dynamics

Justifying equations
Flowgraphs:

then a diagram of (p1[pa) [pI\B\y = (p1[p2)ps s

o,
—sfi

13/29

Justifying equations
Flowgraphs:

then a diagram of (pu|p2)|p9\8\y = (pr[pe)psis

Synchronisation trees:
Let p=>;Ai.pi, g= Zj pj-qj. Then

pla = ZA;-(pilq) + Zuj-(p!qj) + > 7pilg)

o,
—sfi

13/29

Theorems for free

22 = Zl plus
» Parallelism: |
» Restriction: \\

> Renaming: [S] S a function over names

Result:

> | (Np>0 ~n) | is @ Xo- congruence

> p | (Nh>0~n)| g iff p=x2q

o,
—sfi

Theorems for free

22 = Zl plus
» Parallelism: |
» Restriction: \\

> Renaming: [S] S a function over names

Result:

> | (Np>0 ~n) | is @ Xo- congruence

> p | (Nh>0~n)| g iff p=x2q

A2 = Al + existing axioms for |, \\, [S]
(%)
_sfi

Weak case: abstracting from internal activity -

» Weak observational semantics:

. * *
PéQmeanmgP% e T Q

External observations:
> p=oq for all P, q zero observations
> p=npt1 g if for every u S ACtT (n + 1) observations

(i) p=2 p’ implies g == ¢’ such that p’ ~, ¢’
(i) g== ¢ implies p = p’ such that p’ =, ¢’

Weak transfer properties
look: no hats

o,
—sfi

Weak case: abstracting from internal activity -

» Weak observational semantics:

. * *
PéQmeanmgP% e T Q

External observations:
> p=oq for all P, q zero observations
> p=npt1 g if for every u S ACtT (n + 1) observations

(i) p=2 p’ implies g == ¢’ such that p’ ~, ¢’
(i) g== ¢ implies p = p’ such that p’ =, ¢’

Weak transfer properties
look: no hats

Weak observational equivalence:

p~qifp |(Nh>o~n)| q o
—sfi

Equational characterisation

» Problem: | (Np>0 ~p) |is NOT preserved by operators + or |

o,
—sfi

Equational characterisation

» Problem:

(Nn>0 ~n)

is NOT preserved by operators + or |

» Result: In Xy, p q iff p=wa1 g

Axioms WA1: add to Al the 7-axioms:

X+ T.X=T.X

(x4 1.y) =

y)+py pry=py

p-(x +7y) = p(x + 7y) + py

o,
—sfi

Equational characterisation

» Problem:

(ngO %n)

is NOT preserved by operators + or |

> Result: In X1, p q iff p=wa1 q

Axioms WA1: add to Al the 7-axioms:

X+ T.X=T.X

(x4 1.y) =

y)+py pry=py

p-(x +7y) = p(x + 7y) + py

Where did these come from?

o,
—sfi

An GXGFCISG |n BehaVIOUI’ Algebra notes by Robin on modelling queues

Gl Me vequiek el (7)) fuom (18) . we shall need

o (n'r.! eflia fehavaw (aw

g B e X AR [(3D

vl Gane fiat a2 T award win Lo abgmded m A duacded

)

An eXGI’CISG |n BehaVIOUI’ Algebra notes by Robin on modelling queues

gl e e qined st (7)) fam (/8) we shall need

e (n'r.! eflia fehavaw (aw

)

g B e X AR [(3D

b lane tat a T auard win Lo absaded 1n A duaided

(B\) A Hlee we chall el Two evlra (re/mm'M laws
Iirx = x| (t2)

XX 2 X (tnptine).

G

Iij have [ojt’ﬂ\vv‘ e mp';.fa‘uf Covoflan,

(X« (xev) =T (x+9) | (v2")

(Bﬂ ’{ k4o y We tjpl’ ’f\nu (10
(6> 2 quee,, (8)+ Z T quee,, (4]
q 9! [7 [i)

o,
—sfi

Hennessy Mllner LOgIC where did this come from?

