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Some Standard ML Implementations

• SML/NJ  (1986)
   (MacQueen, Appel, Reppy, Shao, ...)

• PolyML  (1985)
   (Dave Matthews)

• MLKit  (1989)
   (Mads Tofte, ...)

• Moscow ML  (early 1990s)
   (Romanenko, Sestoft, ...)

• MLton (1997)
(Weeks, Fluet, ...)

•  Alice ML (2002)
   (Rossberg, ...)
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Some Features of SML Modules

• Independence of interfaces and implementations
- a signature can be implemented by many modules
- a module can implement (match) many signatures

• Functors formed by abstraction with respect to structure names
- coherence sharing constraints for multiple parameters
- expressed by sharing equations (deprecated) or by
   definitional specifications (SML 97)

• Transparent and opaque signature ascriptions (SML 97)
- opaque ascription used for type abstraction

• Propagation of types can be (partially) expressed in functor
   signatures by sharing or definitional specifications

• Functor application is generative, not applicative
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Example: coherence sharing

     signature SA = sig type t; val f : int -> t end
   signature SB = sig type s; val g : s -> bool end

   (* SML 90 *)

 functor F(structure A: SA; structure B: SB sharing A.t = B.s) =
   struct
     val x = g(f 3)
   end 

   (* SML 97 *)

 functor F(structure A: SA; structure B: SB where type s = A.t) =
   struct
     val x = g(f 3)
   end
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Variations on Modules

There are several variations on ML module system design and
several approaches to formalizing these designs (notably
Harper, et al -- the CMU school, and Leroy -- the Caml school).

Here I will talk about my story of modules, and in particular
strong higher order modules as implemented in SML/NJ since 1993.

This story derives from experience with several generations of
module system implementations in SML/NJ, and, by now, decades
of practical use of the language.
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History of Module System Implementations in SML/NJ

•  1st generation, 1987 (incomplete bootstrap version)

•  2nd generation, 1989-90 (1st order functors with sharing specs)

•  3rd generation, Feb 1993
- full higher order functors
- definitional specs

 (==>  Harpers translucent signatures (1994) and
  Leroy’s manifest types (1994))

•  4th generation, 1995-97
- revision for compatibility with SML 97 Defn

- drop static structure identities and sharing
- add type (and structure) where clauses
- entity calculus implementation of higher order functors

•  5th generation, 2010 ...  (in progress, based on new semantics)
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First-Order Functors in the Definition

"names": internal unique identifiers for atomic tycons
 (primitives, datatypes, abstract types) also used as bound
 tycon variables

E ∈ Env = (SE, TE, VE)
   SE ∈ StrEnv = StrId → Env
   TE ∈ TyEnv = TycId → Tycon
   VE ∈ ValEnv = ValId → Type

structure: E
signature: Σ = (T,E) ∈ Sig = NameSet * Env   (where T ⊆ names(E))
functor: funsig
funsig:  Φ ∈ FunSig = NameSet * (Env * Sig)

    Φ = (T)(E1, (T')E2)   – T and T' are sets of bound names (T, T' disjoint)

    Φ = Π(T :E1).Γ(T').E2
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Functor signature instantiation

Tycon =  Name        (primitive) 
           |  λα.TyExp   (defined)

Realization:  φ : Name -> Tycon   (extends to Env → Env)

Sig Instantiation:   
     Σ ≥ E2 where Σ = (T)E1
       if ∃φ. φ(E1) = E2 and dom(φ) = T

Funsig Instantiation:  Φ = (T1)(E1, (T2)E2).

   Φ ≥ (E1', (T2')E2')
      if ∃φ. dom(φ) = T1 and φ(E1,(T2)E2) = (E1',(T2')E2')

  [T2 α-converted to T2' as needed to avoid free variable (name) capture]
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Functor Application (Rule (54))

      B ⊦ strexp => E                                 -- elaborate arg strexp to E
      B(funid) ≥ (E1, (T2)E2)                    -- instantiate functor
      E ≽ E1                                              -- so that argument is matched
      (names(E) ⋃ names(B)) ⋂ T2 = ∅    -- α-convert to insure fresh names
  ---------------------------------------------------
      B ⊦ funid(strexp) => E2

Suppose:  B(funid) = (Tp)(Ep,(Tr)Er)    [Tp ⋂ Tr = ∅ assumed]

The realization φ giving B(funid) > (E1, (T2)E2) is determined by
matching E, the argument structure, with the parameter signature
(Tp)Ep. This insures E ≽ E1.

Rule (54) works for 1st order functors, but:
1) there is no way to extend it to handle higher order functors
2) it relies on implicit alpha conversion to model tycon generation
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Why Higher Order Functors?