Observational equivalence p q

> Inspired by identity in domain P, = P(3° ., Pi)

Hennessy Mllner LOgIC where did this come from?

Observational equivalence p q

> Inspired by identity in domain P, = P(3° ., Pi)
> Requires independent justification

Hennessy Mllner LOgIC where did this come from?

Observational equivalence p q

> Inspired by identity in domain P, = P(3° ., Pi)
> Requires independent justification

Why are these behaviourally different:

a) a I/ \I
e R S D

o o
Discover difference using interaction games:

» can do action x

» can not do action x e

Discovering differences

3 a
e e e A Y

o

\
/-

@ can perform a so that
every time a is subsequently performed
both b and ¢ can be performed

o,
—sfi

-
Discovering differences
a
3 / K
S J ls
~ e e IS

@ can perform a so that
every time a is subsequently performed
both b and ¢ can be performed

@ = (a)[a]((b)tt A (c)tt)
Pyt ...

o,
—sfi

Hennessy Milner Logic

ABeL:=tt | ANB|-A| (WA

» p = (WA if p—L5 p such that p/ - A

> p (ﬂnzo Nn) q iff E(p) = E(q) requires image-finiteness

> pqipr}:AandqI;AA,forsomeAGE.

A is an explanation of why p, g are different

Enter ... David Park 151900 @

-

o,
—sfi

Enter ... David Park 151900 @

_..\\7/

FiXpOint |nd UCtionZ 1970 machine intelligence

If F(H) < H then minXF(X) S H requires monotonicity

o,
—sfi

Enter ... David Park 151900 @

s
FiXpOint |nd Uction: 1970 machine intelligence
If F(H) < H then minXF(X) S H requires monotonicity
Fair merge: 1979

fairmerge = maxX.minY .(Fm(minZ.Fm(Z, X), Y)

where Fm(X,Y) = {(e,x,x)|x € =} U {(x, ¢ x)|x € £}
= {(ax,y,az)lac L, (x,y,2) € X}
= {(xay,az)la€ X, (x,y,2) € Y} “s

Using Maximal Fixpoints

IcaIp 1980: Hennessy & Milner
Extensive use in meta-theory of processes:
> Theorem 2.1 If each R; is image-finite then ~ is the maximal
solution to S = E(S)
» ALNC, page 157: Now let ~' be the maximal solution to the
equation S = E'(S)

Using Maximal Fixpoints

IcaIp 1980: Hennessy & Milner
Extensive use in meta-theory of processes:
> Theorem 2.1 If each R; is image-finite then ~ is the maximal
solution to S = E(S)
» ALNC, page 157: Now let ~' be the maximal solution to the
equation S = E'(S)

David Park:
Use maximal fixpoints in object-theory of processes

Replace | (Np>0 ~p) | with a maximal fixpoint ~p;s

Co—induction 3 la David Park

Transfer property:
For R C P x P, define B(R) C P x P by
pB(R) g whenever

(i) p—5 p’ implies g - ¢’ such that pR g
(i) g ¢ implies p = p’ such that pR g

Bisimulations:
» R C P x P is a bisimulation if B(R) C R
> p ~pis g if pRq for some bisimulation R

Elegant proof for establishing p ~pis g
(%)
-8fi

Co—induction 3 la David Park

’ Robin Milner: A Calculus of Communicating Systems, LNCS 1980 ‘

o,
—sfi

Co—induction 3 la David Park

’ Robin Milner: A Calculus of Communicating Systems, LNCS 1980 ‘

79

Robin Milne: Communication and Concurrency, Prentice-Hall, 1984

> elegant theory

> lots of worked examples

» detailed proofs

o,
—sfi

24/29

J m M OITIS and his style of equivalences

J m M OITIS and his style of equivalences

James H Morris, PhD Thesis: Lambda Calculus Models of
Programming Languages, 1968.

» Proposed Theorem:
In Lambda, if FAL Athen YFLC A

J m M OITIS and his style of equivalences

James H Morris, PhD Thesis: Lambda Calculus Models of
Programming Languages, 1968.

» Proposed Theorem:
In Lambda, if FAL Athen YFLC A

» Question: Whatis C ?