1. Landin's Principle of Correspondence

2. A variant of 1: Whatever entities can be defined should be 
definable within a module.

   - for structures, this yields hierarchical modules

   - for functors, this would yield higher-order functors

3. We use functors to factor multi-module programs. Sometimes the 
part of the program that we want to abstract out contains functors.
[This actually happens!] 
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A New Static Semantics for Modules

      Derived from SML/NJ implementation (4th gen)

Ideas:

1. Factoring "form" and "content" (e.g. signature/realization)

2. Static "entities" for tycons, structures, and functors
   (generalization and refinement of realizations φ)

3. An entity calculus (CBV λ-calculus with generation effects)
   to express functor static actions (how input tycons are mapped
   to output tycons, and how fresh tycons are generated)

4. Two-level elaboration of module definitions
   • direct to entities, for type checking value level
   • indirect, to entity expressions, to capture functor actions
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Semantic signatures

• entity variables ρ: internal, non-shadowable variables [Harper 94]
  (these replace "names")

• signature representation: sig -- a mapping of identifiers to static
specifications

  x    (ρ, arity)       (primary tycons)
           (TycExp)      (defined tycons: λα.TypExp, relativized)
*    (ρ, sig)         (structure component)
*    (ρ, funsig)    (functor component)
*    (Type)          (value component, relativized)
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SIG =
sig
  type t
  type ‘a s = ‘a * t
  structure A : sig
  datatype v = ...
  val x : v s

  end
  val y : t -> A.v
end 

SIG = [ t  (ρt, 0)
            s  λα.α * ρt

*       A  (ρA, [v  (ρv, 0)
*                       x  (ρv * ρt)])
            y  ρt → ρA.ρv ]

SIG = ((m,n), E)

E = [t  m,
       s  λα.α * m
       A  [v  n,
*          x  n * m]
       y  m → n ]

Example Signature
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structure S : SIG =
struct
  type t = int
  type ‘a s = ‘a * t
  structure A = struct
    datatype v = C of t
    val x = (C 3, 2)
  end
  val y = fn z => A.C(4)
end

Entity Environment for S: 

 [ ρt = int,
   ρA = [ ρv = tcnew ]
 ]

Entity Expression for S:

 [[ ρt = int,
    ρA = [[ ρv = new(0) ]]
 ]]

where [[ entdecls ]] is the
basic form of entity exp
for structures. 

Example Structure matching S
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Functor Example (old)

functor F(X: sig type t end) =
struct
  type u = X.t list
  datatype v = C of u
end

FunSig(F) = (m)(E1, (n)E2))

  where E1 = [ t  m ]

             E2 = [ u  list m,
*                 v  n,
* *         C  list m → n ]
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Functor Application (old)
FunSig(F) = ΦF = (m)(E1, (n)E2))

  where E1 = [ t  m ]

             E2 = [ u  list m,
*                  v  n,
* *           C  list m → n ]

Earg = [ t  int, s  bool ]

Earg ≽ E1' via φ : m  int, where E1' = [ t  int ]

ΦF ≥ (E1', (k)E2')  via φ where 

        E2 = [ u  list int,
*             v  k,
* *      C  list int → k ]

and k is a fresh name (i.e. atomic tycon).

F(struct type t = int 
       type s = bool end)
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Functor Example (new)

functor F(X: sig type t end) =
struct
  type u = X.t list
  datatype v = C of u
end

functor signature:   fsigF = Πρ: Σp. Σr

Σp = [ t  (ρt, 0) ]

Σr = [ u  list(ρX.ρt),
          v  (ρv, 0),
          C  list (ρX.ρt) → ρv ]

entity expression:  expF = λρX. [[ ρv = new(0) ]]

functor entity: entF = ( expF, EEc )
   (where EEc is "current" entity env)

static functor: F = < fsigF, entF >
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Functor Application Rule (New Semantics)

        EE(ep) = (λρ.body, EE1) 
        arg, EE  Rarg

        body, (EE1, ρ  Rarg)  R
       ------------------------------------
        ep(arg), EE  R

F(struct type t = int end)

EE(F) = (λρX. [[ ρv = new(0) ]], EE1)

 [[ ρt  = int ]], EE   Rarg   = ([ρt   int], EE)

[[ ρv = new(0) ]], EE2   ([ ρt   tc], EE2),   where EE2 = EE1, ρX  Rarg 

Example:

(simplified by omitting signature
 matching and coercion on argument)

19Wednesday, April 18, 12



Higher Order Functor Example

SIG = sig type t end   (Σ = [ t  (ρt, 0) ]

functor Apply(F: SIG => SIG, A: SIG) = F(A)

FunSig for Apply:

    Πρ: Σp.Σ  where 

    Σp = [ F  (ρF, ΠρX:Σ.Σ), A  (ρA, Σ) ]

Entity expression for Apply: 

    λρ. ρ.ρF(ρ.ρA)

Static functor for Apply: 

    < λρ. ρ.ρF(ρ.ρA), EEc>  where EEc is current entity environment
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Observations and Conclusions

• The entity calculus is a very natural model for first-order functors,
but once you have it, higher-order modules come for free.

• The entity calculus model is easily translated to implementation 
– indeed, it was derived from a pre-existing implementation!

• “Strong” or “true” higher-order functors are naturally supported,
but the inherent conflict with “pure” separate compilation is made
even clearer.  A complete static signature for a functor would have 
to encorporate the entity function encoding the functor static action.

But lack of “pure” separate compilation has not been a practical
problem for SML programmers.  Adequate separate compilation
is easy to achieve.
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