J m M OITIS and his style of equivalences

James H Morris, PhD Thesis: Lambda Calculus Models of
Programming Languages, 1968.

» Proposed Theorem:
In Lambda, if FAL Athen YFLC A

» Question: Whatis C ?

Morris Preorder:

AL oris B if for every context CJ |

C[A] has a normal form implies C[B] has a normal form

Morris - style of equivalences

Ingredients:

» A reduction semantics: P — Q@
» Results: P || v barbs

» Language syntax for contexts C[]

Contextual equivalence:

P = Q if for every context, for every barb,

C[Pl=* P Iv iff C[Q—*Q |v

o,
—sfi

Morris - style of equivalences

Ingredients:

» A reduction semantics: P — Q@
» Results: P || v barbs

» Language syntax for contexts C[]

Contextual equivalence:
P = Q if for every context, for every barb,
CIPl]=*P v iff C[Q—="Q v
Where are the quantifiers?
(%)
~sh

Justifying Bisimulation Equivalence

Barbed congruence: Milner, Sangiorgi 1992
For image-finite CCS processes,

P ~pism Q iff P =pap Q

Justifying Bisimulation Equivalence

Barbed congruence: Milner, Sangiorgi 1992
For image-finite CCS processes,

P ~pism Q iff P =pap Q

Reduction barbed congruence: Honda, Yoshida 1993
For arbitrary CCS processes,

P%bism Q iff Pgrbc Q

Justifying Bisimulation Equivalence

Barbed congruence:

Milner, Sangiorgi 1992
For image-finite CCS processes,

P ~pism Q iff P =pap Q

Reduction barbed congruence:

Honda, Yoshida 1993
For arbitrary CCS processes,

P ~ bism Q iff P = be Q
Both contextual equivalences are reduction closed:

» P —* P implies Q —* Q' s.t. P Q
» Q —* Q implies P —* Q' st. PP = Q

2

Bisimulations in the Modern World

Pick your favourite process language

Bisimulations in the Modern World

Pick your favourite process language

» Bisimulations do not provide a behavioural theory of processes
per se

» Bisimulations provide a proof methodology for demonstrating
processes to be equivalent

» HML provide a methodology for explaining why processes are
not equivalent

Bisimulations in the Modern World

Pick your favourite process language

>

Bisimulations do not provide a behavioural theory of processes
per se

Bisimulations provide a proof methodology for demonstrating
processes to be equivalent

HML provide a methodology for explaining why processes are
not equivalent

Bisimulations are very often sound w.r.t. the natural
contextual equivalence =

Bisimulations are sometimes complete w.r.t. the natural
contextual equivalence =

Formulating complete bisimulations very often sheds light
process behaviour

EXa m pleS a very small sample

> Asynch ronous Pica|CU|US: Honda, Tokoro 1991, Amadio Castellani Sangiorgi 1998

v

Mobile Ambients: Merro, Zappa Nardelli 1985

v

EX|Stent|a| and reCUrSiVe types in lambda-calculus: Sumii, Pierce 2007

v

Higher—ordel’ processeS: environmental bisimulations Sangiorgi, Kobayahsi, Sumii 2007

v

Aspects in a functional language: open bisimulations Jagadeesan, Pitcher, Riely 2007

» Concurrent Probabilistic processes: peng, Hennessy 2011

EXa m pleS a very small sample

> Asynchronous Picalculus: Honda, Tokoro 1991, Amadio Castellani Sangiorgi 1998
> Mobile Ambients: Merro, Zappa Nardelli 1985

> Existential and recursive types in lambda-calculus: Sumii, Pierce 2007

> Higher-order processes: environmental bisimulations Sangiorgi, Kobayahsi, Sumii 2007
> Aspects in a functional language: open bisimulations Jagadeesan, Pitcher, Riely 2007

» Concurrent Probabilistic processes: peng, Hennessy 2011

> Bigra phs: Robin and co-workers

» Bigraphs: all encompassing descriptive language
» Recovery of LTS from reduction semantics
» ensuring soundness of bisimulations

